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Introduction

Introduction

General n-component systems of balance laws in R? read:

ow <~ OF(w)
ot T2 o = Q(w). (1)

The unknown w = w(t,x) with t € R™ and x € R? is valued in an open
convex subset O, of R" and Q, F; : R" — O,, are given n-vector valued
smooth functions on O,,.
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Introduction

General n-component systems of balance laws in R? read:

ow <~ OF(w)
ot T2 o = Q(w). (1)

The unknown w = w(t,x) with t € R™ and x € R? is valued in an open
convex subset O, of R" and Q, F; : R" — O,, are given n-vector valued
smooth functions on O,,.

@ In the case Q(w) =0, it is well known that (1) supplemented with smooth
data admits local-in-time strong solutions that may develop singularities
(shock waves) in finite time even if the initial data are small perturbations
of a constant solution (A. Majda, D. Serre).
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Introduction

General n-component systems of balance laws in R? read:

ow <~ OF(w)
ot T2 o = Q(w). (1)

The unknown w = w(t,x) with t € R™ and x € R? is valued in an open
convex subset O, of R" and Q, F; : R" — O,, are given n-vector valued
smooth functions on O,,.

@ In the case Q(w) =0, it is well known that (1) supplemented with smooth
data admits local-in-time strong solutions that may develop singularities
(shock waves) in finite time even if the initial data are small perturbations
of a constant solution (A. Majda, D. Serre).

o A sufficient condition for global existence for small perturbations of a
constant solution w of (1) is the total dissipation hypothesis, namely the
damping (or dissipation) term Q(w) acts directly on each component of
the system, making the whole solution to tend to w exponentially fast.
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Introduction

Partial dissipation

A more reasonable assumption is that dissipation acts only on some
components of the system. After suitable change of coordinates, we may write:

Q(w) = (222{;)) where g(w) e R, m,m e Nand n +m=n. (2)

@ This so-called partial dissipation hypothesis arises in many applications

such as gas dynamics or numerical simulation of conservation laws by
relaxation scheme.
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Partial dissipation

A more reasonable assumption is that dissipation acts only on some
components of the system. After suitable change of coordinates, we may write:

Q(w)

Ogr \
(q&Rm;)) where g(w) € R™ ni,n; € Nand m + m = n. (2)

@ This so-called partial dissipation hypothesis arises in many applications

such as gas dynamics or numerical simulation of conservation laws by
relaxation scheme.

@ Now the question is: When does the partial dissipation prevent the
formation of singularities?
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Partial dissipation

A more reasonable assumption is that dissipation acts only on some
components of the system. After suitable change of coordinates, we may write:

Q(w)

Ogn n
(q&Rm;)) where g(w) e R?, m,m eNand m+m=n. (2)

@ This so-called partial dissipation hypothesis arises in many applications
such as gas dynamics or numerical simulation of conservation laws by
relaxation scheme.

@ Now the question is: When does the partial dissipation prevent the
formation of singularities?

o A well known example is the isentropic compressible Euler system with
damping:

Ocp + div(pu) =0, E
Oc(pu) + div(pu ® u) + VP + Apu =0, ®
For this system it was pointed out that the dissipative mechanism, albeit
only present in the velocity equation, can prevent the formation of
singularities (W. Wang and T. Yang '01 and T. Sideris, B. Thomases and
D. Wang '03).
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@ In the eighties, Shizuta and Kawashima developed a rather explicit linear
stability criterion: the (SK) condition. Roughly speaking, it ensures that
the partial damping acts on all the components of the solution, although
indirectly, so that all the solutions of (1) emanating from small
perturbations of a constant state w eventually tend to w.
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@ In the eighties, Shizuta and Kawashima developed a rather explicit linear
stability criterion: the (SK) condition. Roughly speaking, it ensures that
the partial damping acts on all the components of the solution, although
indirectly, so that all the solutions of (1) emanating from small
perturbations of a constant state w eventually tend to w.

@ Yong '04. An entropy-dissipation condition that provides a suitable
symmetrisation of the system and therefore tools to get quantitative
estimates on the solutions when Q(w) = 0.
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@ In the eighties, Shizuta and Kawashima developed a rather explicit linear
stability criterion: the (SK) condition. Roughly speaking, it ensures that
the partial damping acts on all the components of the solution, although
indirectly, so that all the solutions of (1) emanating from small
perturbations of a constant state w eventually tend to w.

@ Yong '04. An entropy-dissipation condition that provides a suitable
symmetrisation of the system and therefore tools to get quantitative
estimates on the solutions when Q(w) = 0.

@ Many results with theses two conditions concerning global existence of
small solutions and decay of the the solution. The most recent one being
the results of S. Kawashima and J. Xu ('14-'15) in the framework of
inhomogeneous critical Besov spaces.
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Introduction

@ In the eighties, Shizuta and Kawashima developed a rather explicit linear
stability criterion: the (SK) condition. Roughly speaking, it ensures that
the partial damping acts on all the components of the solution, although
indirectly, so that all the solutions of (1) emanating from small
perturbations of a constant state w eventually tend to w.

@ Yong '04. An entropy-dissipation condition that provides a suitable
symmetrisation of the system and therefore tools to get quantitative
estimates on the solutions when Q(w) = 0.

@ Many results with theses two conditions concerning global existence of
small solutions and decay of the the solution. The most recent one being
the results of S. Kawashima and J. Xu ('14-'15) in the framework of
inhomogeneous critical Besov spaces.

@ Here we aim at generalizing their results to the homogeneous setting.

o — More precise estimates concerning the solutions, especially the low
frequencies.

o — Useful to treat relaxation limit problems and obtain explicit convergence
rate.
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The isentropic compressible Euler system

The isentropic compressible Euler system
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The isentropic compressible Euler system

Critical homogeneous Besov spaces

@ We investigate the global-in-time existence of small strong solution in
critical homogeneous Besov spaces.
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Critical homogeneous Besov spaces

@ We investigate the global-in-time existence of small strong solution in
critical homogeneous Besov spaces.

o Critical — largest space in which one can obtain the uniqueness of the
solution.
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The isentropic compressible Euler system

Critical homogeneous Besov spaces

@ We investigate the global-in-time existence of small strong solution in
critical homogeneous Besov spaces.

o Critical — largest space in which one can obtain the uniqueness of the
solution.

o Littlewood-Paley decomposition: we define Aj the dyadic blocks such
that, for any f € S'(RY)

: — 3 . 8 .
f= E A;jf and supp(A;f) C {¢ e RY st 12’ <l < g2’}
jez
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Critical homogeneous Besov spaces

@ We investigate the global-in-time existence of small strong solution in
critical homogeneous Besov spaces.

o Critical — largest space in which one can obtain the uniqueness of the
solution.

o Littlewood-Paley decomposition: we define Aj the dyadic blocks such
that, for any f € S'(RY)

: — 3 . 8 .
f= E A;jf and supp(A;f) C {¢ e RY st 12’ <l < g2’}
jez

@ The main interest of such a decomposition is the following Bernstein
inequality: o _ o
2 ||Ajf || < | D*Ayf||ee < C2¥)| Asf|1o
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The isentropic compressible Euler system

Critical homogeneous Besov spaces

@ We investigate the global-in-time existence of small strong solution in
critical homogeneous Besov spaces.

o Critical — largest space in which one can obtain the uniqueness of the
solution.

o Littlewood-Paley decomposition: we define Aj the dyadic blocks such
that, for any f € S'(RY)

: — 3 . 8 .
f= E A;jf and supp(A;f) C {¢ e RY st 12’ <l < g2’}
jez

@ The main interest of such a decomposition is the following Bernstein
inequality: o _ o
2 ||Ajf || < | D*Ayf||ee < C2¥)| Asf|1o

® Besov semi-norms: [|f|[g; £ 27| Ajf]|.2
' jez

Timothée Crin-Barat Partially Dissipative Hyperbolic Systems



Preliminary analysis

. . " ach
The isentropic compressible Euler system

L“ a
WP e

Choosing the regularity indexes

o A spectral analysis of the linearized system tells us that:

o In low frequencies, we expect a parabolic behavior of the solution;
o In high frequencies the solution undergoes exponential decay.

Timothée Crin-Barat Partially Dissipative Hyperbolic Systems



The isentropic compressible Euler system

Choosing the regularity indexes

o A spectral analysis of the linearized system tells us that:

o In low frequencies, we expect a parabolic behavior of the solution;
o In high frequencies the solution undergoes exponential decay.

@ Norms restricted to low frequencies: ||f||f;251 = Z 2| Ajf | 2,
)

@ Norms restricted to high frequencies: |fHBs/ Z 2’S 1 A;f]l 2.

izJo
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The isentropic compressible Euler system

Choosing the regularity indexes

o A spectral analysis of the linearized system tells us that:

o In low frequencies, we expect a parabolic behavior of the solution;
o In high frequencies the solution undergoes exponential decay.

@ Norms restricted to low frequencies: ||f||f;251 = Z 2| Ajf | 2,
)

@ Norms restricted to high frequencies: |fHBs/ Z 2’S 1 A;f]l 2.
izh

o One must control Vu in L}-(L*) to close the a priori estimates.
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Prelimil

L2 apy

LP appro

Dec: timates

The isentropic compressible Euler system

Choosing the regularity indexes

o A spectral analysis of the linearized system tells us that:

o In low frequencies, we expect a parabolic behavior of the solution;
o In high frequencies the solution undergoes exponential decay.

@ Norms restricted to low frequencies: | |f||Bs Z 2| Ajf | 2,
j<Jo

@ Norms restricted to high frequencies: ||f|\gs/ = Z ZJS,HAijLz.
2,1

izh
o One must control Vu in L}-(L*) to close the a priori estimates.

° Bd/2 < L°°. Therefore, one might be tempted to work with s = g -1
ands :5—1—1 i.e.

d
VAR ~5—1 441
po,up € By~ and pg, ug € 32 .
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The isentropic compressible Euler system

Choosing the regularity indexes

o A spectral analysis of the linearized system tells us that:

o In low frequencies, we expect a parabolic behavior of the solution;
o In high frequencies the solution undergoes exponential decay.

@ Norms restricted to low frequencies: | |f||Bs Z 2| Ajf | 2,
j<Jo
P .

@ Norms restricted to high frequencies: ||f|\gs/ = Z 25| Ajf]| 2

Y
o One must control Vu in L}-(L*) to close the a priori estimates.
° Bd/2 < L*. Therefore, one might be tempted to work with s = 5 — 1

and s’ =9+1lie.

d d
0L 551 h h S5+l
Po, Up € Bz,l and pg,up € Bz,l .

@ However, in this framework one cannot treat the case d = 1.

@ Therefore we will work with s = % and s’ = g 4+ 1 and recover the
necessary regularity for u. It turns out that in this framework the
dependencies with respect to the damping parameter will be more suitable

to treat relaxation problems.
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The isentropic compressible Euler system

asic explanation

Let us take a quick look at the one-dimensional linearized compressible Euler
equations:

{ataJraxu—o A {&AjaJraxA,uo
Oru+ O0ca+u =0, ’ 8tAjU+axAja+AjUZ0,
Energy estimates gives
1d
2.dt

To compensate this, we will differentiate in time the following quantity

(Aja, Aju)||72 4 |Ajull7- = 0 —  lack of coercivity

d . . . . .
— (/ AJ'U . 8XAja> + ||6XAja||f2 — ||6XAJ'UH%2 -+ / uj - OXAja =0.
dt \ Jr R

Denoting L7 = ||(Aja, Aju)|72 +z—:min(1,272j)/ Aju-8.Aja where € > 0 can
be as small as necessary, we have -
d
dt

£} + min(1,29)[[(Aa, Aju)lll <0 as [|0:4alll> ~ 27| Ajalla.



Preliminary analysis
. . " - bach
The isentropic compressible Euler system

a
LP approach

Decay estimates

Choosing ¢ small enough such that £? ~ ||(A;a, Aju)||?, and using a
Gronwall-type lemma, one obtain

.
(Aja, Aju)ll2 + min(17221)/0 [(Aja, Aju)llie < [[(Ajao, Ajuo)|l .2

Then, setting Jo = 0, multiplying by 2% and summing on j < 0.

I o)’ o +l@al, g, <@, w)l .
L?C(Bzz,l) LIT(322,1 322,1
And for the high frequencies
h h h
@ a)l" o +l@ull” o <ll(a0; wo)ll” g,y
LF(By 4 L7(By 4 By

@ To control the non-linear term of the general system with the regularity
indexes we chose, we must control ||V ul| ;1 (;c):

Vu < Cllu < C|lu|” +Cl|ull® not under control.
IVull s ooy < Cl HUT(B%H)_ l ||L g I HLIT 54,

a
2,1 T\P21 2,1

Indeed if Jo < O then, Bernstein inequality implies: ||| < C|f|*
B 8

d d.q*
g+2 941
2,1 2,1
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@ A more precise spectral analysis in the low frequencies regime shows that
only one of the eigenvalues has a parabolic behaviour while all the other
ones are damped.

Looking at the equation of Oxu alone we have

De0xu + Beu = —03a.
The classical procedure leads to

Nl g Hlull® g <lluol®y +all’
Ly 22,1+1) L ( A By L (

2
2,1

d
. 9+2
2

X B

1 )

Therefore, multiplying this estimate by a constant small enough and
adding it to the previous one, we obtain

[ ¢ ¢ ¢
a,u +||la + ||u < Cl|(ao, u
G0, g+l g 40l g < Cltan, ol
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minary analysis
The isentropic compressible Euler system

Low frequencies regularity enhancement for the velocity

@ A more precise spectral analysis in the low frequencies regime shows that
only one of the eigenvalues has a parabolic behaviour while all the other
ones are damped.

Looking at the equation of Oxu alone we have

8:0xu + Oeu = —02 a.

The classical procedure leads to

B%H

2
1 )

¢ ¢ [ ¢
u + ||u < ||u + ||a
Il g, 10, ) < Duolly 1l

Therefore, multiplying this estimate by a constant small enough and

adding it to the previous one, we obtain

|Z
d
2

4 14 14
1@l o +lalll g, +llulll g, < Cll(a0, wo)|
L2( 32,1

2 2 1
7 (Byy) T\F21 L7 (B5y

@ We now have all the necessary ingredients to consider the quasi-linear
system in the [? setting.
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Preliminary

. . . L* approacl
The isentropic compressible Euler system PP

Back to Euler system

o We consider (E) supplemented with initial data (po, w) that is a
perturbation of some constant state (p, V) = (1,0), A >0and P a
(smooth) pressure law satisfying

P'(p) >0 for p closeto 1 and P'(1)=1. (P)

p p/
Considering the unknown n(p) = / @ ds, we can rewrite (E) under
1

the form

{8tn—|—v~Vn—|—divv+ G(n)divv =0, 3)

ov+v-Vv+Vn+Av =0,
where G(n) is defined by the relation G(n(p)) = P'(p) — 1.
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Preliminary

. . . L* approacl
The isentropic compressible Euler system PP

Back to Euler system

o We consider (E) supplemented with initial data (po, w) that is a
perturbation of some constant state (p, V) = (1,0), A >0and P a
(smooth) pressure law satisfying

P'(p) >0 for p closeto 1 and P'(1)=1. (P)

p p/
Considering the unknown n(p) = / @ ds, we can rewrite (E) under
1

the form

{8tn—|—v~Vn—|—divv+ G(n)divv =0, 3)

ov+v-Vv+Vn+Av =0,
where G(n) is defined by the relation G(n(p)) = P'(p) — 1.
o The rescaling (n, v)(t,x) £ (A, V)(\t, Ax) reduces the proof to A = 1 and

the inverse scaling will give the desired dependency with respect to A
(using the homogeneity property of the norms considered).

Timothée Crin-Barat Partially Dissipative Hyperbolic Systems



Preliminary
L4 approach
LP apprc
Decay

The isentropic compressible Euler system

Lyapunov Functional

Inspired by the work of R. Danchin on the compressible Navier-Stokes system,
we consider the following functionals:

Lf:/ |(Ajn,Ajv)|2+s/ Ajv-VAjn ifj<0
RY R4

2 =/ (A2 + (1 + G(n)|AjvP) +52—2f/ Ayv-VAn ifj>0
Rd Rd
where € > 0 is a fixed constant such that for j € Z
L&) ~ 1(Ajn, Av) |- (4)

Simple computations leads to (with some simplifications)

1d , 4 .
5l 2L < g2 ISV g I(m )|l o L5 for j < O.

2 2
Bz, 32

-

,1
1d 2 —j(4+1) Ty .
EIEJ +cli < Cg2™ 27| Vy|| 4 I(n, v)||3%+1£j+ |Ajv|70:G(n) for j > 0.
2,1 0

By
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Preliminary

. . . L* approacl
The isentropic compressible Euler system PP

Closure of the estimates : a first attempt

Concerning 9;G(n), we have
[0:G(n)lleoe S IV V]leoe + [[vlleoe [V nl[roe. ()
Introducing the following Lyapunov functional:
h
L= 22'21/ 24> 26 0. /2 ~ |, v) % +1I(n, v)||B%+1
Jj<o0 j>s0 2, 2,1

eventually leads to

t t t
() + / I ) s+ / I(m )" 4., < £(0) + C / Wl gl (6)
0 322,1 0 B3 0 522,1

2,1

. . L g+1
To close the estimates we need to recover the control of v in L}(B2, ).
We are going to look at the equation on v as a damped transport equation:

otv+v-Vv+v=Vn
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Preliminary

. . . L* approacl
The isentropic compressible Euler system PP

LP approach

Decay estimates

Standard computations leads to

t t t
£ £ £ L 2
I g+ [ I g <ol g [ el gt [ I g
B51 0 By By 0 By 0 By

Multiplying this equation by a small enough constant, we can absorb the linear

t
term / HaHég+2 by the left hand side of (6). Finally we have
0 By

t t t t
Y4 £ h
L@+ [l gt [ g+ [ 10wl g < £©)+C [ gt
0 522,1 0 B2, 0 322,1 0 By,

Setting
Xo(t) & n,vg +n,vh —&—n[’ —&—n,v”
(021l o+ IO+l g 10,

we easily reach
Xo(t) < Xo + X3 (t)

and we can conclude from a standard bootstrap argument the existence of
global small solution. Scaling back, we obtain the following theorem.
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Preliminary

The isentropic compressible Euler system

L2 main result

. C-B. and R. Danchin '21)

Let d > 1. There exists co = co(p) > 0 such that, if we set the threshold
between low and high frequencies at Jy = |log2)\| , then, whenever the initial
data (o, vo) satisfies

(o, )] g + A7 0, w2y < o,
1

N

2,1

System (19)-(P) admits a unique global solution (n, v) satisfying

¢ —il h =il ) h
n,v + A n,v + A n + ||[(n, v
001 g A7 NI g+ 370, e 1, g
FlVIE g A2V g S 0wl g + AT I (no, o)l g, -
L%(BZZJ ) L%(BZQ,I) 522,1 22,1

Moreover there exists a Lyapunov functional such that

£ — h
£l g + AW
B B2,

2,1
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Preliminary analysis

. X . L2 approact
The isentropic compressible Euler system “Pprosch

LP approach

Decay estimates

LP approach
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Preliminary analysis

. . " L“ approach
The isentropic compressible Euler system 2PF

LP approach

Decay estimates

@ In low frequencies, the matrix of the system corresponding to frequency &
has two real eigenvalues and in high frequencies, two complex conjugated
eigenvalues.
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Preliminary analysis

12 approach
LP approach

Decay estimates

The isentropic compressible Euler system

@ In low frequencies, the matrix of the system corresponding to frequency &
has two real eigenvalues and in high frequencies, two complex conjugated
eigenvalues.

o Consequently, one can expect that the low frequency part of System (E)
solvable in some L? type functional framework with p # 2, whereas going
beyond the L2 framework in high frequency is bound to fail.
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The isentropic compressible Euler system

a
LP approach

Decay estimates

@ In low frequencies, the matrix of the system corresponding to frequency &
has two real eigenvalues and in high frequencies, two complex conjugated
eigenvalues.

o Consequently, one can expect that the low frequency part of System (E)
solvable in some L? type functional framework with p # 2, whereas going
beyond the L2 framework in high frequency is bound to fail.

@ An opposite dichotomy was used to treat the compressible Navier-Stokes
system.

Timothée Crin-Barat Partially Dissipative Hyperbolic Systems



. . " h
The isentropic compressible Euler system

a
LP approach

Decay estimates

@ In low frequencies, the matrix of the system corresponding to frequency &
has two real eigenvalues and in high frequencies, two complex conjugated
eigenvalues.

o Consequently, one can expect that the low frequency part of System (E)
solvable in some L? type functional framework with p # 2, whereas going
beyond the L2 framework in high frequency is bound to fail.

@ An opposite dichotomy was used to treat the compressible Navier-Stokes
system.

@ Main idea: introduce an " effective velocity” in the spirit of D. Hoff '06
and B. Haspot '11 that may be seen as an approximate dissipative
eigenmode of the system in the low frequency regime.
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approach
LP approach

Decay estimates

Low frequencies analysis: Damped mode in the simplest case

The isentropic compressible Euler system

Let us consider again the one-dimensional linearized compressible Euler
equations:
61*3 + 8xu =0

Otu+ Oxa+ u =0,

Define z = u + Oya, we can rewrite the system in the following way

Ora — 02 a= —0Oyz

8z +z=-0u.

@ The parabolic effect for the density directly appears in the equations of a.
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The isentropic compressible Euler system

oach

Decay estimates

Low frequencies analysis: Damped mode in the simplest case

Let us consider again the one-dimensional linearized compressible Euler
equations:
61*3 + 8Xu =0

Otu+ Oxa+ u =0,
Define z = u + Oya, we can rewrite the system in the following way
Ora — 02 a= —0Oyz

8z +z=-0u.

@ The parabolic effect for the density directly appears in the equations of a.

@ In low frequencies, the linear terms of the right-hand side will be negligible.
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The isentropic compressible Euler system

oach

Decay estimates

Low frequencies analysis: Damped mode in the simplest case

Let us consider again the one-dimensional linearized compressible Euler
equations:
61*3 + 8Xu =0

Otu+ Oxa+ u =0,
Define z = u + Oya, we can rewrite the system in the following way
Ora — 02 a= —0Oyz

8z +z=-0u.

@ The parabolic effect for the density directly appears in the equations of a.
@ In low frequencies, the linear terms of the right-hand side will be negligible.

@ We will look at the first equation as a heat equation with a convection
term, and at the second one as a damped transport equation.
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The isentropic compressible Euler system

Lp approach
Decay estimates

Low frequency analysis: Damped mode for the quasi-linear system

We consider the damped mode z = v+ Vn+ v - Vv, the couple (n, z) satisfies

Otn— An=—v-Vn—divz — G(n)divv — div(V - VV) (7)
Oz+z=—-Vdivv — (v -Vv)+ =V(v-Vn)+ V(G(n)divv)

Simple computations lead to (omitting some terms for simplicity):

é
In(o)] +/ Il g0 5 ol /HZH ‘o /nvu salnl g
p

=g /uzn <llalg /HVH £ AT

This time we cannot absorb the linear right-hand side terms as previously.
We need to fix a threshold between the low and high frequencies Jy small
enough. Indeed, owing to Bernstein inequality, there exists an absolute
constant C such that for any couple (o,¢’) € R? with o < o’ we have

14 Jo(o' —0) 14
L < (: 0 Yoo .
||fHB;1 < Q2 HfHB’L1 (8)
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L a
The isentropic compressible Euler system
P P Y LP approach
Decay estimates

Low frequencies analysis: Recovering regularity for v

Since v=z—Vn—v-Vyv, we have

4
vl

¢
aa Szll” +HV"H g +CHVV|| dalvl e
1 P 1 BF‘ oo P
7(5p1 L7(By 1 T pl T p1 7 Bpa
vl i <zl o +0Val® o +CIVvl o IVl e
2 P 2 P ) L2 BP 2 P
p p T\"p,1 T\"p,1 T p,1
Setting
¢
X(t) = I(mvI° o« ()" g4 +||nH 442 +HVH Sin
L (BL) Lg° (B2, 1) BSy )

+i(n, V)H d+1+||2\| g Fvll g
L}(BR P 2P

2,1 Lt p,1 #(B,1)

. . pdia - dta
Using the embedding B,’;  — B.’; , we conclude that

t t t
12 ¢ [2 [ [ 2
1(n, v)(@)I[' 4 +/ Hnll_gﬁ/ HvH_iﬂJr/ 1zl o« S [1(no, vo)I” o+ Xo(T)™
BP, 0 BP, 0 BP, 0 BP, BP,
P, P, P P, P
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The isentropic compressible Euler system

High frequencies analysis: Issues

@ Although the functional framework for high frequencies is the same as in
the first part of this talk, one cannot repeat exactly the same
computations.
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The isentropic compressible Euler system

High frequencies analysis: Issues

@ Although the functional framework for high frequencies is the same as in
the first part of this talk, one cannot repeat exactly the same
computations.

@ The non-linear terms contain a little amount of low frequencies of n and
v. But they only belong to spaces of the type B, ; for some p > 2 (and

thus not in some 3511).
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The isentropic compressible Euler system

High frequencies analysis: Issues

@ Although the functional framework for high frequencies is the same as in
the first part of this talk, one cannot repeat exactly the same
computations.

@ The non-linear terms contain a little amount of low frequencies of n and
v. But they only belong to spaces of the type B, ; for some p > 2 (and

thus not in some 3511).

@ To overcome the difficulty, we have to study more carefully the
commutators in our ‘hybrid’ functional framework.
The usual commutator estimate would give

2 v Avy||, < Cr IOVl g IVl with > q=1

2,1 JEZL

h ¢
||v||35’1 < Hv||‘.325’1 + HVHB§_1 not under control for any s
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The isentropic compressible Euler system

stimates

A more general commutator estimate

Let p € [2,min(4,2d/(d — 2)] and define p* by the relation - + - = 3- For all
j € Z, denote R; 2 S;_1w VA;f — Aj(w VF).

There exists a constant C depending only on the threshold number Jy between
low and high frequencies and on s, such that

> (4R :) < €IVl IF IV It
izJ

p* 1
IVl 111, + ||fo oz IVWI g ):
2 1 BP1 B % 1
Moreover, if 2 < p < 2d/d — 1, we have
> (FEVIRz) < (1Tl W, goa + 17 g s VW
izJo pl pl

5

HIVEll e 19w g+ 1VF) sin IVwl g 1)

pl pl
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The isentropic compressible Euler system

LP approach
Decay estimates

High frequencies analysis: a priori estimates

With this lemma in hand, one just need to differentiate in time the same
functional as previously:

2 =/ (Al + (1 + G(m)AjvP) +52*2f/ Ay -VAn ifj>0
Rd R
and use the above commutator estimate. The problematic term is

A O A L CT
T( 2,1 L?'O(Bzyl )

Indeed, the usual composition lemma (G(0) = 0) yields

HG(n)H:OO(B%H) < C|n| oo(,;%“ we lost the frequency regime restriction
T (P21 7 (Byq
< Cln|* 4, +Clnl® 4., not under control
L(%O(Bzz,l L¥ (B )
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a
LP approach

Decay estimates

Two solutions:
@ In the case of a gamma law P(p) = p” /v with v > 0, G(n) = (v — 1)n.

@ In the case of a general pressure, one must work out a composition lemma
preserving the frequency restriction with respect to the Lebesgue index.
Result in progress following an idea from Chen-Miao-Zheng '11.

Gathering everything, we end up with
Xo(t) < C(Xp0 + X2(1))

and again we conclude with a bootstrap argument.
Scaling back we proved the following theorem:
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L% a vach

LP approach

Decay estimates

The isentropic compressible Euler system

Theorem (T. C-B. and R. Danchin '21)

Let d > 1 and 2 < p < min (4, %) There exist k = k(p) € Z and
¢ = co(p) > 0 such that, if we set the threshold between low and high
frequencies at Jo = |loga\| + k, then, whenever

[ (o, VO)HZ_g + A7 |(no, V0)||;g+1 < o,
p,1 2,1

System (E)-(P) admits a unique global solution (n, v) satisfying

) -1 h -1 ¢ h
[ g XTI g +X A g + M g
L>(B,) £ (By1 ) LE(BS, Le(Byy )

HAW VAl s + X2 s S0, )l + AT I (no vo)[ ™y -
L1(BP 12(BP 5P B2

t(By1 (By Bya 2.1
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The isentropic compressible Euler system

Decay estimates in the L? framework

@ Decay is essentially dicted by the linear analysis of the low frequencies. To
derive a decay rate one must assume a stronger assumption on the low
frequencies: (no, uo) € B, 7* for some 01 € | -9, 4].

o In the case o1 = d/2 this is reminiscent of the usual L' assumption as
L' — B;i .

@ Here we aim at obtaining decay estimates without any additional smallness

condition. This will be done following an idea developed by Z. Xin and J.
Xu '21 concerning the compressible Navier-Stokes system.
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The isentropic compressible Euler system

Decay estimates

@ Step 1: Preservation of the extra negative regularity for low frequencies
through the time evolution: [|(n, u)(t)| ;- < [|(no, to)|| ;—o1 . Essentially
2 2

this can be proved using a classical procedure and handling the non-linear
terms in Besov space with a negative regularity index.

@ Step 2: Lyapunov functional: With the previous computations we have

t)+c’/0t’H < £(0).

Clearly, one can start the proof from any time t; > 0 and get in a similar
way:
to+h
L(to+ h) + ¢’ H < L(t), h>0.

to
This ensures that £ is non-increasing on R™ (hence differentiable almost
everywhere) and that for all to > 0 and h > 0,

_ to+h
Elto 1 h) - L{w) hf)l Llw) | c'%/ H <0

to
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L* 2
LP approach
Decay estimates

Consequently, passing to the limit h — 0 gives

%C—kc'?—lgo a. e on R

with

-

L~ () g + ()" 4., and H ~ L IIHH

By Bz 1

+2 + Hn” d+1

2,1 21 21

o Step 3: lower bound for H by interpolation arguments

P 1-6
. 2
o)1 % (100 ) <vanﬁgﬁ> with 0 =
By 2,00 B,

d
1 3 +2401
Therefore

[[(n, V)HZ.%+2 >cC (H(n V)H g )“
32,1
and

[ g 2 € G (I ) 77

21 21
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The isentropic compressible Euler system

Decay estimates

o Step 4: differential inequality
This leads to

9Lt @l <0
dt (&0] >
where ¢y only depends on the initial data. Then
£< 1+ ct) 7 £(0).

Using that £ ~ [[(n, v)(t)|| ¢ .4,,, we obtain

322,10322,1
IO g g < COFE (0 w)l g g with ax2 (o4 9).
B2 ez T B2 B2 2 2

@ Step 5: Improvement of the decay rate for the "directly-damped”
component in low frequencies.

@ Step 6: Improvement of the decay rate of high frequencies.
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The isentropic compressible Euler system

LP approach
Decay estimates

Decay Theorem

Under the hypotheses of the existence theorem and if (m, vo) € B2 for some
o1 € ] % 5} then, there exists a constant C depending only on o1 such that

[(n, V)l g7 on < Cll(0, vo)llgon, VE20. (10)

Furthermore, if 01 > 1 — d/2 then, denoting

o1+35—1
@eViTe ae i 6 il . o1+ [0, )1 g

2,1

we have the following decay estimates:

sup (6% (o)

< CG if —0'1<(7'§d/2—].7

>0
o+to £
supH 1+§v(t)‘ . S CG if —o1<o<d/f2-2,
t>0 B;,l

and supH )21 (n, v)(t )H d+1 < CGo.
>0
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Extensions

Extensions
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Multi-fluid system
Extensions

Extensions

@ The whole method developed here can also be used to treat general
partially dissipative hyperbolic system satisfying the (SK) condition. One
can generalize the Lyapunov functional thanks to arguments from
Beauchard and Zuazua's paper '11.
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Multi-fluid system
Extensions

Extensions

@ The whole method developed here can also be used to treat general
partially dissipative hyperbolic system satisfying the (SK) condition. One
can generalize the Lyapunov functional thanks to arguments from
Beauchard and Zuazua's paper '11.

@ It can also be used to derive existence result for specific systems not
satisfying the (SK) condition: we studied a damped Baer-Nunziato system
in collaboration with C. Burtea and J. Tan.
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Multi-fluid system
Extensions

Extensions

@ The whole method developed here can also be used to treat general
partially dissipative hyperbolic system satisfying the (SK) condition. One
can generalize the Lyapunov functional thanks to arguments from
Beauchard and Zuazua's paper '11.

@ It can also be used to derive existence result for specific systems not
satisfying the (SK) condition: we studied a damped Baer-Nunziato system
in collaboration with C. Burtea and J. Tan.

@ The damped mode is an useful tool to study relaxation limit problem and
to derive explicit convergence rate. Work in progress: compressible Euler
system to porous media equations, and hyperbolic-parabolic chemotaxis
system to Keller-Segel system.
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Multi-fluid system
Extensions

Presentation of the problem

Here we present briefly the results obtained in collaboration with C. Burtea and
J. Tan.

We consider the following damped Baer-Nunziato system:

Btoci+u-Vozi=i2 Jr)\("’Jr(m) P—(p-)),
Ot (o px) + div (ozipiu) =0,
O(pu) + div(pu ® u) + VP + npu =0, (BN)

p=0appy +a_p—,
P =ayP:(ps) +a-P-(p-)

o Not symmetrizable:

o The equations of the volume fractions cannot be put in conservative form
— not a system of conservation law.

o The entropy that is naturally associated to this system is not positive
definite since it is linear with respect to the volume fractions.

@ Doesn't satisfy the (SK) condition
o The associated quasilinear system admits the eigenvalue 0.
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Multi-fluid system
Extensions

Solutions

@ It turns out that the situation is not too degenerate in the sense that the
eigenspace associated to the eigenvalue 0 is of dimension 1 and that,
roughly speaking, the non-degenerate part (i.e. the part associated to
non-zero eigenvalues) fulfils the (SK) condition.

@ We rewrite the (BN)-system in terms of new variables so as to highlight a
subsystem for which the linearized does verify the (SK) condition which is
coupled throughout lower-order terms with a transport equation.

@ We construct an appropriate weighted energy-functional which allows us
to tackle the lack of symmetry of the system, provides decay information
and allows us to close the estimate uniformly with respect to the
relaxation parameter.
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Extensions

Elements of proof

System (BN) can be recast into

Oy +u-Vy=0

Ow +u-Vw+ (b + Hy)divu + (b + Hz)% =5,
Ocr +u-Vr+ (hs+ Hs)divu = Ss,
Oru+u-Vu+nu+ (h5 + Hs)Vr—|— (h6 + H@)VW =5

(11)

To obtain an a priori estimate for the last 3 equations, we derive in time the
following functionals:

h h .
llj?:/ (i|M‘2+j‘q|2+|Uj|2+2€Uj‘vf]> for j < 0.
Rd h h3

hs + He hs + Hs iy .
ﬁf:/ﬂ%(h1+H1‘Wj|2+ ha gy il Tl 4 262 Yu Vi) forj2 0.
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Multi-fluid system
Extensions

Elements of proof

Then, for —% <5 < g —landss+1<s5< g + 1, the following estimate
holds:

1w, ry ) e oy + 0w 1 ) gy + ¢ (11w )y g2y + 1w )y, )
w
4 [ 00,0 00 s+ [ u(—,nu,atw,atr,atu)n’,;sz-l
0 v 2,1 0 v 2,1

t
< exp(C(H(E)+ v(£) ) (Il (0, ro, )l g, 2, + / (52, S 50) g2 g, )

where V(t / ol g g H(E) = Z IO6HHO) g and 5= K(E),
2 1 2 1
@ Strength of this method: we can treat the singular relaxation limit problem
asv — 0.

@ We are able to show rigorously that the so-called Kapilla system is
obtained as a relaxation limit from the (BN) system and derive the
convergence rate of this process.
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Multi-fluid system
Extensions

ar o =1,

O (axpx) +div(azpru) =0,

O(pu) + div(pu ® u) + VP + npu =0,
p=aips+a_p-,

P =P (p+)=P-(p-).

Denoting with an index v the solution of (BN), we are able to prove that

(K)

(0% — s, = s =)l gy
L>°(By; #)

+ 1% — px 4 1 +|u¥—u 41 < Cy/v.
165 = ool +10 — gy < CVF

if the initial data of both systems are close enough with respect to /v.
. 1
o By interpolation one can recover a convergence rate of v3 for the above
d

quantities in BZ,.
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Extensions

Thank you for your attention!

Timothée Crin-Barat Partially Dissipative Hyperbolic Systems



	Introduction
	The isentropic compressible Euler system
	Preliminary analysis
	L2 approach
	Lp approach
	Decay estimates

	Extensions
	Multi-fluid system


