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Main result

We look at multi-dimensional first order n-component systems in Rd :

∂V

∂t
+

d∑
k=1

Ak(V )
∂V

∂xk
+

LV

ε
= 0,

such that:

The maps Ak are symmetric valued → hyperbolicity of the system.

L+TL is nonnegative → only partial dissipation occurs.

An Hörmander’s hypoellipticity-like condition is satisfied: the condition
(SK): ker L ∩ {eigenvectors of A} = {0}

We are interested in:

1 Proving the global well-posedness in a critical homogeneous framework.

2 Justifying the relaxation limit when ε → 0.

Our main example of application is the compressible Euler equations with
damping:  ∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v) +∇P +
ρv

ε
= 0.

(1)
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An Hörmander’s hypoellipticity-like condition is satisfied: the condition
(SK): ker L ∩ {eigenvectors of A} = {0}

We are interested in:

1 Proving the global well-posedness in a critical homogeneous framework.

2 Justifying the relaxation limit when ε → 0.

Our main example of application is the compressible Euler equations with
damping:  ∂tρ+ div(ρv) = 0,

∂t(ρv) + div(ρv ⊗ v) +∇P +
ρv

ε
= 0.

(1)

Crin-Barat Timothée Partially dissipative hyperbolic systems



System Overview
New observations

Main result

We look at multi-dimensional first order n-component systems in Rd :

∂V

∂t
+

d∑
k=1

Ak(V )
∂V

∂xk
+

LV

ε
= 0,

such that:

The maps Ak are symmetric valued → hyperbolicity of the system.

L+TL is nonnegative → only partial dissipation occurs.
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New observations

In the previous efforts, the analysis of the high frequencies was optimal but the
low frequencies behaviour was not well understood.

A spectral analysis of the matrix

(
0 iξ

iξ
1

ε

)
of Euler’s system shows that:

the threshold between low and high frequencies is at
1

2ε
.

In high frequencies (i.e. |ξ| ≫ ε−1), two complex conjugate eigenvalues

coexist, whose real parts are asymptotically equal to
1

2ε
.

In low frequencies (i.e. |ξ| ≪ ε−1), this matrix has two real eigenvalues

asymptotically equal to
1

ε
and εξ2 for ξ close to 0;

→ There exists a purely damped mode in the low frequencies regime

associated to the eigenvalue
1

ε
.

Indeed, defining z = u + ε∇ρ we can recast the linear Euler system into
the following diagonal form:∂tρ− ε∆ρ = −divz ,

∂tz +
z

ε
= ε∆v .

(2)
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Moreover, it turns out that the asymptotic behaviour of the solution when
ε → 0 is not so intuitive.

Naively, we expect that as the damping coefficient becomes larger the
dissipation becomes more dominant.

However, the so-called overdamping effect occurs: the decay rate behaves

as min(ε,
1

ε
).

→ To capture this phenomenon more precisely, we set the threshold
between low and high frequencies at Jε = ⌊−log2 ε⌋ in our homogeneous
Besov norms.
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Relaxation limit

Theorem (Danchin, C-B ’22)

Let d ≥ 1, p ∈ [2, 4], ε > 0 and ρ̄ be a strictly positive constant.
Let (ρ− ρ̄, v) be the global small solution of the compressible Euler system
with damping associated with the initial data (ρ0, v0) that we constructed.
And let N − ρ̄ be the global small solution associated to the porous media
equation: {

∂tN −∆P(N ) = 0
N (0, x) = N0

.

Defining (ρ̃ε, ṽε)(t, x) ≜ (ρ, ε−1v)(ε−1t, x) and assuming that

∥ρ̃ε0 −N0∥
B

d
p
−1

p,1

≤ Cε,

then

∥ρ̃ε −N∥
L∞(R+;Ḃ

d
p
−1

p,1 )

+ ∥ρ̃ε −N∥
L1(R+;Ḃ

d
p
+1

p,1 )

+

∥∥∥∥∇P(ρ̃ε)

ρ̃ε
+ ṽε

∥∥∥∥
L1(R+;Ḃ

d
p
p,1)

≤ Cε.
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Extensions

Slightly extending our method, we are able (or expect to be able) to treat the
following cases:

Compressible multi-fluid system: Pressure-relaxation limit for a
one-velocity Baer-Nunziato model to a Kapila model. Joint work with
Cosmin Burtea and Jin Tan.

Global existence and relaxation limit for the hyperbolic-parabolic
chemotaxis system. Joint work with Qingyou He and Ling-Yun Shou.

Anisotropic systems e.g. 2D Boussinesq with damping. Work in progress
with Roberta Bianchini.
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Merci pour votre attention !
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Well-posedness result

Theorem (Danchin, C-B ’21)

Let d ≥ 1, p ∈ [2, 4] et ε > 0. There exists kp ∈ Z et c0 = c0(p) > 0 such that
for all Jε ≜ ⌊−log2 ε⌋+ kp, if we assume

∥Z0∥ℓ
Ḃ

d
p
p,1

+ ε ∥Z0∥h
Ḃ

d
2
+1

2,1

≤ c0,

then the system admits a unique solution Z satisfying

Xp,ε(t) ≲ ∥Z0∥ℓ
Ḃ

d
p
p,1

+ ε ∥Z0∥h
Ḃ

d
2
+1

2,1

for all t ≥ 0, and where

Xp,ε(t) ≜ ε ∥Z∥h
L∞t (Ḃ

d
2
+1

2,1 )
+ ∥Z∥h

L1t (Ḃ
d
2
+1

2,1 )
+ ε−

1
2 ∥Z2∥

L2t (Ḃ

d
p
p,1)

+ ∥Z∥ℓ
L∞t (Ḃ

d
p
p,1)

+ ε ∥Z1∥ℓ
L1t (Ḃ

d
p
+2

p,1 )

+ ∥Z2∥ℓ
L1t (Ḃ

d
p
+1

p,1 )

+ ∥W ∥
L1t (Ḃ

d
p
p,1)

.
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Relaxation limit

Theorem (Danchin, C-B ’22)

Let d ≥ 1, p ∈ [2, 4] and ε > 0. Let ρ̄ be a strictly positive constant and
(ρ− ρ̄, v) be the solution constructed in our global well-posedness result.

Let the positive function N0 such that N0 − ρ̄ is small enough in Ḃ
d
p

p,1, and let

N ∈ Cb(R+; Ḃ
d
p

p,1) ∩ L1(R+; Ḃ
d
p
+2

p,1 ) be the unique solution associated to the
Cauchy problem: {

∂tN −∆P(N ) = 0
N (0, x) = N0

If we assume that
∥ρ̃ε0 −N0∥

B

d
p
−1

p,1

≤ Cε,

then

∥ρ̃ε −N∥
L∞(R+;Ḃ

d
p
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p
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