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Introduction

General n-component systems of balance laws in Rd read:

∂w

∂t
+

d∑
j=1

∂Fj(w)

∂xj
= Q(w). (1)

The unknown w = w(t, x) with t ∈ R+ and x ∈ Rd is valued in an open
convex subset Ow of Rn and Q,Fj : Rn → Ow are given n-vector valued
smooth functions on Ow .

In the case Q(w) = 0, it is well known that (1) supplemented with smooth
data admits local-in-time strong solutions that may develop singularities
(shock waves) in finite time even if the initial data are small perturbations
of a constant solution (A. Majda, D. Serre).

A sufficient condition for global existence for small perturbations of a
constant solution w̄ of (1) is the total dissipation hypothesis, namely the
damping (or dissipation) term Q(w) acts directly on each component of
the system, making the whole solution to tend to w̄ exponentially fast.
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Partial dissipation

A more reasonable assumption is that dissipation acts only on some
components of the system. After suitable change of coordinates, we may write:

Q(w) =

(
0Rn1

q(w)

)
where q(w) ∈ Rn2 , n1, n2 ∈ N and n1 + n2 = n. (2)

This so-called partial dissipation hypothesis arises in many applications
such as gas dynamics or numerical simulation of conservation laws by
relaxation scheme.

Now the question is: When does the partial dissipation prevent the
formation of singularities?

A well known example is the isentropic compressible Euler system with
damping: {

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu ⊗ u) +∇P + λρu = 0,
(E)

For this system it was pointed out that the dissipative mechanism, albeit
only present in the velocity equation, can prevent the formation of
singularities (W. Wang and T. Yang ’01 and T. Sideris, B. Thomases and
D. Wang ’03).
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In the eighties, Shizuta and Kawashima developed a rather explicit linear
stability criterion: the (SK) condition. Roughly speaking, it ensures that
the partial damping acts on all the components of the solution, although
indirectly, so that all the solutions of (1) emanating from small
perturbations of a constant state w̄ eventually tend to w̄ .

Yong ’04. An entropy-dissipation condition that provides a suitable
symmetrisation of the system and therefore tools to get quantitative
estimates on the solutions when Q(w̄) = 0.

Many results with theses two conditions concerning global existence of
small solutions and decay of the the solution. The most recent one being
the results of S. Kawashima and J. Xu (’14-’15) in the framework of
inhomogeneous critical Besov spaces.

Here we aim at generalizing their results to the homogeneous setting.
→ More precise estimates concerning the solutions, especially the low
frequencies.
→ Useful to treat relaxation limit problems and obtain explicit convergence
rate.

Timothée Crin-Barat Partially Dissipative Hyperbolic Systems



Introduction
The isentropic compressible Euler system

Extensions

In the eighties, Shizuta and Kawashima developed a rather explicit linear
stability criterion: the (SK) condition. Roughly speaking, it ensures that
the partial damping acts on all the components of the solution, although
indirectly, so that all the solutions of (1) emanating from small
perturbations of a constant state w̄ eventually tend to w̄ .

Yong ’04. An entropy-dissipation condition that provides a suitable
symmetrisation of the system and therefore tools to get quantitative
estimates on the solutions when Q(w̄) = 0.

Many results with theses two conditions concerning global existence of
small solutions and decay of the the solution. The most recent one being
the results of S. Kawashima and J. Xu (’14-’15) in the framework of
inhomogeneous critical Besov spaces.

Here we aim at generalizing their results to the homogeneous setting.
→ More precise estimates concerning the solutions, especially the low
frequencies.
→ Useful to treat relaxation limit problems and obtain explicit convergence
rate.

Timothée Crin-Barat Partially Dissipative Hyperbolic Systems



Introduction
The isentropic compressible Euler system

Extensions

In the eighties, Shizuta and Kawashima developed a rather explicit linear
stability criterion: the (SK) condition. Roughly speaking, it ensures that
the partial damping acts on all the components of the solution, although
indirectly, so that all the solutions of (1) emanating from small
perturbations of a constant state w̄ eventually tend to w̄ .

Yong ’04. An entropy-dissipation condition that provides a suitable
symmetrisation of the system and therefore tools to get quantitative
estimates on the solutions when Q(w̄) = 0.

Many results with theses two conditions concerning global existence of
small solutions and decay of the the solution. The most recent one being
the results of S. Kawashima and J. Xu (’14-’15) in the framework of
inhomogeneous critical Besov spaces.

Here we aim at generalizing their results to the homogeneous setting.
→ More precise estimates concerning the solutions, especially the low
frequencies.
→ Useful to treat relaxation limit problems and obtain explicit convergence
rate.

Timothée Crin-Barat Partially Dissipative Hyperbolic Systems



Introduction
The isentropic compressible Euler system

Extensions

In the eighties, Shizuta and Kawashima developed a rather explicit linear
stability criterion: the (SK) condition. Roughly speaking, it ensures that
the partial damping acts on all the components of the solution, although
indirectly, so that all the solutions of (1) emanating from small
perturbations of a constant state w̄ eventually tend to w̄ .

Yong ’04. An entropy-dissipation condition that provides a suitable
symmetrisation of the system and therefore tools to get quantitative
estimates on the solutions when Q(w̄) = 0.

Many results with theses two conditions concerning global existence of
small solutions and decay of the the solution. The most recent one being
the results of S. Kawashima and J. Xu (’14-’15) in the framework of
inhomogeneous critical Besov spaces.

Here we aim at generalizing their results to the homogeneous setting.
→ More precise estimates concerning the solutions, especially the low
frequencies.
→ Useful to treat relaxation limit problems and obtain explicit convergence
rate.

Timothée Crin-Barat Partially Dissipative Hyperbolic Systems



Introduction
The isentropic compressible Euler system

Extensions

Preliminary analysis
L2 approach
Lp approach
Decay estimates

The isentropic compressible Euler system

The isentropic compressible Euler system

Timothée Crin-Barat Partially Dissipative Hyperbolic Systems



Introduction
The isentropic compressible Euler system

Extensions

Preliminary analysis
L2 approach
Lp approach
Decay estimates

Critical homogeneous Besov spaces

We investigate the global-in-time existence of small strong solution in
critical homogeneous Besov spaces.

Critical → largest space in which one can obtain the uniqueness of the
solution.

Littlewood-Paley decomposition: we define ∆̇j the dyadic blocks such
that, for any f ∈ S ′(Rd)

f =
∑
j∈Z

∆̇j f and supp(̂̇∆j f ) ⊂ {ξ ∈ Rd s.t.
3

4
2j ≤ |ξ| ≤ 8

3
2j}

The main interest of such a decomposition is the following Bernstein
inequality:

c2jk‖∆̇j f ‖Lp ≤ ‖Dk∆̇j f ‖Lp ≤ C2jk‖∆̇j f ‖Lp

Besov semi-norms: ‖f ‖Ḃs
2,1

,
∑
j∈Z

2js‖∆̇j f ‖L2 .
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Choosing the regularity indexes

A spectral analysis of the linearized system tells us that:
In low frequencies, we expect a parabolic behavior of the solution;
In high frequencies the solution undergoes exponential decay.

Norms restricted to low frequencies: ‖f ‖`Ḃs
2,1

,
∑
j≤J0

2js‖∆̇j f ‖L2 ,

Norms restricted to high frequencies: ‖f ‖h
Ḃs′

2,1
,
∑
j≥J0

2js′‖∆̇j f ‖L2 .

One must control ∇u in L1
T (L∞) to close the a priori estimates.

Ḃ
d/2
2,1 ↪→ L∞. Therefore, one might be tempted to work with s = d

2
− 1

and s ′ = d
2

+ 1 i.e.

ρ`0, u
`
0 ∈ Ḃ

d
2
−1

2,1 and ρh0, u
h
0 ∈ Ḃ

d
2

+1

2,1 .

However, in this framework one cannot treat the case d = 1.

Therefore we will work with s = d
2

and s ′ = d
2

+ 1 and recover the
necessary regularity for u. It turns out that in this framework the
dependencies with respect to the damping parameter will be more suitable
to treat relaxation problems.
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2,1

,
∑
j≤J0

2js‖∆̇j f ‖L2 ,

Norms restricted to high frequencies: ‖f ‖h
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A basic explanation

Let us take a quick look at the one-dimensional linearized compressible Euler
equations:{

∂ta + ∂xu = 0

∂tu + ∂xa + u = 0,

−→
∆̇j

{
∂t∆̇ja + ∂x∆̇ju = 0

∂t∆̇ju + ∂x∆̇ja + ∆̇ju = 0,

Energy estimates gives

1

2

d

dt
‖(∆̇ja, ∆̇ju)‖2

L2 + ‖∆̇ju‖2
L2 = 0→ lack of coercivity

To compensate this, we will differentiate in time the following quantity

d

dt

(∫
R

∆̇ju · ∂x∆̇ja

)
+ ‖∂x∆̇ja‖2

L2 − ‖∂x∆̇ju‖2
L2 +

∫
R
uj · ∂x∆̇ja = 0.

Denoting L2
j = ‖(∆̇ja, ∆̇ju)‖2

L2 + εmin(1, 2−2j)

∫
R

∆̇ju · ∂x∆̇ja where ε > 0 can

be as small as necessary, we have

d

dt
L2

j + min(1, 22j)‖(∆̇ja, ∆̇ju)‖2
L2 ≤ 0 as ‖∂x∆̇ja‖2

L2 ∼ 22j‖∆̇ja‖2
L2 .
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Choosing ε small enough such that L2
j ∼ ‖(∆̇ja, ∆̇ju)‖2

L2 and using a
Gronwall-type lemma, one obtain

‖(∆̇ja, ∆̇ju)‖L2 + min(1, 22j)

∫ T

0

‖(∆̇ja, ∆̇ju)‖L2 ≤ ‖(∆̇ja0, ∆̇ju0)‖L2 .

Then, setting J0 = 0, multiplying by 2j d
2 and summing on j ≤ 0.

‖(a, u)‖`
L∞
T

(Ḃ
d
2

2,1)
+ ‖(a, u)‖`

L1
T

(Ḃ
d
2

+2

2,1 )
≤ ‖(a0, u0)‖`

Ḃ
d
2

2,1

,

And for the high frequencies

‖(a, u)‖h
L∞
T

(Ḃ
d
2

+1

2,1 )
+ ‖(a, u)‖h

L1
T

(Ḃ
d
2

+1

2,1 )
≤ ‖(a0, u0)‖h

Ḃ
d
2

+1

2,1

To control the non-linear term of the general system with the regularity
indexes we chose, we must control ‖∇u‖L1

T
(L∞):

‖∇u‖L1
T

(L∞) ≤ C‖u‖
L1
T

(Ḃ
d
2

+1

2,1 )
≤ C‖u‖h

L1
T

(Ḃ
d
2

+1

2,1 )
+C‖u‖`

L1
T

(Ḃ
d
2

+1

2,1 )
not under control.

Indeed if J0 ≤ 0 then, Bernstein inequality implies: ‖f ‖`
Ḃ

d
2

+2

2,1

≤ C‖f ‖`
Ḃ

d
2

+1

2,1

.
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Low frequencies regularity enhancement for the velocity

A more precise spectral analysis in the low frequencies regime shows that
only one of the eigenvalues has a parabolic behaviour while all the other
ones are damped.
Looking at the equation of ∂xu alone we have

∂t∂xu + ∂xu = −∂2
xxa.

The classical procedure leads to

‖u‖`
L∞
T

(Ḃ
d
2

+1

2,1 )
+ ‖u‖`

L1
T

(Ḃ
d
2

+1

2,1 )
≤ ‖u0‖`

Ḃ
d
2

2,1

+ ‖a‖`
L1
T

(Ḃ
d
2

+2

2,1 )

Therefore, multiplying this estimate by a constant small enough and
adding it to the previous one, we obtain

‖(a, u)‖`
L∞
T

(Ḃ
d
2

2,1)
+ ‖a‖`

L1
T

(Ḃ
d
2

+2

2,1 )
+ ‖u‖`

L1
T

(Ḃ
d
2

+1

2,1 )
≤ C‖(a0, u0)‖`

Ḃ
d
2

2,1

We now have all the necessary ingredients to consider the quasi-linear
system in the L2 setting.
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Back to Euler system

We consider (E) supplemented with initial data (ρ0, v0) that is a
perturbation of some constant state (ρ̄, v̄) = (1, 0), λ > 0 and P a
(smooth) pressure law satisfying

P ′(ρ) > 0 for ρ close to 1 and P ′(1) = 1. (P)

Considering the unknown n(ρ) =

∫ ρ

1

P ′(s)

s
ds, we can rewrite (E) under

the form {
∂tn + v · ∇n + div v + G(n)div v = 0,

∂tv + v · ∇v +∇n + λv = 0,
(3)

where G(n) is defined by the relation G(n(ρ)) = P ′(ρ)− 1.

The rescaling (n, v)(t, x) , (ñ, ṽ)(λt, λx) reduces the proof to λ = 1 and
the inverse scaling will give the desired dependency with respect to λ
(using the homogeneity property of the norms considered).
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Lyapunov Functional

Inspired by the work of R. Danchin on the compressible Navier-Stokes system,
we consider the following functionals:

L2
j =

∫
Rd

|(∆̇jn, ∆̇jv)|2 + ε

∫
Rd

∆̇jv · ∇∆̇jn if j < 0

L2
j =

∫
Rd

(|∆̇jn|2 + (1 + G(n))|∆̇jv |2) + ε2−2j

∫
Rd

∆̇jv · ∇∆̇jn if j ≥ 0

where ε > 0 is a fixed constant such that for j ∈ Z

|Lj(t)|2 ∼ ‖(∆̇jn, ∆̇jv)‖2
L2 . (4)

Simple computations leads to (with some simplifications)

1

2

d

dt
L2

j + c22jL2
j ≤ Ccj2

−j d
2 ‖∇v‖

Ḃ
d
2

2,1

‖(n, v)‖
Ḃ

d
2

2,1

Lj for j < 0.

1

2

d

dt
L2

j +cL2
j ≤ Ccj2

−j( d
2

+1)‖∇v‖
Ḃ

d
2

2,1

‖(n, v)‖
Ḃ

d
2

+1

2,1

Lj+

∫ t

0

|∆̇jv |2∂tG(n) for j ≥ 0.
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Closure of the estimates : a first attempt

Concerning ∂tG(n), we have

‖∂tG(n)‖L∞ . ‖∇v‖L∞ + ‖v‖L∞‖∇n‖L∞ . (5)

Introducing the following Lyapunov functional:

L =
∑
j≤0

2j d
2

√
L2

j +
∑
j>s0

2j( d
2

+1)
√
L2

j ∼ ‖(n, v)‖`
Ḃ

d
2

2,1

+ ‖(n, v)‖h
Ḃ

d
2

+1

2,1

eventually leads to

L(t) +

∫ t

0

‖(n, v)‖`
Ḃ

d
2

+2

2,1

+

∫ t

0

‖(n, v)‖h
Ḃ

d
2

+1

2,1

≤ L(0) + C

∫ t

0

‖v‖
Ḃ

d
2

+1

2,1

L. (6)

To close the estimates we need to recover the control of v ` in L1
T (Ḃ

d
2

+1

2,1 ).
We are going to look at the equation on v as a damped transport equation:

∂tv + v · ∇v + v = ∇n.
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Standard computations leads to

‖v(t)‖`
Ḃ

d
2

+1

2,1

+

∫ t

0

‖v‖`
Ḃ

d
2

+1

2,1

≤ ‖v0‖`
Ḃ

d
2

+1

2,1

+

∫ t

0

‖a‖`
Ḃ

d
2

+2

2,1

+

∫ t

0

‖v‖2

B
d
2

+1

2,1

.

Multiplying this equation by a small enough constant, we can absorb the linear

term

∫ t

0

‖a‖`
Ḃ

d
2

+2

2,1

by the left hand side of (6). Finally we have

L(t) +

∫ t

0

‖n‖`
Ḃ

d
2

+2

2,1

+

∫ t

0

‖v‖`
Ḃ

d
2

+1

2,1

+

∫ t

0

‖(n, v)‖h
Ḃ

d
2

+1

2,1

≤ L(0) +C

∫ t

0

‖v‖
Ḃ

d
2

+1

2,1

L.

Setting

X2(t) , ‖(n, v)‖`
L∞t (Ḃ

d
2

2,1)
+ ‖(n, v)‖h

L∞t (Ḃ
d
2

+1

2,1 )
+ ‖n‖`

L1
t (Ḃ

d
2

+2

2,1 )
+ ‖(n, v)‖h

L1
t (Ḃ

d
2

+1

2,1 )

we easily reach
X2(t) ≤ X0 + X 2

2 (t)

and we can conclude from a standard bootstrap argument the existence of
global small solution. Scaling back, we obtain the following theorem.
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L2 main result

Theorem (T. C-B. and R. Danchin ’21)

Let d ≥ 1. There exists c0 = c0(p) > 0 such that, if we set the threshold
between low and high frequencies at J0 , blog2λc , then, whenever the initial
data (n0, v0) satisfies

‖(n0, v0)‖`
Ḃ

d
2

2,1

+ λ−1 ‖(n0, v0)‖h
Ḃ

d
2

+1

2,1

≤ c0,

System (19)-(P) admits a unique global solution (n, v) satisfying

‖(n, v)‖`
L∞t (Ḃ

d
2

2,1)
+ λ−1 ‖(n, v)‖h

L∞t (Ḃ
d
2

+1

2,1 )
+ λ−1 ‖n‖`

L1
t (Ḃ

d
2

+2

2,1 )
+ ‖(n, v)‖h

L1
t (Ḃ

d
2

+1

2,1 )

+ ‖v‖
L1
t (Ḃ

d
2

+1

2,1 )
+ λ1/2 ‖v‖

L2
t (Ḃ

d
2

2,1)
. ‖(n0, v0)‖`

Ḃ
d
2

2,1

+ λ−1 ‖(n0, v0)‖h
Ḃ

d
2

+1

2,1

.

Moreover there exists a Lyapunov functional such that

L ∼ ‖(n, v)‖`
Ḃ

d
2

2,1

+ λ−1 ‖(n, v)‖h
Ḃ

d
2

+1

2,1
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In low frequencies, the matrix of the system corresponding to frequency ξ
has two real eigenvalues and in high frequencies, two complex conjugated
eigenvalues.

Consequently, one can expect that the low frequency part of System (E)
solvable in some Lp type functional framework with p 6= 2, whereas going
beyond the L2 framework in high frequency is bound to fail.

An opposite dichotomy was used to treat the compressible Navier-Stokes
system.

Main idea: introduce an ”effective velocity” in the spirit of D. Hoff ’06
and B. Haspot ’11 that may be seen as an approximate dissipative
eigenmode of the system in the low frequency regime.
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Low frequencies analysis: Damped mode in the simplest case

Let us consider again the one-dimensional linearized compressible Euler
equations: {

∂ta + ∂xu = 0

∂tu + ∂xa + u = 0,

Define z = u + ∂xa, we can rewrite the system in the following way{
∂ta− ∂2

xxa = −∂xz

∂tz + z = −∂2
xxu.

The parabolic effect for the density directly appears in the equations of a.

In low frequencies, the linear terms of the right-hand side will be negligible.

We will look at the first equation as a heat equation with a convection
term, and at the second one as a damped transport equation.
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Low frequency analysis: Damped mode for the quasi-linear system

We consider the damped mode z = v +∇n + v · ∇v , the couple (n, z) satisfies{
∂tn −∆n = −v · ∇n − div z − G(n)divv − div(V · ∇V )

∂tz + z = −∇div v − ∂t(v · ∇v) +−∇(v · ∇n) +∇(G(n)divv)
(7)

Simple computations lead to (omitting some terms for simplicity):

‖n(t)‖`
Ḃ

d
p
p,1

+ cp

∫ t

0

‖n‖`
Ḃ

d
p

+2

p,1

. ‖n0‖`
Ḃ

d
p
p,1

+

∫ t

0

‖z‖`
Ḃ

d
p

+1

p,1

+

∫ t

0

‖v‖
Ḃ

d
p

+1

p,1

‖n‖
Ḃ

d
p
p,1

‖z(t)‖`
Ḃ

d
p
p,1

+

∫ t

0

‖z‖`
Ḃ

d
p
p,1

≤ ‖z0‖`
Ḃ

d
p
p,1

+

∫ t

0

‖v‖`
Ḃ

d
p

+2

p,1

+ Xp(T )2.

This time we cannot absorb the linear right-hand side terms as previously.
We need to fix a threshold between the low and high frequencies J0 small
enough. Indeed, owing to Bernstein inequality, there exists an absolute
constant C such that for any couple (σ, σ′) ∈ R2 with σ ≤ σ′, we have

‖f ‖`
Ḃσ
′

p,1
≤ C2J0(σ′−σ)‖f ‖`Ḃσp,1 . (8)
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Low frequencies analysis: Recovering regularity for v

Since v = z −∇n − v · ∇v , we have

‖v‖`
L1
T

(Ḃ

d
p

+1

p,1 )

≤ ‖z‖`
L1
T

(Ḃ

d
p
p,1)

+ ‖∇n‖`
L1
T

(Ḃ

d
p

+1

p,1 )

+ C‖∇v‖
L1
T

(Ḃ

d
p

+1

p,1 )

‖v‖
L∞
T

(Ḃ

d
p
p,1)

,

‖v‖`
L2
T

(Ḃ

d
p
p,1)

≤ ‖z‖`
L2
T

(Ḃ

d
p
p,1)

+ ‖∇n‖`
L2
T

(Ḃ

d
p
p,1)

+ C‖∇v‖
L2
T

(Ḃ

d
p
p,1)

‖v‖
L∞
T

(Ḃ

d
p
p,1)

.

Setting

Xp(t) = ‖(n, v)‖`
L∞t (Ḃ

d
p
p,1)

+ ‖(n, v)‖h
L∞t (Ḃ

d
2

+1

2,1 )
+ ‖n‖`

L1
t (Ḃ

d
p

+2

p,1 )

+ ‖v‖`
L1
t (Ḃ

d
p

+1

p,1 )

+ ‖(n, v)‖h
L1
t (Ḃ

d
2

+1

2,1 )
+ ‖z‖

L1
t (Ḃ

d
p
p,1)

+ ‖v‖
L2
t (Ḃ

d
p
p,1)

Using the embedding Ḃ
d
2

+α

2,1 ↪→ Ḃ
d
p

+α

p,1 , we conclude that

‖(n, v)(t)‖`
Ḃ

d
p
p,1

+

∫ t

0

‖n‖`
Ḃ

d
p

+2

p,1

+

∫ t

0

‖v‖`
Ḃ

d
p

+1

p,1

+

∫ t

0

‖z‖`
Ḃ

d
p
p,1

. ‖(n0, v0)‖`
Ḃ

d
p
p,1

+ Xp(T )2·
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High frequencies analysis: Issues

Although the functional framework for high frequencies is the same as in
the first part of this talk, one cannot repeat exactly the same
computations.

The non-linear terms contain a little amount of low frequencies of n and
v . But they only belong to spaces of the type Ḃ s

p,1 for some p > 2 (and

thus not in some Ḃ s′
2,1).

To overcome the difficulty, we have to study more carefully the
commutators in our ‘hybrid’ functional framework.
The usual commutator estimate would give

2js
∥∥∥[v , ∆̇j ]∇v

∥∥∥
L2
≤ Ccj ‖∇v‖

Ḃ
d
2

2,1

‖v‖Ḃs
2,1

with
∑
j∈Z

cj = 1

‖v‖Ḃs
2,1
≤ ‖v‖hḂs

2,1
+ ‖v‖`Ḃs

2,1
not under control for any s
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Ḃ
d
2

2,1

‖v‖Ḃs
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2,1
+ ‖v‖`Ḃs
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A more general commutator estimate

Commutator estimate

Let p ∈ [2,min(4, 2d/(d − 2)] and define p∗ by the relation 1
p

+ 1
p∗ = 1

2
· For all

j ∈ Z, denote Rj , Ṡj−1w ∇∆̇j f − ∆̇j(w ∇f ).
There exists a constant C depending only on the threshold number J0 between
low and high frequencies and on s, such that∑
j≥J0

(
2j( d

2
+1) ‖Rj‖L2

)
≤ C

(
‖∇w‖L∞ ‖f ‖

h

Ḃ
d
2

+1

2,1

+ ‖∇f ‖
Ḃ

d
p
−1

p,1

‖w‖`
Ḃ

2+ d
p∗

p∗,1

+ ‖∇f ‖L∞ ‖w‖
h

Ḃ
d
2

+1

2,1

+ ‖∇f ‖`
Ḃ
d− d

p
p,1

‖∇w‖`
Ḃ
− d

p∗
p∗,1

)
·

Moreover, if 2 ≤ p ≤ 2d/d − 1, we have∑
j≥J0

(
2j( d

2
+1) ‖Rj‖L2

)
≤ C

(
‖∇w‖L∞ ‖f ‖

h

Ḃ
d
2

+1

2,1

+ ‖∇f ‖
Ḃ

d
p
−1

p,1

‖∇w‖`
Ḃ

d
p

+1

p,1

+ ‖∇f ‖L∞ ‖∇w‖
h

Ḃ
d
2

2,1

+ ‖∇f ‖`
Ḃ

d
p

+1

p,1

‖∇w‖`
Ḃ

d
p
−1

p,1

)
·
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High frequencies analysis: a priori estimates

With this lemma in hand, one just need to differentiate in time the same
functional as previously:

L2
j =

∫
Rd

(|∆̇jn|2 + (1 + G(n))|∆̇jv |2) + ε2−2j

∫
Rd

∆̇jv · ∇∆̇jn if j ≥ 0

and use the above commutator estimate. The problematic term is∫ t

0

‖∇v‖L∞ ‖G(n)‖h
Ḃ

d
2

+1

2,1

≤ ‖v‖
L1
T

(Ḃ
d
2

+1

2,1 )
‖G(n)‖h

L∞
T

(Ḃ
d
2

+1

2,1 )
.

Indeed, the usual composition lemma (G(0) = 0) yields

‖G(n)‖h
L∞
T

(Ḃ
d
2

+1

2,1 )
≤ C ‖n‖

L∞
T

(Ḃ
d
2

+1

2,1 )
we lost the frequency regime restriction

≤ C ‖n‖h
L∞
T

(Ḃ
d
2

+1

2,1 )
+ C‖n‖`

L∞
T

(Ḃ
d
2

+1

2,1 )
not under control
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Two solutions:

In the case of a gamma law P(ρ) = ργ/γ with γ > 0, G(n) = (γ − 1)n.

In the case of a general pressure, one must work out a composition lemma
preserving the frequency restriction with respect to the Lebesgue index.
Result in progress following an idea from Chen-Miao-Zheng ’11.

Gathering everything, we end up with

Xp(t) ≤ C
(
Xp,0 + X 2

p (t)
)

and again we conclude with a bootstrap argument.
Scaling back we proved the following theorem:
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Theorem (T. C-B. and R. Danchin ’21)

Let d ≥ 1 and 2 ≤ p ≤ min
(

4, 2d
d−1

)
. There exist k = k(p) ∈ Z and

c0 = c0(p) > 0 such that, if we set the threshold between low and high
frequencies at J0 , blog2λc+ k, then, whenever

‖(n0, v0)‖`
Ḃ

d
p
p,1

+ λ−1 ‖(n0, v0)‖h
Ḃ

d
2

+1

2,1

≤ c0,

System (E)-(P) admits a unique global solution (n, v) satisfying

‖(n, v)‖`
L∞t (Ḃ

d
p
p,1)

+ λ−1 ‖(n, v)‖h
L∞t (Ḃ

d
2

+1

2,1 )
+ λ−1 ‖n‖`

L1
t (Ḃ

d
p

+2

p,1 )

+ ‖(n, v)‖h
L1
t (Ḃ

d
2

+1

2,1 )

+ ‖λv +∇n‖
L1
t (Ḃ

d
p
p,1)

+ λ1/2 ‖v‖
L2
t (Ḃ

d
p
p,1)

. ‖(n0, v0)‖`
Ḃ

d
p
p,1

+ λ−1 ‖(n0, v0)‖h,
Ḃ

d
2

+1

2,1

.
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Decay estimates in the L2 framework

Decay is essentially dicted by the linear analysis of the low frequencies. To
derive a decay rate one must assume a stronger assumption on the low
frequencies: (n0, u0) ∈ Ḃ−σ1

2,∞ for some σ1 ∈
]
− d

2
, d

2

]
.

In the case σ1 = d/2 this is reminiscent of the usual L1 assumption as

L1 ↪→ Ḃ
− d

2
2,∞ .

Here we aim at obtaining decay estimates without any additional smallness
condition. This will be done following an idea developed by Z. Xin and J.
Xu ’21 concerning the compressible Navier-Stokes system.
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Step 1: Preservation of the extra negative regularity for low frequencies
through the time evolution: ‖(n, u)(t)‖

Ḃ
−σ1
2,∞
≤ ‖(n0, u0)‖

Ḃ
−σ1
2,∞

. Essentially

this can be proved using a classical procedure and handling the non-linear
terms in Besov space with a negative regularity index.

Step 2: Lyapunov functional: With the previous computations we have

L(t) + c ′
∫ t

0

H ≤ L(0).

Clearly, one can start the proof from any time t0 ≥ 0 and get in a similar
way:

L(t0 + h) + c ′
∫ t0+h

t0

H ≤ L(t0), h ≥ 0.

This ensures that L is non-increasing on R+ (hence differentiable almost
everywhere) and that for all t0 ≥ 0 and h > 0,

L(t0 + h)− L(t0)

h
+ c ′

1

h

∫ t0+h

t0

H ≤ 0.
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Consequently, passing to the limit h→ 0 gives

d

dt
L+ c ′H ≤ 0 a. e. on R+ (9)

with

L ∼ ‖(n, v)‖`
Ḃ

d
2

2,1

+ ‖(n, v)‖h
Ḃ

d
2

+1

2,1

and H ∼ ‖v‖
Ḃ

d
2

+1

2,1

+ ‖n‖`
Ḃ

d
2

+2

2,1

+ ‖n‖h
Ḃ

d
2

+1

2,1

Step 3: lower bound for H by interpolation arguments

‖(n, v)‖`
Ḃ

d
2

2,1

.

(
‖(n, v)‖`

Ḃ
−σ1
2,∞

)θ (
‖(n, v)‖`

Ḃ
d
2

+2

2,1

)1−θ

with θ =
2

d
2

+ 2 + σ1

Therefore

‖(n, v)‖`
Ḃ

d
2

+2

2,1

≥ c C
− θ

1−θ
0

(
‖(n, v)‖`

Ḃ
d
2

2,1

) 1
1−θ

and

‖(n, v)‖h
Ḃ

d
2

+1

2,1

≥ c C
− θ

1−θ
0

(
‖(n, v)‖`

Ḃ
d
2

+1

2,1

) 1
1−θ .
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Step 4: differential inequality

This leads to
d

dt
L+ c0L

1
1−θ ≤ 0

where c0 only depends on the initial data. Then

L ≤ (1 + c ′0t)1− 1
θL(0).

Using that L ∼ ‖(n, v)(t)‖
Ḃ

d
2

2,1∩Ḃ
d
2

+1

2,1

, we obtain

‖(n, v)(t)‖
Ḃ

d
2

2,1∩Ḃ
d
2

+1

2,1

≤ C(1+t)−α1‖(n0, v0)‖
Ḃ

d
2

2,1∩Ḃ
d
2

+1

2,1

with α1 ,
1

2

(
σ1 +

d

2

)
·

Step 5: Improvement of the decay rate for the ”directly-damped”
component in low frequencies.

Step 6: Improvement of the decay rate of high frequencies.
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Decay Theorem

Under the hypotheses of the existence theorem and if (n0, v0) ∈ Ḃ−σ1
2,∞ for some

σ1 ∈
]
− d

2
, d

2

]
then, there exists a constant C depending only on σ1 such that

‖(n, v)(t)‖
Ḃ
−σ1
2,∞
≤ C ‖(n0, v0)‖

Ḃ
−σ1
2,∞

, ∀t ≥ 0. (10)

Furthermore, if σ1 > 1− d/2 then, denoting

〈t〉 ,
√

1 + t2, α1 ,
σ1 + d

2
− 1

2
,C0 , ‖(n0, v0)‖`

Ḃ
−σ1
2,∞

+ ‖(n0, v0)‖h
Ḃ

d
2

+1

2,1

,

we have the following decay estimates:

sup
t≥0

∥∥∥〈t〉σ+σ1
2 (n, v)(t)

∥∥∥`
Ḃσ2,1

≤ CC0 if − σ1 < σ ≤ d/2− 1,

sup
t≥0

∥∥∥〈t〉σ+σ1
2

+ 1
2 v(t)

∥∥∥`
Ḃσ2,1

≤ CC0 if − σ1 < σ ≤ d/2− 2,

and sup
t≥0

∥∥∥〈t〉2α1 (n, v)(t)
∥∥∥h
Ḃ

d
2

+1

2,1

≤ CC0.
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Extensions

The whole method developed here can also be used to treat general
partially dissipative hyperbolic system satisfying the (SK) condition. One
can generalize the Lyapunov functional thanks to arguments from
Beauchard and Zuazua’s paper ’11.

It can also be used to derive existence result for specific systems not
satisfying the (SK) condition: we studied a damped Baer-Nunziato system
in collaboration with C. Burtea and J. Tan.

The damped mode is an useful tool to study relaxation limit problem and
to derive explicit convergence rate. Work in progress: compressible Euler
system to porous media equations, and hyperbolic-parabolic chemotaxis
system to Keller-Segel system.
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Presentation of the problem

Here we present briefly the results obtained in collaboration with C. Burtea and
J. Tan.
We consider the following damped Baer-Nunziato system:

∂tα± + u · ∇α± = ± α+α−
2µ+ λ

(P+ (ρ+)− P− (ρ−)) ,

∂t (α±ρ±) + div (α±ρ±u) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇P + ηρu = 0,
ρ = α+ρ+ + α−ρ−,
P = α+P+ (ρ+) + α−P− (ρ−)

(BN)

Not symmetrizable:
The equations of the volume fractions cannot be put in conservative form
→ not a system of conservation law.
The entropy that is naturally associated to this system is not positive
definite since it is linear with respect to the volume fractions.

Doesn’t satisfy the (SK) condition
The associated quasilinear system admits the eigenvalue 0.
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Solutions

It turns out that the situation is not too degenerate in the sense that the
eigenspace associated to the eigenvalue 0 is of dimension 1 and that,
roughly speaking, the non-degenerate part (i.e. the part associated to
non-zero eigenvalues) fulfils the (SK) condition.

We rewrite the (BN)-system in terms of new variables so as to highlight a
subsystem for which the linearized does verify the (SK) condition which is
coupled throughout lower-order terms with a transport equation.

We construct an appropriate weighted energy-functional which allows us
to tackle the lack of symmetry of the system, provides decay information
and allows us to close the estimate uniformly with respect to the
relaxation parameter.
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Elements of proof

System (BN) can be recast into
∂ty + u · ∇y = 0

∂tw + u · ∇w +
(
h1 + H1

)
divu + (h2 + H2)

w

ν
= S2,

∂tr + u · ∇r +
(
h3 + H3

)
divu = S3,

∂tu + u · ∇u + ηu +
(
h5 + H5

)
∇r +

(
h6 + H6

)
∇w = S4

(11)

To obtain an a priori estimate for the last 3 equations, we derive in time the
following functionals:

L2
j =

∫
Rd

(h6

h1
|wj |2 +

h5

h3
|rj |2 + |uj |2 + 2εuj · ∇rj

)
for j < 0.

L2
j =

∫
Rd

(h6 + H6

h1 + H1
|wj |2 +

h5 + H5

h3 + H3
|rj |2 + |uj |2 + 2ε2−2juj · ∇rj

)
for j ≥ 0.
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Elements of proof

Then, for − d
2
< s1 ≤ d

2
− 1 and s1 + 1 ≤ s2 ≤ d

2
+ 1, the following estimate

holds:

‖(w , r , u)‖`
L̃∞t (Ḃ

s1
2,1)

+ ‖(w , r , u)‖h
L̃∞t (Ḃ

s2
2,1)

+ κ
(
‖(w , r , u)‖`

L1
t (Ḃ

s1+2
2,1 )

+ ‖(w , r , u)‖h
L1
t (Ḃ

s2
2,1)

)
+

∫ t

0

‖(w
ν
, ηu, ∂tw , ∂tr , ∂tu)‖`

Ḃ
s1+1
2,1

+

∫ t

0

‖(w
ν
, ηu, ∂tw , ∂tr , ∂tu)‖h

Ḃ
s2−1
2,1

≤ exp
(
C
(
H(t) + V (t)

))(
‖(w0, r0, u0)‖Ḃs1

2,1∩Ḃ
s2
2,1

+

∫ t

0

‖(S2, S3, S4)‖Ḃs1
2,1∩Ḃ

s2
2,1

)

where V (t) :=

∫ t

0

‖u‖
Ḃ

d
2

2,1∩Ḃ
d
2

+1

2,1

, H(t) :=
6∑

i=1

‖∂tHi (t)‖
Ḃ

d
2

2,1

and κ := κ(ε).

Strength of this method: we can treat the singular relaxation limit problem
as ν → 0.

We are able to show rigorously that the so-called Kapilla system is
obtained as a relaxation limit from the (BN) system and derive the
convergence rate of this process.
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α+ + α− = 1,
∂t (α±ρ±) + div (α±ρ±u) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇P + ηρu = 0,
ρ = α+ρ+ + α−ρ−,
P = P+ (ρ+) = P− (ρ−) .

(K)

Denoting with an index ν the solution of (BN), we are able to prove that

‖(αν± − α±, ρν± − ρ±, uν − u)‖
L∞(Ḃ

d
2
− 1

2
2,1 )

+ ‖ρν± − ρ±‖
L2(Ḃ

d
2
− 1

2
2,1 )

+ ‖uν − u‖
L1(Ḃ

d
2
− 1

2
2,1 )

≤ C
√
ν.

if the initial data of both systems are close enough with respect to
√
ν.

By interpolation one can recover a convergence rate of ν
1
3 for the above

quantities in Ḃ
d
2

2,1.
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Thank you for your attention!
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