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Abstract. We study the time-asymptotic behavior of linear hyperbolic systems subject to partial dis-
sipation that is localized in suitable subsets of the domain. Specifically, we recover the classical decay
rates of partially dissipative systems that satisfy the stability condition (SK), with a time-delay that
depends only on the velocity of each component and the size of the undamped region. To quantify this
delay, we assume that the undamped region is a bounded space interval and that the system, without
space-restriction on the dissipation, satisfies the stability condition (SK). The former assumption ensures
that the time spent by the characteristics of the system in the undamped region is finite, and the latter
ensures that the solutions decay whenever the damping is active. Our approach consists of reformulating
the system into n coupled transport equations and showing that the time-decay estimates are delayed
by the sum of the times that each characteristic spends in the undamped region.

1. Introduction

We consider linear hyperbolic systems of the form{
∂tU +A∂xU = −BU1ω, (x, t) ∈ R× (0,∞),
U(0, x) = U0(x), x ∈ R,

(1.1)

where ω := [−R,R]c, R > 0, U : R × (0,∞) → Rn is the unknown function such that U = (u1, u2) ∈
Rn1 × Rn2 (with n ∈ N∗ and n1 + n2 = n), and A,B are n× n real symmetric matrices. Specifically, we
assume

B :=
(

0n1×n1 0n1×n2

0n2×n1 D

)
,(1.2)

where D is a symmetric definite positive n2 × n2 matrix.
In system (1.1), the damping term only acts on the n2 components of the system and is effective

exclusively in the region ω. Our main aim is to investigate the impact of this damping term on the
long-term behavior of the solution and its decay.

As discussed in [25], the choice of ω as an exterior domain is motivated by a geometric control condition
(see [2]): if the inclusion {|x| ≥ R} ⊂ ω is not satisfied for some R > 0, the ray of geometric optics may
escape the damping effect, and the solution may not exhibit any decay properties.

In the following analysis, we assume thatA is a strictly hyperbolic matrix with n real distinct eigenvalues
such that

λ1 > · · · > λp > 0 > λp+1 > · · · > λn.(1.3)

In particular, this implies that A has no zero eigenvalues

λi 6= 0, i ∈ {1, . . . , n}.(1.4)

Similar assumptions are commonly made in studies on the boundary controllability of (systems of) con-
servation laws (see, e.g., [16]): when there are zero eigenvalues, i.e.

λ` > λm ≡ 0 > λr,

` ∈ {1, . . . , p}, m ∈ {p+ 1, . . . , q}, r ∈ {q + 1, . . . , n},
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there may be standing-wave solutions that cannot reach the boundary. Hence, to achieve exact control-
lability, suitable boundary control corresponds to non-zero eigenvalues, while suitable internal controls
correspond to zero eigenvalues.

When ω = R, the existence and behavior of solutions to (1.1) are well-established. According to
classical theory (see, e.g., [19]), (1.1) generates a semigroup Sd(t) of bounded operators on L2(R;R).
Therefore, given an initial data U0 ∈ L2(R), the system (1.1) has a unique solution U ∈ C((0,∞);L2(R))
such that

U(x, t) = Sd(t)U0(x), (x, t) ∈ R× (0,∞).
Indeed, applying the Fourier transform (in the space variable) to (1.1) yields, for all (ξ, t) ∈ R× (0,∞),

∂tÛ(t, ξ) + iAξÛ(t, ξ) = −BÛ(t, ξ),
or, in a condensed form,

∂tÛ(t, ξ) = E(ξ)Û(t, ξ),

where E(ξ) := −B − iAξ. Solving this first order ODE, we obtain

Û(ξ, t) = exp(E(ξ)t)Û0(ξ).

Then the C0-semigroup Sd acting on L2(R)n can be defined as

Sd(t)U0 = e−tEU0 = F−1(e−tE(ξ)Û0),(1.5)

where −E = −A∂xU + BU is the associated generator. Its domain contains the Sobolev space H1(R)n
and, thanks to the Fourier-Plancherel theorem, the estimate of the semigroup e−tE in L2 is reduced to
the analysis of e−tE(ξ) for ξ ∈ R∗. For future reference, we introduce Sd(t, s) for (t, s) ∈ (0,∞)2 with
s ≤ t, which represents the dissipative semigroup associated with the generator −E and acting on the
time interval [s, t]. If s = 0, this notation simplifies to Sd(t).

In general, the semigroup Sd is not dissipative and the operator norm satisfies |||S||| = c for some
constant c > 0. Indeed, owing to the symmetry of the matrix A, the classical energy method leads to

(1.6) 1
2

d
dt‖U(·, t)‖2

L2(R) + (BU(·, t)|U(·, t))L2(R) = 0, t > 0.

The structure of B in (1.2) implies that there exists κ0 > 0 such that

(1.7) (BU(·, t)|U(·, t))L2(R) ≥ κ0‖u2(·, t)‖2
L2(R).

Hence, (1.6) yields L2-in-time integrability on the component u2 but not for u1. To overcome this lack of
coercivity issue, Shizuta and Kawashima developed a condition, the well-known stability condition (SK),
which ensures the decay of the solution to zero when t→∞ (see [20]):

{eigenvectors of Aξ} ∩Ker(B) = {0}, ∀ ξ ∈ R∗.(SK)
In one spatial dimension, this condition is equivalent to the absence of plane wave solutions to the
hyperbolic system propagating to the characteristic directions, thereby guaranteeing the decay of our
solutions. In higher dimensions, it is established that the (SK) condition is sufficient to ensure these
properties but is not necessary. For further details, we refer to [4].

When ω = R and under the (SK) assumption, it is proven in [20, Theorem 1.1] that limt→∞ e−tE(ξ) = 0
and more precisely, in terms of the operator norm, we have

|||e−tE(ξ)||| ≤ Ce−c
|ξ|2

1+|ξ|2
t
, t > 0.(1.8)

As |ξ|2/(1 + |ξ|2) ≤ min(1, |ξ|2), the behavior of the solution dependents on the frequency regime under
consideration (see, e.g., [4, Theorem 1]).

Theorem 1.1 (SK decay estimate). Let us assume that ω = R, the matrix A is symmetric and satisfies
(1.3), B satisfies (1.2), and the couple (A,B) satisfies the (SK) condition. Let U be the solution of (1.1)
associated with the initial data U0 ∈ L1(R) ∩ L2(R). Then the following decay estimates hold:

‖Uh(·, t)‖L2(R) ≤ CKe−γt‖U0‖L2(R), t > 0,(1.9)

‖U `(·, t)‖L∞(R) ≤ CKt−1/2‖U0‖L1(R), t > 0,(1.10)
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where CK and γ are positive constants depending only on A and B, Ûh(ξ, t) = Û(ξ, t)1{|ξ|>1}, and
Û `(ξ, t) = Û(ξ, t)1{|ξ|<1}.

The high frequencies of the solution are exponentially damped, whereas the low frequencies behave
similarly to solutions of the heat equation. Additionally, computations presented in [20, Theorem 5]
enable the deduction of the existence of global smooth solutions for nonlinear systems associated with
initial data close to a constant equilibrium in any dimension (see [4, 11, 5, 22, 9, 8]).

In their paper [4, Proposition 1], Beauchard and Zuazua observed that the (SK) condition is equivalent
to the classical Kalman rank condition (see [15, Chapter 2, Theorem 5, pp. 81–82]) in control theory for
all pairs (A(ξ), B) with ξ 6= 0. They then obtained a simpler proof of the decay estimates (1.9)-(1.10) by
constructing an energy functional with additional low-order terms. This construction was motivated by
the hypo-coercivity theory of Villani [21] and works on the damped wave equation.

More recently, in [7], Crin-Barat and Danchin developed a method that allows the study of general
quasi-linear partially dissipative hyperbolic systems in a critical regularity framework. In addition, they
justified the relaxation process associated with such systems by highlighting a purely damped mode in
the low-frequency regime, which allows the diagonalization of the system in this regime

In the case of a damping term acting in a region ω instead of the whole space, the tools developed
in the above references are not of much help: indeed, they mainly rely on the Fourier transform, which
would yield a convolution between 1̂ω and Û that seems to mix the frequencies too much to obtain useful
information about the dissipative mechanism.

In the model case of the wave equation, the decay of solutions when the damping term acts only in
a region of the domain satisfying a suitable geometric condition has been an active area of investigation
in the past few decades. In [25], Zuazua proved energy decay for the Klein-Gordon equation with locally
distributed dissipation, while [24] obtained a decay estimate for the damped wave equation in a bounded
domain. Local energy decay results were subsequently obtained for the linear wave equation in an
unbounded exterior domain Ω ⊂ Rd with localized dissipation effective only near a part of the boundary
(see [17]). In [18], the case of systems with total dissipation (and in a compact domain) was also dealt
with. Finally, in [14, 13], Léautaud and Lerner studied the decay rate for the energy of solutions of a
damped wave equation in a situation where the geometric control condition was violated.

In a similar vein, in [6], Coron and Nguyen studied the controllability of general linear hyperbolic
systems in one spatial dimension using boundary controls on one side, while, in [1], the authors dealt
with the controllability from the interior of a hyperbolic system with a reduced number of controls (which
parallels the stabilization from ω using partial damping). For coupled waves, similar results were obtained
in [23], while [3, 10] presented results concerning parabolic or parabolic-hyperbolic systems.

In this contribution, we study the problem by relying on a direct method that involves only the
consideration of characteristic curves and a semigroup-wise decomposition. Our main theorem provides
an analog of Theorem 1.1.

Theorem 1.2 (Decay estimates for locally-undamped partially dissipative systems). Let us assume that
the matrix A is symmetric and satisfies (1.3), B satisfies (1.2), and the couple (A,B) satisfies the (SK)
condition. Let U be the solution of (1.1) associated with the initial data U0 ∈ L1(R) ∩ L2(R). Then, for

t ≥ τ, with τ := max

 p∑
i=1

2R
|λi|

,

n∑
i=p+1

2R
|λi|

 ,

the following decay estimates hold:

‖U(·, t)‖L2(R) ≤ C̃Ke−γ(t−τ)‖U0‖L2(R) + C̃K(t− τ)−1/4‖U0‖L2(R),(1.11)

‖U(·, t)‖L∞(R) ≤ C̃K(t− τ)−1/2‖U0‖L1(R),(1.12)

where C̃K = 6CK and the positive constants CK and γ are defined in Theorem 1.1 and depend only on
A and B.

The result from Theorem 1.2 on the time interval [τ,+∞] is natural and optimal (up to the modification
of the constant CK), as it recovers the same decay rates as in the case ω = R, delayed by the time each
characteristic spends in the undamped region ωc. The modification of the constant Ck is due to a technical
difficulty related to the fact that our analysis is based on a precise decomposition of the physical space
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into six distinct intervals. Also, in (1.11), we could more briefly write C̃ ′K := C̃Ke
γτ , but we prefer the

form above because it allows us to provide an explicit expression for the delay perceived by the time-decay
rates of the energy from Theorem 1.1.

Theorem 1.2 holds without any restrictions on the support of the initial data. However, it could
be refined when considering compactly supported initial data. For example, if we consider initial data
supported far from ωc, then the solution would decay during the entire time it takes to reach ωc. Therefore,
the estimates (1.11) and (1.12) would be satisfied, but the decay could be improved for times shorter
than τ .

Outline. This paper is organized as follows. Section 2 establishes some preliminary results on hyperbolic
systems and outlines the proof strategy for our main theorem. In Section 3, we analyze some case studies,
including scalar equations and 2× 2 systems. We then generalize the key insights gathered in these cases
and prove Theorem 1.2 in Section 4. Finally, in Section 5, we discuss potential extensions of the main
results and several open problems.

2. Preliminaries and strategy of proofs

Before discussing the proof strategy of the Theorem 1.2, let us introduce some preliminary notations.
As the matrix A is symmetric with n real distinct eigenvalues, there exists a matrix P ∈ O(n,R) such
that

P−1AP = Λ and Λ = diag(λ1, ..., λn).
Setting V = P−1U , the system (1.1) can be reformulated into{

∂tV + Λ∂xV = −P−1BPV, (x, t) ∈ R× (0,∞),
V (0, x) = V0(x), x ∈ R,

(2.1)

i.e., writing V = (v1, . . . , vn) and V0 = (v1,0, . . . , vn,0),

∂tv1 + λ1∂xv1 = −
∑n
j=1 b̃1,jvj 1ω, (x, t) ∈ R× (0,∞),

...
∂tvn + λn∂xvn = −

∑n
j=1 b̃n,jvj 1ω, (x, t) ∈ R× (0,∞),

v1(x, 0) = v1,0(x), x ∈ R
...

vn(x, 0) = vn,0(x), x ∈ R,

(2.2)

where the b̃i,j corresponds to the coefficients of the matrix P−1BP . It is sufficient to prove Theorem 1.2
for the unknown V (since this would imply the same conclusion for U up to a multiplicative constant).

Example 2.1 (Damped wave equation). The damped wave equation ∂2
ttu− ∂2

xxu+ ∂tu = 0 can be equiv-
alently rewritten as follows:{

∂tp− ∂xp = − 1
2 (p+ r), (x, t) ∈ R× (0,∞),

∂tr + ∂xr = − 1
2 (p+ r), (x, t) ∈ R× (0,∞).

Remark 2.2 (Commuting matrices). If the matrices A and B commute, we can diagonalize the matrices
simultaneously and end up with decoupled equations. Furthermore, under the commutativity assumption,
the (SK) condition amounts to rank(B) = n. This reduces the situation to the ‘totally dissipative’ case.

2.1. Characteristics and propagation times. For all i ∈ {1, . . . , n}, the characteristic lines Xi of
each equation of system (2.2) passing through the point (x0, t0) ∈ R× [0, T ] are given by

Xi (t, x0, t0) := λi(t− t0) + x0, t ∈ [0, T ].

We would like to highlight two key facts that will be integral to our study (cf. Figure 1):
(1) once a characteristic has crossed and exited the undamped region ωc, it will never cross it again;

consequently, the time spent by all characteristics in ωc is uniformly bounded in x and t;
(2) depending on the sign of the eigenvalues (i.e., on the directions of the characteristics), some

characteristics will cross ωc, while others will not.
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x

t

Damped region Undamped region Damped region

−R R

(x, t)

X1

−R R

(x, t)

X1

Xi

Xp

Xn

Xp+1

Figure 1. Characteristics passing through a point (x, t) ∈ R× (0,∞).

As the proof of Theorem 1.2 revolves around time-quantities that are related to the characteristics and
the undamped region ωc, we need to introduce the following notation (see Figure 2):

• ti,en(x0, t0) (“en” for “enter”): the time it takes the characteristic line Xi(·, x0, t0) to intersect
x = −R (resp. x = R) if λi < 0 (resp. λi > 0) from the time t = 0 – that is, to enter the
undamped region; if it does not enter ωc, we set ti,en(x0, t0) = 0. We have

ti,en(x0, t0) = max
(

0, t0 −
x0 +R

|λi|

)
, i ∈ {1, . . . , p},

ti,en(x0, t0) = max
(

0, t0 −
x0 −R
|λi|

)
, i ∈ {p+ 1, . . . , n};

• ti,ex(x0, t0) (“ex” for “exit”): the time it takes the characteristic line Xi(·, x0, t0) to intersect
x = R (resp. x = −R) if λi < 0 (resp. λi > 0) from t = 0 – that is, to exit the undamped region;
if it does not exit ωc, we set ti,ex(x0, t0) = 0. We have

ti,ex(x0, t0) = max
(

0, t0 −
x0 −R
|λi|

)
, i ∈ {1, . . . , p},

ti,ex(x0, t0) = max
(

0, t0 −
x0 +R

|λi|

)
, i ∈ {p+ 1, . . . , n};

• τi(x0, t0): the length of time during which the characteristic line Xi(·, t0, x0) is in ωc, i.e.
τi(x0, t0) = ti,ex(x0, t0)− ti,en(x0, t0),(2.3)

which is uniformly bounded as

sup
x0∈R, t0∈[0,T ]

τi(x0, t0) ≤ 2R
|λi|

.

2.2. Construction of a solution to system (2.2). We now turn to the explicit construction of a
solution to (2.2) by followings their associated characteristics and expressing it with semigroups.

2.2.1. Conservative semigroup. Inside ωc, the solution of (2.2) shares the properties of the solution of
∂tV + Λ∂xV = 0, (x, t) ∈ R× (0,∞),(2.4)

which does not experience any dissipation.
We define Sc(t, s) (“c” for conservative) as the semigroup associated with (2.4) on the time interval

[s, t] for s ≤ t with s, t ∈ (0,∞). For a given initial data V0 ∈ L2(R), the solution of (2.4) can be
expressed as

V (x, t) = Sc(t, 0)V0(x) =

v1,0(x− λ1t)
...

vn,0(x− λnt)

 , (x, t) ∈ R× (0,∞).



6 T. CRIN-BARAT, N. DE NITTI, AND E. ZUAZUA

x

t

Damped region Undamped region Damped region

−R R

(x, t)

X1

−R R

(x, t)

Xp+1

t1,ex(x, t)

τ1
t1,en(x, t)

Figure 2. Illustration of the quantities ti,en(x, t) and ti,ex(x, t).

We also define Sc,i the semigroups associated with each component such that
vi(x, t) = Sc,i(t, 0)V0(x) = vi,0(x− λ1t), (x, t) ∈ R× (0,∞).(2.5)

From standard energy estimates, as the matrix D is diagonal and therefore symmetric, we infer that,
for p ∈ [2,∞],

‖V (·, t)‖Lp(R) = ‖Sc(t, 0)V0‖Lp(R) = ‖V0‖Lp(R), t ≥ 0.(2.6)

2.2.2. Partially dissipative semigroup. Inside ω, the solutions of (2.2) behave similarly to the solutions
of

∂tV + Λ∂xV = −P−1BPV, (t, x) ∈ (0,∞)× R,(2.7)
which undergoes dissipation thanks to the damping term active on R. More precisely, as in the intro-
duction, we define Sd as the semigroup associated to this system and note that, for a given initial data
V0 ∈ L2(R), the solution of (2.7) can be expressed as

V (x, t) = Sd(t, 0)V0(x)

=


v1,0(x− λ1t)−

ˆ t

0

n∑
j=1

b̃1,jVj(s, x− λ1(t− s)) ds

...

vn,0(x− λnt)−
ˆ t

0

n∑
j=1

b̃n,jVj(s, x− λn(t− s)) ds


, (x, t) ∈ R× (0,∞).

(2.8)

We also define Sd,i as the semigroup associated with each component
vi(x, t) = Sd,i(t, 0)V0(x)

= vi,0(x− λ1t)−
ˆ t

0

n∑
j=1

b̃i,jVj(s, x− λi(t− s)) ds, (x, t) ∈ R× (0,∞).(2.9)

2.2.3. Method of characteristics. We are now in a position to detail the construction of a solution for
(2.2).

Proposition 2.3 (Representation of solutions to system (2.2)). The solution of (2.2) is given by
vi(x, t) = [Sd,i(t, ti,ex(x, t))Sc,i(ti,ex(x, t), ti,en(x, t))Sd,i(ti,en(x, t), 0)vi,0](x), i ∈ {1, . . . , n}.

Specifically:
if x ≥ R,{
vi(x, t) = [Sd,i(t, ti,ex(x, t))Sc,i(ti,ex(x, t), ti,en(x, t))Sd,i(ti,en(x, t), 0)vi,0](x), i ∈ {1, . . . , p},
vi(x, t) = [Sd,i(t, 0)vi,0](x), i ∈ {p+ 1, . . . , n};
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if x ≤ −R,{
vi(x, t) = [Sd,i(t, 0)vi,0](x), i ∈ {1, . . . , p},
vi(x, t) = [Sd,i(t, ti,ex(x, t))Sc,i(ti,ex, ti,en(x, t))Sd,i(ti,en(x, t), 0)vi,0](x), i ∈ {p+ 1, . . . , n};

if x ∈ [−R,R],{
vi(x, t) = [Sc,i(t, ti,en(x, t))Sd,i(ti,en(x, t), 0)vi,0](x), i ∈ {1, . . . , p},
vi(x, t) = [Sc,i(t, ti,en(x, t))Sd,i(ti,en(x, t), 0)vi,0](x), i ∈ {p+ 1, . . . , n}.

x

t

Damped region Undamped region Damped region

−R R

(x, t)
Sd,1

Sc,1

Sd,1

X1

−R R

(x, t)

Xp+1

Sd,p+1
t1,ex

t1,en

Figure 3. Illustration of the composition of the semigroups Sd and Sc.

Proof. We shall analyze two cases separately. Let us fix (x, t) ∈ R× (0,∞).
Case 1: x ∈ ω. We distinguish two subcases.
Subcase 1a: x > R. For each component vi associated to positive eigenvalues, i.e. i ∈ {1, . . . , p}, we
can use the method of characteristics to write down the solution. Going back along the characteristic
Xi(·, x, t), we can write

vi(x, t) = Sd,i(t, ti,ex(x, t))vi(x, ti,ex(x, t)), (x, t) ∈ (R,+∞)× (0,∞).
Then, the characteristic lines enter ωc and the conservative semigroup is active on the time-interval
[ti,ex(x, t), ti,en(x, t)],

vi(x, ti,ex(x, t)) = Sc,i(ti,ex(x, t), ti,en(x, t))v1(x, ti,en(x, t)), (x, t) ∈ (R,+∞)× (0,∞).
After the characteristic line exits ωc, the dissipative semigroup is active on the time-interval [ti,en(x, t), 0]
and we have

vi(x, ti,en(x, t)) = [Sd,i(ti,en(x, t), 0))vi,0](x), (x, t) ∈ (R,+∞)× (0,∞).
This leads, for every (x, t) ∈ (R,+∞)× (0,∞), to

vi(x, t) = [Sd,i(t, ti,ex(x, t))Sc,i(ti,ex(x, t), ti,en(x, t))Sd,i(ti,en(x, t), 0)vi,0](x).(2.10)
For the components vi associated with negative eigenvalues, i.e. i ∈ {p + 1, . . . , n}, only the dissipative
semigroup is active and we have

vi(x, t) = [Sd,i(t, 0)vi,0](x).
Subcase 1b: x < −R. This case is analogous to Subcase 1a by symmetry.
Case 2: x ∈ ωc. For each component vi associated to positive eigenvalues, i.e. i ∈ {1, . . . , p}, going back
along the characteristic Xi(·, x, t) we have

vi(x, t) = Sc,i(t, ti,en(x, t))v1(x, ti,en(x, t)), (x, t) ∈ (−R,R)× (0,∞).
After the characteristic line exits ωc, the dissipative semigroup is active on the time-interval [ti,en(x, t), 0]
and we have

vi(x, ti,en(x, t)) = [Sd,i(ti,en(x, t), 0))vi,0](x), (x, t) ∈ (−R,R)× (0,∞).
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This leads to

vi(x, t) = [Sc,i(t, ti,en(x, t))Sd,i(ti,en(x, t), 0)vi,0](x), (x, t) ∈ (−R,R)× (0,∞).(2.11)

For the components vi associated with negative eigenvalues, i.e. i ∈ {p + 1, . . . , n}, symmetrically, we
obtain the same formula as (2.11). �

2.3. Strategy of the proof of Theorem 1.2. The first difficulty encountered when trying to prove
time-decay estimates stems from the fact that, individually, each semigroup Sd,i may not be dissipative.
The decay can only be achieved through the coupling between all the equations, as the (SK) condition
guarantees that this coupling generates dissipation for all components (including those that are not
directly damped).

In other words, it is only possible to establish dissipation for the solution V if all the semigroups Sd,i
are active over the same time interval. For example, examining the effect of Sd,1 on the first component
does not generally imply any time-decay properties for the solution V or the component v1. This implies
that if one of the Sc,i is active over a time-interval, the entire solution experiences no decay during that
interval. The key observation that enables us to prove Theorem 1.2 is that the conservative semigroups
Sc,i are only active over a finite union of bounded time intervals. Roughly speaking, the duration that
each component spends in the undamped region produces a delay in the decay for all other components.

Let us have a more precise look at the case x ≥ R. Proposition 2.3 yields{
vi(x, t) = Sd,i(t, t1,ex(x, t))Sc,i(ti,ex(x, t), t1,en(x, t))Sd,i(ti,en(x, t), 0)vi,0(x), i ∈ {1, . . . , p},
vi(x, t) = Sd,i(t, 0)vi,0(x), i ∈ {p+ 1, . . . , n}.

This means that, for i ∈ {1, . . . , p}, the dissipative semigroup Sd,i is active on the interval [0, ti,en(x, t)]∪
[ti,ex(x, t), t] and the conservative one on [ti,en(x, t), ti,ex(x, t)]; on the other hand, for i ∈ {p+ 1, . . . , n},
the dissipative semigroup Sd,i is active on the whole interval [0, t].

Consequently, at least one component Sc,i of Sc will be active in the union of intervals

(2.12) I(x, t) =
p⋃
i=1

[ti,en(x, t), ti,ex(x, t)].

Meanwhile, all components of Sd will be active in the complement of I. We can rigorously establish that
the delay is directly proportional to the length of I. Since time each characteristic spends in ωc cannot
more than 2R/|λi|, we have the bound

sup
x≥R, t>0

|I(x, t)| ≤
p∑
i=1

2R
|λi|

.(2.13)

This inequality is a key step in the proof of Theorem 1.2.

3. Case studies

Before tackling the proof of the main theorem, we will study the following simpler cases:
• (n, p) = (1, 1): scalar equations;
• (n, p) = (2, 1): 2× 2 systems where the components have different velocity signs;
• (n, p) = (2, 2): 2× 2 systems where both components have the same velocity sign.

3.1. Analysis of the scalar case. In this section, we look at the scalar equation

∂tv1 + λ1∂xv1 = −v11ω, (x, t) ∈ R× (0,∞).(3.1)

While we could determine the result by explicitly computing the solution of the system, we opt to present
a method that will be applicable to scenarios with multiple components.

Let us fix a time t > 0. Proposition 2.3 allows us to make the following observations (see Figure 4):
• for x ≥ R, the dissipative semigroup is active over the time interval [0, t1,en(x, t)]∪ [t1,ex(x, t), t],

while the conservative semigroup is active over [t1,en(x, t), t1,ex(x, t)];
• for −R ≤ x ≤ R, the conservative semigroup is active over [ten(x, t), t], while the dissipative

semigroup is active over [0, ten(x, t)];
• for x ≤ −R, the dissipative semigroup is active over [0, t].
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t
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Figure 4. Examples of characteristics crossing ω or ωc.

To recover the Shizuta-Kawashima decay estimates for the component v1 with a time-delay of τ =
2R/|λ1|, we divide the spatial region into three parts and bound the time each characteristic line spends
in ωc. The main difficulty is that the entering and exiting times depend on x, and thus, we are not able to
apply the semigroup properties (decay or conservation) directly. To solve this issue, the following lemma
studies the cases x ≥ R, x ≤ −R, and −R ≤ x ≤ R separately and refines the analysis for each of these
subcases.

Proposition 3.1 (Decay estimate, scalar case). Let v1 be the solution of (3.1) associated to the initial
data v1,0 ∈ L1(R) ∩ L2(R). For t > τ := 2R

|λ1| , the following estimates hold:

‖v1(·, t)‖L2(R) ≤ 4CKe−γ(t−τ)‖v1,0‖L2(R) + 4CK(t− τ)− 1
4 ‖v1,0‖L2(R),(3.2)

‖v1(·, t)‖L∞(R) ≤ 4CK(t− τ)− 1
2 ‖v1,0‖L1(R)(3.3)

where the positive constants CK and γ are defined in Theorem 1.2.

Remark 3.2. Compared to the result of Theorem 1.2, the multiplicative coefficient in front of the time-
decay estimates can be lowered in this simple setting. This is due to the fact that when there are only
positive (or negative) characteristic speed, the domain decomposition we use can be simplified.

Proof. We focus first on the case x ≥ R, the cases x ≤ −R and −R ≤ x ≤ R are treated later.
Case 1: x ≥ R.

Step 1: Representation of the solution in term of semigroups. Thanks to Proposition 2.3, we have
the following representation of the solution

v1(x, t) = [Sd,1(t, t1,ex(x, t))Sc,1(t1,ex(x, t), t1,en(x, t))Sd,1(t1,en(x, t), 0)v1,0](x).
Step 2: Splitting of the space-domain. We divide the half-line [R,+∞) into two parts: for the rest of

the paper, we define Dk ∪ Fk = [R,+∞) such that
Dk := {R ≤ x ≤ tλk +R} and Fk := {x ≥ tλk +R}(3.4)

(see Figure 5), where the natural number k is chosen so that λk is the smallest of the negative eigenvalues
in modulus. An analogous definition will be adopted later for the half-line (−∞,−R]. In this analysis
of the scalar case, we have k = 1. As we observe in Figure 5, the domain F1 corresponds to the case
where the characteristic lines do not pass through the undamped region, ωc; on the other hand, in D1,
the characteristics cross ωc and the time-decay rates will be impacted.

Step 3: Analysis of F1. For every x ∈ F1, by definition we have t1,en(x, t) = t1,ex(x, t) = 0, meaning
that the solution does not cross the undamped region ωc and thus decays thanks to the (SK) condition.
More precisely,

v1(x, t) = Sd,1(t, 0)vi,0(x);
therefore,

‖v1(·, t)‖L2(F1) ≤ CKe−γt‖v1,0‖L2(R) + CKt
−1/4‖v1,0‖L2(R)(3.5)

and
‖v1(·, t)‖L∞(F1) ≤ CKt−1/2‖v1,0‖L1(R).(3.6)
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x
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Figure 5. Space regions D1 and F1

Step 4: Analysis of the interval D1. For every x ∈ D1, the difficulty is that we cannot use directly
the decaying/conservative properties of the semigroups since the t1,en and t1,ex depend on x. To solve
this issue, we decompose D1 into small intervals:

D1 =
N⋃
i=1

[ai, ai+1] s.t. a1 = R, aN = tλ1 +R, and ai+1 − ai ≤
C

N
for N ∈ N∗ and C > 0.(3.7)

Computing at the L2 norm of the solution on each interval [ai, ai+1], using the explicit expression of
the semigroups Sc,1 and Sd,1, we haveˆ ai+1

ai

|v1(x, t)|2 dx

=
ˆ ai+1

ai

∣∣∣∣∣v1,0(x− λ1t) +
ˆ t

t1,ex(x,t)
v1(s, x− λ1t+ λ1s) ds+

ˆ t1,en(x,t)

0
v1(s, x− λ1t+ λ1s) ds

∣∣∣∣∣
2

dx

=
ˆ ai+1

ai

∣∣∣∣∣v1,0(x− λ1t) +
ˆ t

0
v1(s, x− λ1t+ λ1s) ds−

ˆ t1,ex(x,t)

t1,en(x,t)
v1(s, x− λ1t+ λ1s) ds

∣∣∣∣∣
2

dx.

We define the quantity

Q :=
ˆ t

0
v1(s, x− λ1t+ λ1s) ds−

ˆ t1,ex(x,t)

t1,en(x,t)
v1(s, x− λ1t+ λ1s) ds

and assume that v1,0(x − λ1t) + Q is positive (the case where it is negative can be treated in a similar
manner by reversing the bounds below).

Let us have a closer look at the second term of Q. Defining the positive and negative parts of the
quantity inside the integral by v+

1 := max(0, v1(s, x−λ1t+λ1s)) and v−1 := max(0,−v1(s, x−λ1t+λ1s)),
we have ˆ ai+1

ai

ˆ t1,ex(x,t)

t1,en(x,t)
v1(s, x− λ1t+ λ1s) dsdx =

ˆ ai+1

ai

ˆ t1,ex(x,t)

t1,en(x,t)

(
v+

1 − v
−
1
)

dsdx.

Then, thanks to the inequality
t1,en(ai, t) ≤ t1,en(x, t) ≤ t1,en(ai+1, t) ≤ t1,ex(ai, t) ≤ t1,ex(x, t) ≤ t1,ex(ai+1, t),(3.8)

we infer that
[t1,en(ai+1, t), t1,ex(ai, t)] ⊂ [t1,en(x, t), t1,ex(x, t)] ⊂ [t1,en(ai, t), t1,ex(ai+1, t)].

This allows us to bound the integral as follows (see Figure 6):ˆ ai+1

ai

ˆ t1,ex(ai,t)

t1,en(ai+1,t)
v+

1 ≤
ˆ ai+1

ai

ˆ t1,ex(x,t)

t1,en(x,t)
v+

1 ≤
ˆ ai+1

ai

ˆ t1,ex(ai,t)

t1,en(ai+1,t)
v+

1

and

−
ˆ ai+1

ai

ˆ t1,ex(ai+1,t)

t1,en(ai,t)
v−1 ≤ −

ˆ ai+1

ai

ˆ t1,ex(x,t)

t1,en(x,t)
v−1 ≤ −

ˆ ai+1

ai

ˆ t1,ex(ai+1,t)

t1,en(ai,t)
v−1 .
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t1,en(ai, t) t1,en(x, t) t1,en(ai+1, t) t1,ex(ai, t) t1,ex(x, t) t1,ex(ai+1, t)

Figure 6. Decomposition of the time-interval used in the proof of Proposition 3.2.

We have that, for x ∈ [ai, ai+1],ˆ t

0
v+

1 −
ˆ t1,ex(ai,t)

t1,en(ai+1,t)
v+

1 −
ˆ t

0
v−1 +

ˆ t1,ex(ai+1,t)

t1,en(ai,t)
v−1 ≤ Q;

thus ˆ t

t1,ex(ai,t)
v+

1 +
ˆ t1,en(ai+1,t)

0
v+

1 −
ˆ t

t1,ex(ai+1,t)
v−1 −

ˆ t1,en(ai,t)

0
v−1 ≤ Q,

which can be rewritten asˆ t

t1,ex(ai+1,t)
v1 +

ˆ t1,ex(ai+1,t)

t1,ex(ai,t)
v+

1 +
ˆ t1,en(ai,t)

0
v1 −

ˆ t1,en(ai+1,t)

t1,en(ai,t)
v−1 ≤ Q.

Similarly, using the other inequalities in (3.8) leads to the upper bound

Q ≤
ˆ t

t1,ex(ai,t)
v1 +

ˆ t1,ex(ai,t)

t1,ex(ai+1,t)
v+

1 +
ˆ t1,en(ai+1,t)

0
v1 −

ˆ t1,en(ai+1,t)

t1,en(ai,t)
v−1 .

Therefore, by gathering the above estimates, we obtainˆ ai+1

ai

|v1(x, t)|2 dx

≤
ˆ ai+1

ai

∣∣∣∣∣v1,0(x− λ1t) +
ˆ t

t1,ex(ai,t)
v1 +

ˆ t1,ex(ai,t)

t1,ex(ai+1,t)
v+

1 +
ˆ t1,en(ai+1,t)

0
v1 +

ˆ t1,en(ai+1,t)

t1,en(ai,t)
v−1

∣∣∣∣∣
2

≤
ˆ ai+1

ai

|Sd,1(t, t1,ex(ai, t))Sc,1(t1,ex(ai, t), t1,en(ai+1, t)))Sd,1(t1,en(ai+1, t), 0)v1,0(x) +Ri|2

where

Ri(t) :=
ˆ t1,ex(ai,t)

t1,ex(ai+1,t)
v+

1 +
ˆ t1,en(ai+1,t)

t1,en(ai,t)
v−1 for i ∈ {1, . . . , N}.

Then, applying the square root and Minkowski’s inequality yields
‖v1(·, t)‖L2([ai,ai+1])

≤ ‖Sd,1(t, t1,ex(ai, t))Sc,1(t1,ex(ai, t), t1,en(ai+1, t)))Sd,1(t1,en(ai+1, t), 0)v1,0‖L2([ai,ai+1])

+ ‖Ri‖L2([ai,ai+1)]

Summing over i = 1, . . . , N , we obtain
‖v1(·, t)‖L2(D1)

≤ ‖Sd,1(t, t1,ex(ai, t))Sc,1(t1,ex(ai, t), t1,en(ai+1, t)))Sd,1(t1,en(ai+1, t), 0)v1,0‖L2(D1)

+
N∑
i=1
‖Ri‖L2([ai,ai+1)].

(3.9)

Step 5: Estimates for Ri. By definition, there exists a C > 0 such that

t1,en(ai+1, t)− t1,en(ai, t) ≤
C

N
and t1,ex(ai+1, t)− t1,ex(ai, t) ≤

C

N
.(3.10)

Since the quantities v+
1 and v−1 are bounded independently of N , we may infer thatˆ t1,ex(ai,t)

t1,ex(ai+1,t)
v+

1 → 0 as N →∞
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and
∑N
i=1 ‖Ri‖L2([ai,ai+1)] → 0 when N →∞. Indeed,

N∑
i=1
‖Ri‖L2([ai,ai+1)] ≤

N∑
i=1

(ˆ ai+1

ai

|t1,en(ai+1, t)− t1,en(ai, t)|2‖v1(·, t)‖2
L∞(R)

)1/2
(3.11)

+
N∑
i=1

(ˆ ai+1

ai

|t1,ex(ai, t)− t1,en(ai+1, t)|2‖v1(·, t)‖2
L∞(R)

)1/2

≤ 2
N∑
i=1

(ˆ ai+1

ai

1
N2 ‖v1(·, t)‖2

L∞(R)

)1/2

≤ 2
N∑
i=1

(
1
N3 ‖v1(·, t)‖2

L∞(R)

)1/2

≤
N∑
i=1

C

N3/2 ‖v1(·, t)‖L∞(R)

≤ C

N1/2 ‖v(·, t)‖L∞(R) −→
N→∞

0,

where C > 0 is a constant independent of N .
Step 6: Use of the semigroups’ properties. We are now in a position to use the dissipative properties

of the semigroup Sd,1 as the entering and exiting time do not depend on x anymore. Bounding the
right-hand side integral by the integral on R and using the properties (1.5)-(1.8) of the semigroups Sd,1
and Sc,1 (2.6), from (3.9), we get
‖v1(·, t)‖L2(D1) ≤ ‖Sd,1(t, t1,ex(ai, t))Sc,1(t1,ex(ai, t), t1,en(ai+1, t)))Sd,1(t1,en(ai+1, t), 0)v1,0‖L2(D1

1)

+
N∑
i=1
‖Ri‖L2([ai,ai+1)]

≤ ‖Sd,1(t, t1,ex(ai, t))Sc,1(t1,ex(ai, t), t1,en(ai+1, t)))Sd,1(t1,en(ai+1, t), 0)v1,0‖L2(R)

+
N∑
i=1
‖Ri‖L2([ai,ai+1)]

≤ ‖e−γmin(1,|·|2)(t−t1,ex(ai,t))e−γmin(1,|·|2)t1,en(ai+1,t)v̂1,0‖L2(R)

+
N∑
i=1
‖Ri‖L2([ai,ai+1]).

≤ CKe−γ(t−(t1,ex(ai,t)−t1,en(ai+1,t))‖v1,0‖L2(R)

+ CK(t− (t1,ex(ai, t)− t1,en(ai+1, t))−
1
4 ‖v1,0‖L2(R)

+
N∑
i=1
‖Ri‖L2([ai,ai+1]).

Now, we have t1,ex(ai, t)− t1,en(ai+1, t) ≤ τ + 1
N

and by summing on i and taking the limit as N →∞,
we obtain, for t ≥ τ = 2R

λ1
,

‖v1(·, t)‖L2(D1) ≤ CKe−γ(t−τ)‖v1,0‖L2(R) + CK(t− τ)− 1
4 ‖v1,0‖L2(R).(3.12)

Step 7: Time-decay in L∞. The analysis performed above is also applicable to L∞. By utilizing the
fact that the Fourier transform is bounded from L1 to L∞, we deduce
‖v1(·, t)‖L∞(D1) ≤ ‖Sd,1(t, t1,ex(ai, t))Sc,1(t1,ex(ai, t), t1,en(ai+1, t)))Sd,1(t1,en(ai+1, t), 0)v1,0‖L∞(R)

+
N∑
i=1
‖Ri‖L∞([ai,ai+1)]

≤ ‖e−γmin(1,|·|2)(t−t1,ex(ai,t))e−γmin(1,|·|2)t1,en(ai+1,t)v̂1,0‖L1(R)
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+
N∑
i=1
‖Ri‖L∞([ai,ai+1)]

≤ CKe−γ(t−(t1,ex(ai,t)−t1,en(ai+1,t))‖v1,0‖L1(R)

+ CK(t− (t1,ex(ai, t)− t1,en(ai+1, t))−
1
2 ‖v1,0‖L1(R)

+
N∑
i=1
‖Ri‖L∞([ai,ai+1)].

Since we can show that the remainder term tends to 0 as N →∞ as in (3.11), we have

‖v1(·, t)‖L∞(D1) ≤ CK(t− τ)− 1
2 ‖v1,0‖L1(R).

Step 8: Conclusion of Case 1. Gathering the inequalities (3.5) and (3.12), we obtain

‖v1(·, t)‖L2(D1∪F1)

≤
(
CKe

−γ(t−τ) + CKe
−γt
)
‖v1,0‖L2(R) +

(
CK(t− τ)− 1

4 + CKt
− 1

4

)
‖v1,0‖L2(R).

≤ (eτ + 1)CKe−γt‖v1,0‖L2(R) +
(

(t− τ)− 1
4 + t−

1
4

)
CK‖v1,0‖L2(R)

≤ 2CKe−γ(t−τ)‖v1,0‖L2(R) + 2CK(t− τ)− 1
4 ‖v1,0‖L2(R)

(3.13)

Case 2: x ≤ −R. The analysis is similar to the domain F1 as the characteristics never touch ωc. More
precisely, we always have

v1(x, t) = Sd,1(t, 0)v1,0(x).

Therefore we can deduce the usual time-decay rates without delay:

‖v1(·, t)‖L2((−∞,−R]) ≤ CKe−γt‖v1,0‖L2(R) + CKt
− 1

4 ‖v1,0‖L2(R)(3.14)

Case 3: −R ≤ x ≤ R. For every x ∈ [−R,R], we have

v1(x, t) = [Sc,1(t, t1,en(x, t))Sd,1(t1,en(x, t), 0)v1,0](x)

and

t− t1,en(x, t) ≤ τ = 2R
|λ1|

.

Thus, a decomposition of the interval [−R,R] similar to the decomposition we did for D1 leads to a delay
of τ . We omit the details as the computations are similar. We have

‖v1(·, t)‖L2([−R,R]) ≤ CKe−γ(t−τ)‖v1,0‖L2(R) + CK(t− τ)− 1
4 ‖v1,0‖L2(R).(3.15)

Conclusion. Combining the results of the three cases, we obtain

‖v1(·, t)‖L2(R) = ‖v1(·, t)‖L2((−∞,−R]) + ‖v1(·, t)‖L2([−R,R]) + ‖v1(·, t)‖L2([R,+∞))

≤ CKe−γt‖v1,0‖L2(R) + CKt
− 1

4 ‖v1,0‖L2(R)

+ CKe
−γ(t−τ)‖v1,0‖L2(R) + CK(t− τ)− 1

4 ‖v1,0‖L2(R)

+ 2CKe−γ(t−τ)‖v1,0‖L2(R) + 2CK(t− τ)− 1
4 ‖v1,0‖L2(R)

≤ 4CKe−γ(t−τ)‖v1,0‖L2(R) + 4CK(t− τ)− 1
4 ‖v1,0‖L2(R).

�

3.2. Analysis of the 2× 2 system. The analysis of 2× 2 systems needs to be carried out in two cases:
(i) the eigenvalues have the same sign; (ii) the eigenvalues have the opposite sign.
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3.2.1. Analysis of the case n = 2 and p = 1: eigenvalues with different signs. It is possible to study
the negative and positive eigenvalues separately when decomposing the space into three regions. Indeed,
when looking at the space {x ≥ R}, the components associated with negative eigenvalues do not play a
role in the time-delay (and the ones associated with positive eigenvalues for the region {x ≤ −R}). In the
region {−R ≤ x ≤ R}, the total delay that the solution could undergo is always smaller than in the other
two regions. Note that such decomposition is only possible thanks to the superposition principle allowing
us to decompose the support of the initial data and that holds since the system we are investigating is
linear.

Proposition 3.3 (Decay estimate, 2×2 system with speed of different signs). Let n = 2, p = 1, and V be
the solution of (2.1) associated to the initial data V0 ∈ L1(R)∩L2(R). Then, for t > τ := max

(
2R
|λ1| ,

2R
|λ2|

)
,

the following estimates hold:

‖V (·, t)‖L2(R) ≤ C̃Keγ(t−τ)‖V0‖L2(R) + C̃K(t− τ)− 1
4 ‖V0‖L2(R),(3.16)

‖V (·, t)‖L∞(R) ≤ C̃K(t− τ)− 1
2 ‖V0‖L1(R),(3.17)

where C̃K = 6CK , and the positive constants CK and γ are defined in Theorem 1.2.

Proof. Recalling Proposition 2.3 (cf. Figure 3), we distinguish three cases.
Case 1: x ≥ R.

Step 1: Representation of the solution in terms of semigroups. For every (x, t) ∈ (R,+∞) × (0,∞),
we have {

v1(x, t) = [Sd,1(t, t1,ex(x, t))Sc,1(t1,ex(x, t), t1,en(x, t))Sd,1(t1,en(x, t), 0)v1,0](x),
v2(x, t) = [Sd,2(t, 0)v2,0](x).

The semigroup Sd,2 associated with the component v2 is always active and the component v1 stays for
the time 2R/|λ1| in the undamped region. Therefore,

v1(x, t) = v1,0(x− λ1t) +
ˆ t

0

2∑
i=1

b̃1,ivi(s, x− λ1t+ λ1s) ds−
ˆ t1,ex(x,t)

t1,en(x,t)

2∑
i=1

b̃1,ivi(s, x− λ1t+ λ1s) ds,

v2(x, t) = v2,0(x− λ2t) +
ˆ t

0

2∑
i=1

b̃2,ivi(s, x− λ2t+ λ2s) ds.

The whole semigroup Sd is always active is the time interval [t, t1,ex(x, t)]∩ [t1,en(x, t), 0]. The component
v2 does not enter the undamped region (Sd,2 is active on [0, t]); thus it does not increase the time-delay
of the decay estimates.

Step 2: Splitting of the space-domain. We decompose the space {x > 0} into D1 ∪ F1 as in (3.4).
Looking at the region D1 and defining the ai as in Section 3.1, we getˆ ai+1

ai

|V (x, t)|2

≤
ˆ ai+1

ai

∣∣∣∣([Sd,1(t, t1,ex(ai, t))Sc(t1,ex(ai, t), t1,en(ai+1, t)Sd(t1,en(ai+1, t), 0)v1,0](x) +R1,i
[Sd,2(t, 0)v2,0](x)

)∣∣∣∣2 .
Since the second line can obviously be rewritten as

[Sd,2(t, 0)v2,0](x) = [Sd,2(t, t2,ex(ai, t))Sd(t2,ex(ai, t), t2,en(ai+1)Sd(t2,en(ai+1), 0)v2,0](x),
we deducê

ai+1

ai

|V (x, t)|2

≤
ˆ ai+1

ai

∣∣∣∣[Sd(t, t1,ex(ai, t))
(
Sc,1(t1,ex(ai, t), t1,en(ai+1, t))
Sd,2(t1,ex(ai, t), t1,en(ai+1, t))

)
Sd(t1,en(ai+1, t), 0)

(
v1,0
v2,0

)∣∣∣∣2
+
ˆ ai+1

ai

∣∣∣∣(R1
0

)∣∣∣∣2 .
(3.18)

where the remainder term R1 is defined and handled as in Section 3.1; see (3.11).
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Step 3: Use of the semigroups’ properties. Recalling that the mixed operator
(
Sc,1
Sd,2

)
preserves the L2

norm of the solution – since Sc,1 is conservative and Sd,2 associated with a positive definite matrix –, we
obtain that the classical decay is delayed by the time t1,ex(ai, t) − t1,en(ai+1, t). Thanks to the uniform
bound t1,ex(ai, t)− t1,en(ai+1, t) ≤ 2R/|λ1|, we get

‖V (·, t)‖L2(D1) ≤ e
−γ
(
t− 2R
|λ1|

)
‖V0‖L2(R) +

(
t− 2R
|λ1|

)− 1
4

‖V0‖L2(R).

Step 4: Analysis of F1. As none of the characteristics lines cross the undamped region ωc in this
case, we have

‖V (·, t)‖L2(F1) ≤ CKe−γt‖V0‖L2(R) + CKt
− 1

4 ‖V0‖L2(R).

Step 5: Conclusion of Case 1. Gathering the estimates from Steps 3 and 4, we get

‖V (·, t)‖L2([R,+∞)) ≤ 2CKe−γ
(
t− 2R
|λ1|

)
‖V0‖L2(R) + 2CK

(
t− 2R
|λ1|

)− 1
4

‖V0‖L2(R).

Case 2: x ≤ −R. Symmetrically, we obtain

‖V (·, t)‖L2((−∞,−R]) ≤ 2CKe−γ
(
t− 2R
|λ2|

)
‖V0‖L2(R) + 2CK

(
t− 2R
|λ2|

)− 1
4

‖V0‖L2(R),

where the delay depends on R and λ2.
Case 3: −R ≤ x ≤ R. For every (x, t) ∈ [−R,R]× (0,∞), we have{

v1(x, t) = [Sc,1(t, t1,en(x, t))Sd,1(t1,en(x, t), 0)v1,0](x),
v2(x, t) = [Sc,2(t, t2,en(x, t))Sd,2(t2,en(x, t), 0)v2,0](x).

Compared to the scalar case, here we need to decompose the domain into two parts. Let us look
at the domain H1 = {(x, t) ∈ [−R,R] × (0,∞) : t1,en(x, t) ≤ t2,en(x, t)}, the other domain
H2 = {(x, t) ∈ [−R,R] × (0,∞) : t1,en(x, t) ≥ t2,en(x, t)} can be treated symmetrically. For a sequence
(ai)Ni=1 decomposing H1 as in (3.7), we haveˆ ai+1

ai

|V (x, t)|2

≤
ˆ ai+1

ai

∣∣∣∣[Sc(t, t2,ex(ai, t))
(
Sc,1(t2,ex(ai, t), t1,en(ai+1, t))
Sd,2(t2,ex(ai, t), t1,en(ai+1, t))

)
Sd(t1,en(ai+1, t), 0)

(
v1,0
v2,0

)∣∣∣∣2
+
ˆ ai+1

ai

∣∣∣∣(R1
R2

)∣∣∣∣2 .
(3.19)

Reasoning as in the Section 3.1 to deal with the remainder terms and using the semigroup properties,
since, for x ∈ H1,

t− t1,en(x, t) ≤ 2R
λ1
,

we have

‖V (·, t)‖L2(H1) ≤ CKe
−γ
(
t− 2R
|λ1|

)
‖V0‖L2(R) + CK

(
t− 2R
|λ1|

)− 1
4

‖V0‖L2(R).

Symmetrically, for H2, we have

‖V (·, t)‖L2(H2) ≤ CKe
−γ
(
t− 2R
|λ2|

)
‖V0‖L2(R) + CK

(
t− 2R
|λ2|

)− 1
4

‖V0‖L2(R).

Therefore,

‖V (·, t)‖L2([−R,R]) ≤ 2CKe−γ
(
t−max

(
2R
|λ1|

, 2R
|λ2|

))
‖V0‖L2(R) + 2CK

(
t−max

(
2R
|λ1|

,
2R
|λ2|

))− 1
4

‖V0‖L2(R).

Conclusion. Combining the results of the three cases, we obtain
‖V (·, t)‖L2(R) = ‖V (·, t)‖L2((−∞,−R]) + ‖V (·, t)‖L2([−R,R]) + ‖V (·, t)‖L2([R,+∞))
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≤ 2CKe−γ(t− 2R
|λ2|

)‖V0‖L2(R) + 2CK(t− 2R
|λ2|

)− 1
4 ‖V0‖L2(R)

+ 2CKe−γ
(
t−max

(
2R
|λ1|

, 2R
|λ2|

))
‖V0‖L2(R) + 2CK

(
t−max

(
2R
|λ1|

,
2R
|λ2|

))− 1
4

‖V0‖L2(R)

+ 2CKe−γ(t− 2R
|λ1|

)‖V0‖L2(R) + 2CK(t− 2R
|λ1|

)− 1
4 ‖V0‖L2(R)

≤ 6CKe−γ(t−τ)‖V0‖L2(R) + 4CK(t− τ)− 1
4 ‖V0‖L2(R).

where τ = max
(

2R
|λ1| ,

2R
|λ2|

)
. �

3.2.2. Analysis of the case n = p = 2: eigenvalues with the same signs. Studying both components
separately as in the previous case is not possible because the characteristics of both components are
going in the same direction. And, as we shall see, this will increase the time-delay of the decay rates.

Proposition 3.4 (Decay estimate, 2× 2 system with speed of the same sign). Let n = 2, p = 2, and V
be the solution of (2.1) associated to the initial data V0 ∈ L1(R) ∩ L2(R). Then, for t > τ := 2R

|λ1| + 2R
|λ2| ,

the following estimates hold:

‖V (·, t)‖L2(R) ≤ 4CKe−γ(t−τ)‖V0‖L2(R) + 4CK(t− τ)− 1
4 ‖V0‖L2(R),(3.20)

‖V (·, t)‖L∞(R) ≤ 4CK(t− τ)− 1
2 ‖V0‖L1(R).(3.21)

where CK and γ are defined in Theorem 1.2.

Proof. Recalling Proposition 2.3 (cf. Figure 3), we distinguish three cases.
Case 1: x ≥ R.

Step 1: Representation of the solution. For every (x, t) ∈ [R,∞) × (0,∞), the solutions of the two
transport equations are given by

v1(x, t) = v1,0(x− λ1t) +
ˆ t

0

2∑
i=1

b̃1,ivi(s, x− λ1t+ λ1s) ds−
ˆ t1,ex(x,t)

t1,en(x,t)

2∑
i=1

b̃1,ivi(s, x− λ1t+ λ1s) ds,

v2(x, t) = v2,0(x− λ2t) +
ˆ t

0

2∑
i=1

b̃2,ivi(s, x− λ2t+ λ2s) ds−
ˆ t2,ex(x,t)

t2,en(x,t)

2∑
i=1

b̃2,ivi(s, x− λ2t+ λ2s) ds.

Denoting B1 :=
∑2
i=1 b̃1,ivi(s, x− λ1t+ λ1s) and B2 :=

∑2
i=1 b̃2,ivi(s, x− λ2t+ λ2s), we have

|V (x, t)|2 =

∣∣∣∣∣∣∣∣∣
(
v1,0(x− λ1t)
v2,0(x− λ2t)

)
+


ˆ t

0
B1 −

ˆ t1,ex(x,t)

t1,en(x,t)
B1

ˆ t

0
B2 −

ˆ t2,ex(x,t)

t2,en(x,t)
B2


∣∣∣∣∣∣∣∣∣
2

.(3.22)

Let us assume that the quantities in the two rows of (3.22) are positive, the other three scenarios being
treatable in a similar fashion as we always have upper and lower bounds at hand.

Step 2: Splitting of the space-domain. We decompose the interval [R,∞] into D2 ∪ F2 as defined in
(3.4). The choice of k = 2 in (3.4) ensures that we decompose the interval with respect to the slowest
eigenvalue.

Step 3: Analysis of the interval D2. We define the sequence (ai)i∈{1,...,N} in D2 similarly as in Section
3.1 as:

D2 =
N⋃
i=1

[ai, ai+1] s.t. a1 = R, aN = tλ2 +R, and ai+1 − ai ≤
C

N
for N ∈ N∗ and C > 0.(3.23)

Proceeding as in the previous cases, we obtainˆ ai+1

ai

|V (x, t)|2

≤
ˆ ai+1

ai

∣∣∣∣([Sd,1(t, t1,ex(ai, t))Sc(t1,ex(ai, t), t1,en(ai+1, t)))Sd(t1,en(ai+1, t), 0)v1,0](x) +R1,i
[Sd,2(t, t2,ex(ai, t))Sc(t2,ex(ai, t), t2,en(ai+1)))Sd(t2,en(ai+1), 0)v2,0](x) +R2,i

)∣∣∣∣2 ,
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where

Rj,i(t) :=
ˆ tj,ex(ai)

tj,ex(ai+1)
B+
j +
ˆ tj,en(ai+1)

tj,en(ai)
B−j for j ∈ {1, 2} and i ∈ {1, . . . , N}.

Then, applying the square root and Minkowski’s inequality yields
‖V (·, t)‖L2([ai,ai+1])

≤
∥∥∥∥[Sd(t, t1,ex(ai, t))

(
Sc,1(t1,ex(ai, t), t2,ex(ai))
Sd,2(t1,ex(ai, t), t2,ex(ai))

)(
Sc,1(t2,ex(ai, t), t1,en(ai+1, t))
Sc,2(t2,ex(ai, t), t1,en(ai+1, t))

)
(
Sd,1(t1,en(ai+1, t)), t2,en(ai+1))
Sc,2(t1,en(ai+1, t)), t2,en(ai+1))

)
Sd(t2,en(ai+1), 0)

(
v1,0
v2,0

)∥∥∥∥
L2([ai,ai+1])

+
∥∥∥∥(R1,i
R2,i

)∥∥∥∥
L2([ai,ai+1])

.

Step 4: Use of the semigroups’ properties. Since it is only possible to recover dissipation when Sd,1
and Sd,2 are active on the same time-interval, bounding the right-hand side integral by the integral on R
and using the properties of the semigroups Sd,1 (1.5)-(1.8) and Sc,1 (2.6), from (3.9), we get

‖V (·, t)‖L2([ai,ai+1]) ≤ ‖e−γmin(1,|·|2)(t−|Ii|)V0‖L2(R) +
∥∥∥∥(R1,i
R2,i

)∥∥∥∥
L2([ai,ai+1)

,

where |Ii| = t1,ex(ai, t) − t1,en(ai+1, t) + t2,ex(ai) − t2,en(ai+1). Summing over i and taking the limit as
N →∞, we obtain

‖V (·, t)‖L2(D2) ≤ CKe−γ(t−supx∈R |I(x,t)|)‖V0‖L2(R) + CK(t− sup
x∈R
|I(x, t)|)− 1

4 ‖V0‖L2(R),

where I(x, t) = [t1,en(x, t), t1,ex(x, t)]∪ [t2,en(x, t), t2,ex(x, t)] and the remainder terms Rj,i were handled
exactly as in Section 3.1 thanks to the fact that

|tj,ex(ai+1)− tj,ex(ai)| ≤
C

N
and |tj,en(ai)− tj,en(ai+1)| ≤ C

N
for j ∈ {1, 2}.

Since

(3.24) sup
x≥R, t>0

|I(x, t)| = 2R
|λ1|

+ 2R
|λ2|

= τ,

we recover
‖V (·, t)‖L2(D2) ≤ CKe−γ(t−τ)‖V0‖L2(R) + CK(t− τ)− 1

4 ‖V0‖L2(R).

Step 5: Analysis of F2. In this domain, we have t1,en = t2,en = t1,ex = t2,ex = 0 and therefore we
recover

‖V (·, t)‖L2(F2) ≤ CKe−γt‖V0‖L2(R) + CKt
− 1

4 ‖V0‖L2(R).

Step 6: Conclusion of Case 1. Putting the previous steps together, we obtain the claimed delay in
the region x ≥ R:

‖V (·, t)‖L2([R,+∞)) ≤ 2CKe−γ(t−τ)‖V0‖L2(R) + 2CK(t− τ)− 1
4 ‖V0‖L2(R).

Case 2: x ≤ −R. The characteristics lines never cross the undamped region ωc and thus, as in F2, we
obtain

‖V (·, t)‖L2((−∞,−R]) ≤ CKe−γt‖V0‖L2(R) + CKt
− 1

4 ‖V0‖L2(R).

Case 3: −R ≤ x ≤ R. Performing a decomposition similar to the one we used for D2 is necessary. Since
the characteristics lines all start inside the undamped region ωc and |λ1| ≥ |λ2|, we recover a delay of
max

(
2R
|λ1| ,

2R
|λ2|

)
= 2R
|λ2| . Compared to the proof of Proposition 3.3, here we do not need to split the space

domain furthermore as, for all (x, t) ∈ [−R,R]× (0,∞), we have
t1,en(x, t) ≥ t2,en(x, t).

We obtain

‖V (·, t)‖L2([−R,R]) ≤ CKe
−γ
(
t− 2R
|λ2|

)
‖V0‖L2(R) + CK

(
t− 2R
|λ2|

)− 1
4

‖V0‖L2(R).
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Conclusion. Combining the results of the three cases yields
‖V (·, t)‖L2(R) = ‖V (·, t)‖L2((−∞,−R]) + ‖V (·, t)‖L2([−R,R]) + ‖V (·, t)‖L2([R,+∞))

≤ CKe−γt‖V0‖L2(R) + CKt
− 1

4 ‖V0‖L2(R)

+ CKe
−γ
(
t− 2R
|λ2|

)
‖V0‖L2(R) + CK

(
t− 2R
|λ2|

)− 1
4

‖V0‖L2(R)

+ 2CKe−γ(t−τ)‖V0‖L2(R) + 2CK(t− τ))− 1
4 ‖V0‖L2(R)

≤ 4CKe−γ(t−τ)‖V0‖L2(R) + 4CK(t− τ)− 1
4 ‖V0‖L2(R),

where τ = 2R
|λ1| + 2R

|λ2| .
�

4. Proof of Theorem 1.2

The preceding analysis in the general setting leads to the following result.

Corollary 4.1 (Upper bound on the time-delay). Let V be the solution of (2.1) associated with the
initial data V0 ∈ L1(R) ∩ L2(R).

If x ≥ R, at least one component of the conservative semigroup Sc is active in

(4.1) I(x, t) =
p⋃
i=1

[ti,en(x, t), ti,ex(x, t)].

If x ≤ −R, at least one component of the conservative semigroup Sc is active in

(4.2) I(x, t) =
n⋃

i=p+1
[ti,en(x, t), ti,ex(x, t)].

If x ∈ [−R,R], at least one component of the conservative semigroup Sc is active in

(4.3) I(x, t) =
n⋃
i=1

[ti,en(x, t), t].

Moreover,

(4.4) sup
x∈R, t>0

|I(x, t)| ≤ τ = max

 p∑
i=1

2R
|λi|

,

n∑
i=p+1

2R
|λi|

 .

Proof. The identities (4.1), (4.2), and (4.3) follow directly from Proposition 2.3. The upper bound for
|I(x, (t)| can be obtained by estimating each space region separately:

sup
x>R, t>0

|I(x, t)| ≤
p∑
i=1

2R
|λi|

;(4.5)

sup
x<−R, t>0

|I(x, t)| ≤
n∑

i=p+1

2R
|λi|

;(4.6)

sup
−R<x<R, t>0

|I(x, t)| ≤ max
i∈{1,...,n}

2R
|λi|

.(4.7)

Gathering these estimates leads to (4.4). �

With this proposition in hand, we are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. As in the previous cases, the proof relies on a precise decomposition of the space-
domain R.
Case 1: x ≥ R. Step 1: Representation of the solution. Owing to Proposition 2.3, for all (x, t) ∈
[R,+∞)× (0,∞), we have

vi(x, t) = [Sd,i(t, ti,ex(x, t))Sc,i(ti,ex(x, t), ti,en(x, t))Sd,i(ti,en(x, t), 0)vi,0](x), i ∈ {1, . . . , p}.
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and

vi(x, t) = [Sd,i(t, 0)vi,0](x), i ∈ {p+ 1, . . . , n}.

In the proof of Propositions 3.1 and 3.4, breaking the analysis into multiple cases allowed us to obtain an
explicit representation of the solution in terms of Sd,i and Sc,i. However, for the general case, the vast
number of potential configurations1 makes it infeasible to provide an explicit representation for each case.
We shall focus on studying the scenarios that generate the largest time-delay in the time-decay rates.

Corollary 4.1 yields that the largest time-delay possible is given by
p∑
i=1

2R
|λi|

= sup
x≥R, t>0

|I(x, t)|.

This corresponds to cases where the characteristic lines of each component spends the maximum amount
of time in the undamped region without overlapping with other components. In other words, when one
component’s characteristic line is in the undamped region, none of the other components’ characteristic
lines are inside it. This condition minimizes the time during which all the 0-th order couplings are active.

Concretely, this configuration occurs when

ti,en(x, t) ≤ ti+1,ex(x, t), i ∈ {1, . . . , p}.(4.8)

We define, for t > 0, Jt = {x ∈ [R,+∞] : (4.8) is satisfied}.
Step 2: Splitting of the space-domain. We decompose the domain [R,+∞) into Dp ∪ Fp where Dp

and Fp are defined in (3.4). The specific choice of k = p in (3.4) ensures that we decompose the interval
with respect to the slowest eigenvalue.

Step 3: Analysis of Dp ∩Jt. Introducing a sequence (ai)Ni=1 to decompose Dp ∩Jt as in (3.7), if (4.8)
is satisfied, we have

ˆ ai+1

ai

|V (x, t)|2 ≤
ˆ ai+1

ai

∣∣∣∣[Sd

Sc,1
Sd,2
Sd,3

...
Sd,p

Sd


Sd,1
Sc,2
Sd,3

...
Sd,n

 . . .


Sd,1
Sd,2

...
Sc,p−1
Sd,n

Sd



Sd,1
Sd,2

...
Sd,p−1
Sc,p
Sd,p+1

...
Sd,n


Sd

v1,0(x, t)
...

vn,0(x, t)

](x)
∣∣∣∣2

(4.9)

+
ˆ ai+1

ai

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



R1,i
...
Rp,i

0
...
0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

,

where, to simplify the notation, we omitted the parameters ai, ai+1, and the explicit entering and existing
time on the right-hand side.

1There are p(p+1)
2 + 1. Computing the number of possible configurations of the solution at a fixed time t is equivalent

to the following problem: Let I ⊂ R be a compact interval and (xi)p
i=1 ⊂ R be an increasing sequence of p > 0 points. How

many different configurations are there, depending on whether or not the points are in I? To answer this question, we only
need to know how many configurations exist where exactly q ∈ {0, . . . , p+1} points are in I. Summing over all these values,
we can determine the total number of possible configurations. Since the points xi are ordered, for q ∈ {1, . . . , p}, there are
p−q+1 possible configurations such that exactly q points belong to I; additionally, there is one possibility for q = 0. Summing
up all these, we find that the total number of possible configurations is

∑p

q=1(p− q + 1) + 1 =
∑p

k=1 k + 1 = p(p+1)
2 + 1.
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Step 4: Use of the semigroup properties. Recalling that the mixed operators of the type
Sc,1
Sd,2

...
Sd,n


preserves the L2 norm of the solution – since, for i = 1, .., n, the Sc,i are conservative and Sd,i associated
with a positive definite matrix –, we obtain that the classical time-decay estimates delayed by the time
supx≥R |I|, where I is defined in (4.1). Using the properties of the semigroups and estimating the
remainder terms as in (3.11), we obtain

‖V (·, t)‖L2(Dp∩Jt) ≤ CKe
−γ(t−supx≥R |I(x,t)|)‖V0‖L2(R) + CK(t− sup

x≥R
|I(x, t)|)− 1

4 ‖V0‖L2(R).

Step 5: Analysis of the inteval Dp. We have seen how to recover decay in the region Dp ∩Jt. For the
remaining space-domain Dp\Jt, the representation of the solution will always be a combination of the
semigroups Sd,i and Sc,i with the conservative semigroup Sc,i being active only for a finite time bounded
by τ . Although an explicit representation of the solution is cumbersome to formulate, the arguments for
analyzing each case follow the same pattern. We have

‖V (·, t)‖L2(Dp) ≤ CKe−γ(t−supx≥R |I(x,t)|)‖V0‖L2(R) + CK(t− sup
x≥R
|I(x, t)|)− 1

4 ‖V0‖L2(R).

Step 6: Analysis of Fp. As none of the characteristics lines cross the undamped region ωc in this
case, we have

‖V (·, t)‖L2(Fp) ≤ CKe−γt‖V0‖L2(R) + CKt
− 1

4 ‖V0‖L2(R).

Step 7: Conclusion of Case 1. Putting the previous steps together and using (4.5), we obtain the
claimed delay in the region x ≥ R:

‖V (·, t)‖L2([R,+∞)) ≤ 2CKe−γ
(
t−
∑p

i=1
2R
|λi|

)
‖V0‖L2(R) + 2CK

(
t−

p∑
i=1

2R
|λi|

)− 1
4

‖V0‖L2(R).

Case 2: x ≤ −R. The analysis of this space-domain can be done symmetrically with respect to Case 1.
We have

‖V (·, t)‖L2((−∞,R]) ≤ 2CKe
−γ
(
t−
∑n

i=p+1
2R
|λi|

)
‖V0‖L2(R) + 2CK

t− n∑
i=p+1

2R
|λi|

− 1
4

‖V0‖L2(R).

Case 3: −R ≤ x ≤ R. We decompose the space-domain into Hp1 = {(x, t) ∈ [−R,R] × (0,∞) :
tp,en(x, t) ≤ tp+1,en(x, t)} and Hp2 = {(x, t) ∈ [−R,R]× (0,∞) : tp,en(x, t) ≥ tp+1,en(x, t)}. Reasoning as
in the proof of Proposition 3.3, we have

‖V (·, t)‖L2(Hp1) ≤ CKe
−γ
(
t− 2R
|λp|

)
‖V0‖L2(R) + CK

(
t− 2R
|λp|

)− 1
4

‖V0‖L2(R),

and symmetrically, for Hp2, we have

‖V (·, t)‖L2(Hp2) ≤ CKe
−γ
(
t− 2R
|λp+1|

)
‖V0‖L2(R) + CK

(
t− 2R
|λp+1|

)− 1
4

‖V0‖L2(R),

Therefore,

‖V (·, t)‖L2([−R,R]) ≤ 2CKe
−γ
(
t−max

(
2R
|λp|

, 2R
|λp+1|

))
‖V0‖L2(R)

+ 2CK
(
t−max

(
2R
|λp|

,
2R
|λp+1|

))− 1
4

‖V0‖L2(R).

Conclusion. Combining the results of the three cases yields
‖V (·, t)‖L2(R) = ‖V (·, t)‖L2((−∞,−R]) + ‖V (·, t)‖L2([−R,R]) + ‖V (·, t)‖L2([R,+∞))
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≤ 2CKe
−γ(t−

∑n

i=p+1
2R
|λi|

)‖V0‖L2(R) + 2CK

t− n∑
i=p+1

2R
|λi|

− 1
4

‖V0‖L2(R).

+ 2CKe
−γ
(
t−max

(
2R
|λp|

, 2R
|λp+1|

))
‖V0‖L2(R)

+ 2CK
(
t−max

(
2R
|λp|

,
2R
|λp+1|

))− 1
4

‖V0‖L2(R)

+ 2CKe−γ(t−
∑p

i=1
2R
|λi|

)‖V0‖L2(R) + 2CK

(
t−

p∑
i=1

2R
|λi|

)− 1
4

‖V0‖L2(R).

≤ 6CKe−γ(t−τ)‖V0‖L2(R) + 6CK(t− τ)− 1
4 ‖V0‖L2(R),

where τ = max
(∑p

i=1
2R
|λi| ,

∑n
i=p+1

2R
|λi|

)
.

Similarly to the computations done in Section 3.1 (see Step 6 in the aforementioned section), we are
also able to recover the desired L∞ time-decay. The proof of the theorem 1.2 is completed. �

5. Extensions and open problems

In this contribution, we studied the time-asymptotic behavior of linear hyperbolic systems under partial
dissipation localized in suitable subsets of the domain. Our work opens up several possible extensions
and open problems. We list some of them below.

1. More general undamped domains. Results similar to ours can be obtained whenever ωc is a
domain of finite measure. For example, if we consider ωc as a finite union of bounded stripes, we
can directly retrieve similar decay estimates with a delay depending on the time spent by each
characteristic in each stripe.

2. Problem posed on the half-line. With the method developed in the present paper, we can also
consider the case when the x-space R is replaced by the half-line (−∞, 0] and the undamped region
is localized near the boundary. Specifically, consider the following linear hyperbolic system:

∂tU +A∂xU = −BU1ω∗ , (x, t) ∈ (−∞, 0]× (0,∞),
U(0, x) = U0(x), x ∈ (−∞, 0],
C0U(0, t) = 0, t ∈ (0,∞).

(5.1)

where C0 is a given matrix, A and B satisfy the same assumptions as before, and ω∗ := R \
[−R, 0] = (−∞,−R). If the matrix C0 in (5.1) ensures that the characteristics are reflected at the
boundary x = 0 (see [19, p. 649] for further details), then the time spent by the characteristics
in the undamped region ωc is finite. Thus, the asymptotic result would follow from similar
arguments as in our previous analysis. We remark that the right-hand side of the system in (5.1)
vanishes near the boundary x = 0; thus, system (5.1) reduces to uncoupled transport equations
for which we can find suitable boundary conditions (see [12, 19]).

3. Multidimensional problems. For multi-dimensional systems, i.e.

∂tU +
d∑
j=1

Aj(U)∂xjU = −BU1ω, (x, t) ∈ Rd × (0,∞),

where the Aj(U) and B are symmetric matrices, there is a direct obstruction to the use of our
arguments. Indeed, the flux matrices Aj may not all be diagonalizable in the same basis and
therefore we may not be able to rewrite the system as coupled transport equations. Therefore,
different approaches are needed.
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