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Paradox of heat conduction

• One of the most successful models in continuum physics is Fourier’s law of
heat conduction

q = −κ∇T

where q is the thermal flux vector, T is the temperature, and κ > 0 stands for
the thermal conductivity.

• With this law, the widely used full compressible Navier-Stokes system in Rd

reads: 
∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇p = divτ,
∂t(ρT ) + div(ρuT + up)− κ∆T − div(τ · u) = 0.

(1)

• A shortcoming of Fourier’s law is that it leads to a parabolic equation for the
temperature field: any initial disturbance is felt instantly throughout the entire
medium.

→ Such behavior contradicts the principle of causality.
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An alternative: Cattaneo’s law

To correct this unrealistic feature one can use the Maxwell-Cattaneo law:

ε2∂tq + q = −κ∇T ,

where ε is the thermal relaxation characteristic time

However, this leads to a non-Galilean invariant model. In ’09, Christov
formulated the following law

ε2 (∂tq + u · ∇q − q · ∇u + (∇ · u)q) + q = −κ∇T . (2)

Essentially, −∆T is now replaced by the first-order coupling (in blue)
below: 

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇p = divτ,
∂t(ρT ) + div(ρuT + up) + divq − div(τ · u) = 0,
ε2 (∂tq + u · ∇q − q · ∇u + (∇ · u)q) + q + κ∇T = 0,

(3)

→ Finite speed of propagation for the temperature.

Question: How to justify rigorously the limit ε → 0?

Element of response to the paradox of heat conduction.

Useful for numerics.
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First-order partially dissipative coupling
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Porous media approximation

The compressible Euler equations with damping reads:
∂tρ+ div(ρu) = 0,

ε2(∂tu + u · ∇u) +
∇P(ρ)

ρ
+ u = 0.

(E)

This system can be understood as a hyperbolic approximation, as ε → 0,
of the solution of the porous media equation:

∂tn −∆P(n) = 0.

Numerous results in the 1D case: Jin-Xin ’95, Junca-Rascle ’02.

Weak convergence result in the multi-dimensional case:
Coulombel-Goudon-Lin ’07 ’13, Fang-Xu ’09, Kawashima-Xu ’14

Strong convergence in Rd with d ≥ 1 for global-in-time strong solutions
being small perturbations of (ρ̄, ū) = (ρ̄, 0) with ρ̄ > 0: Danchin-CB ’22.

Tools: Littlewood-Paley, Shizuta-Kawashima’s theory and hypocoercivity
theory.
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Toy-model analysis

Let us have a look at the one-dimensional damped p-system ∂tρ+ ∂xu = 0,

∂tu + ∂xρ+
u

ε
= 0.

Goal: obtain uniform-in-ε a priori estimates.

First difficulty: how to handle the partially dissipative structure? Indeed,
standard energy estimates leads to:

d

dt
∥(ρ, u)∥2L2 +

1

ε
∥u∥2L2 ≤ 0

→ lack of coercivity: no time-decay information for ρ.

Idea: Inspired by the hypocoercivity theory, consider the following
perturbed functional

L2 = ∥(ρ, u, ∂xρ, ∂xu)∥2L2 + ε

∫
R
u∂xρ.

Differentiating in time this functional, one obtains

d

dt
L2 +

1

ε
∥(u, ∂xu)∥2L2 + ε∥∂xρ∥2L2 ≤ 0.
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Toy-model analysis (continued)

Second difficulty: the decay rates depend on the frequencies and the
relaxation parameter ε.

From the previous estimate, one obtains formally

<<
d

dt
∥(ρ, u)∥L2 +min(

1

ε
, ε|ξ|2)∥(ρ, u)∥L2 ≤ 0. >>

Therefore, in low frequencies |ξ| < 1

ε
, the solution behaves as the solution

of the heat equation.

And, in high frequencies |ξ| > 1

ε
, the solution is exponentially damped.

One has

∥(ρ, u)h(t)∥L2(Rd ,Rn) ≤ Ce−λ t
ε ∥(ρ0, u0)∥L2(Rd ,Rn),

∥(ρ, u)ℓ(t)∥L∞(Rd ,Rn) ≤ C(εt)−
d
2 ∥(ρ0, u0)∥L1(Rd ,Rn)

where (ρ, u)h and (ρ, u)ℓ correspond, respectively, to the high and low
frequencies of the solution.
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Hyperbolic hypocoercivity

For general partially dissipative hyperbolic systems of the form

∂tU + A∂xU + BU = 0 where B =

(
0 0
0 D

)
with D > 0,

the previous idea can also be applied under the following condition:

Definition (Shizuta-Kawashima ’80s)

kerB ∩ {eigenvectors of A} = {0}. (SK)

Such condition is actually equivalent to the Kalman rank condition for the
couple (A,B).

Inspired by this fact and the theories of hypocoercivity and hypoellipticity,
Beauchard and Zuazua constructed the following Lyapunov functional

L2 ≜ ∥U∥2H1 +

∫
Rd

I where I ≜ ℑ
n−1∑
k=1

εk
(
BAk−1Û · BAk Û

)
.

If the (SK) condition is satisfied, differentiating in time this functional leads to

d

dt
L+ κmin(1, |ξ|2)L ≤ 0 and L ∼ ∥U∥H1
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Approximation of Cattaneo type

Cattaneo approximation:{
∂tρε + ∂xuε = 0

ε2∂tuε + ∂xρε + uε = 0
−→
ε→0

∂tρ−∆ρ = 0

1

ε

0

Heat
effect e−t/ε e−t/ε e−t/ε

Low
Frequencies

ρℓε uℓε

High
Frequencies

ρhε uhε ε → 0 Heat
effect

|ξ| |ξ|0

• We proved the strong relaxation limit in Rd in various contexts

Compressible Euler equations with damping (Danchin-CB, Math. Ann.).

Jin-Xin System (Shou-CB, JDE).

2D-Boussinesq system (Bianchini-Paicu-CB, ARMA).

• How to show it for the Navier-Stokes-Cattaneo system?
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A (partially) hyperbolic Navier-Stokes system
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Hyperbolic Navier-Stokes equations

We have just seen that the equation

∂tu −∆u = 0

can be approximated, for a small ε, by the following hyperbolic system{
∂tu + divv = 0

ε2∂tv +∇u + v = 0.

Aim: understand to what extent this approximation can be used to
approximate systems modelling physical phenomena.

Performing such approximation for the compressible Navier-Stokes system, one
has 

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇p = divτ,
∂t(ρT ) + div(ρuT + up) + divq − div(τ · u) = 0,
ε2 (∂tq + u · ∇q − q · ∇u + (∇ · u)q) + q + κ∇T = 0,

(4)

Let us now see how to justify that the solution of this system converges to the
solution of the classical Navier-Stokes equations.
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approximate systems modelling physical phenomena.

Performing such approximation for the compressible Navier-Stokes system, one
has 

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇p = divτ,
∂t(ρT ) + div(ρuT + up) + divq − div(τ · u) = 0,
ε2 (∂tq + u · ∇q − q · ∇u + (∇ · u)q) + q + κ∇T = 0,

(4)

Let us now see how to justify that the solution of this system converges to the
solution of the classical Navier-Stokes equations.
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Frequency splitting

Knowledge on the limit system: Danchin showed the existence of
global-in-time solutions by highlighting different properties for |ξ| ≤ K and
|ξ| ≥ K where K is a large constant.

Knowledge on the hyperbolic approximation: It suggests to distinguish

two distinct frequency regimes with a threshold located at
1

ε
.

Complete picture: We divide the frequency space as

|ξ|1

ε

K0
|||

High

frequencies
Medium

frequencies
Low

frequencies

Formally, when ε → 0, it means that:

The low frequency regime is not modified.

The mid-frequency regime becomes larger and larger and recovers the
high-frequency regime.

The high frequency regime disappears.

→ We retrieve the behavior of the compressible Navier-Stokes-Fourier system
in the limit.
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Tools & Morale

Tools

We define homogeneous Besov spaces restricted in frequency as follows:

∥f ∥ℓḂs
2,1

:=
∑
j≤J0

2js∥fj∥L2 , ∥f ∥m,ε

Ḃs
p,1

:=
∑

J0≤j≤Jε

2js∥fj∥Lp ,

∥f ∥h,ε
Ḃs
2,1

:=
∑

j≥Jε−1

2js∥fj∥L2

where J0 = log2(K), for K > 0 a constant, and Jε = −κ log2(ε).

In each regime, the partially diffusive and partially dissipative coupling are
involved. → New methods to derive a priori estimates: hypocoercivity +
efficient unknowns.

Morale

The hyperbolic approximation creates a temporary high-frequency regime
that disappears in the limit.

The remaining frequency regimes correspond to the behaviour of the limit
system.

Difficulty: justify that the linear and nonlinear analysis can be done in the
new high-frequency setting.
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Some linear analysis in high frequencies

• First: use our knowledge of the limit system. We know that in high
frequencies the Navier-Stokes system can be “partially diagonalized”.

• Defining the effective velocity, as introduced by Hoff and Haspot,
w = u + (−∆)−1∇ρ, in high frequencies, the linear system we are interested in
reads 

∂tρ+ ρ = divw ,
∂tw −∆w = w − (−∆)−1∇ρ+∇θ,
∂tθ + divq + divw = 0,
ε2∂tq + q +∇θ = 0,

(5)

• The equations of ρ and w can be studied separately, we simply need to be
careful about the linear source terms.

• For the Cattaneo part, we introduce the Lyapunov (in the spirit of that of
Beauchard and Zuazua and the hypocoercivity theory)

Lh
j = ∥(θj , qj)∥2L2 + 2−2j

∫
Rd

qj · ∇θj for j ≥ Jε. (6)

→ The blue term allows to recover dissipation for θ. Using that
Lh

j ∼ ∥(θj , qj)∥2L2 , direct computations gives

d

dt
Lh

j + Lh
j ≤ ∥divwj∥L2∥θj∥L2 .
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Some nonlinear analysis

• We are working in the L2 − Lp framework:

|ξ|JεJ00
|||

High

frequencies

L2

Medium
frequencies

Lp

Low
frequencies

L2

Figure: Frequency domain splitting for Navier-Stokes Cattaneo

Due to the lack of embedding of the type B s
p,1 ↪→ B s

2,1 if p > 2 → it is
difficult to absorb nonlinearities in the high and low-frequency regimes.

Indeed, the medium frequencies are only bounded in Lp-based spaces.

→ Need to develop advanced product laws.

For instance: let 2 ≤ p ≤ 4 and p∗ ≜ 2p/(p − 2). For all s > 0, we have

∥ab∥h,ε
Ḃs
2,1

≲ ∥a∥
Ḃ

d
p
p,1

∥b∥h,ε
Ḃs
2,1

+ ∥b∥
Ḃ

d
p
p,1

∥a∥h,ε
Ḃs
2,1

+ ∥a∥ℓ,ε
Ḃ

d
p
p,1

∥b∥ℓ,ε
Ḃ
s+ d

p
− d

2
p,1

+ ∥b∥ℓ,ε
Ḃ

d
p
p,1

∥a∥ℓ,ε
Ḃ
s+ d

p
− d

2
p,1

.

Tools: Bony paraproduct decomposition and precise frequency analysis.
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Ill-prepared relaxation result in a critical framework

Theorem (Kawashima-Xu-Zuazua-CB ’23)

Let d ≥ 3, p ∈ [2, 4] and P(ρ, θ) = π(ρ)θ, ρ̄, θ̄ > 0

Let (ρε− ρ̄, vε, θε− θ̄, qε) be the global solution of Navier-Stokes-Cattaneo
(constructed with the previous arguments) with initial data (ρε0 , v

ε
0 , θ

ε
0 , q

ε
0 ).

Let (ρ− ρ̄, v , θ − θ̄) be the global solution of Navier-Stokes-Fourier with
initial data (ρ0, v0, θ0).

We define the error unknowns (ρ̃, ṽ , θ̃) as

(ρ̃, ṽ , θ̃) := (ρε − ρ, vε − v , θε − θ).

If we assume that

∥(ρ̃0, ṽ0, θ̃0)∥ℓ
B

d
2
−1

2,1

+ ∥ρ̃0∥h
B

d
p
−1

p,1

+ ∥(ṽ0, θ̃0)∥h
B

d
p
−1

p,1

≲ ε. (7)

Then, we have the strong convergence result:

∥(ρ̃, ṽ , θ̃)∥ℓ
L∞
T

(B
d
2
−2

2,1 )
+ ∥(ρ̃, ṽ , θ̃)∥ℓ

L1
T
(B

d
2
2,1)

+ ∥qε + κ∇θε∥
L1
T
(B

d
p
−1

p,1 )

+ ∥ρ̃∥h
L∞
T

∩L1
T
(B

d
p
−1

p,1 )

+ ∥(ṽ , θ̃)∥h
L∞
T

(B

d
p
−2

p,1 )

+ ∥(ṽ , θ̃)∥h
L1
T
(B

d
p
p,1)

≲ ε

Crin-Barat Timothée Hyperbolic Navier-Stokes equations



Ill-prepared relaxation result in a critical framework

Theorem (Kawashima-Xu-Zuazua-CB ’23)

Let d ≥ 3, p ∈ [2, 4] and P(ρ, θ) = π(ρ)θ, ρ̄, θ̄ > 0

Let (ρε− ρ̄, vε, θε− θ̄, qε) be the global solution of Navier-Stokes-Cattaneo
(constructed with the previous arguments) with initial data (ρε0 , v

ε
0 , θ

ε
0 , q

ε
0 ).

Let (ρ− ρ̄, v , θ − θ̄) be the global solution of Navier-Stokes-Fourier with
initial data (ρ0, v0, θ0).

We define the error unknowns (ρ̃, ṽ , θ̃) as
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Extensions

To what extent can this hyperbolic approximation be used? Numerical
schemes, PINNs.

What about other operators that the laplacian?

With Roberta Bianchini and Marius Paicu (ARMA ’23), we showed that
the stably stratified solutions of the incompressible porous media equation:

∂tρ−R2
1ρ = 0 with R1 =

∂1√
−∆

can be approximated by the 0-th order stratified Boussinesq system:{
∂tρ+R1b = 0,
ε∂tb +R1ρ+ b = 0.

(2DB)

Such justification involves anisotropic Besov spaces so as to recover crucial
L1
T (W

1,∞) bounds on the solution.

Question: under what conditions can an operator be approximated in this
fashion?

Interplay of partial dissipation, anisotropy and special structure of the
nonlinearities.
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Thank you for your attention!
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