Partially dissipative hyperbolic systems, results¹ and perspectives

Timothée Crin-Barat

Chair of Computational Mathematics, Fundación Deusto, Bilbao

Research School: Mathematical Advances in Geophysical Flows 4-8 April, 2022

Crin-Barat Timothée

¹in collaboration with Raphaël Danchin

Partially dissipative hyperbolic systems

E > < E >

We look at multi-dimensional first order *n*-component systems in \mathbb{R}^d :

$$\frac{\partial V}{\partial t} + \sum_{k=1}^{d} A^{k}(V) \frac{\partial V}{\partial x_{k}} + \frac{LV}{\varepsilon} = 0,$$

such that:

・ロト ・回ト ・ヨト ・ヨト

æ –

We look at multi-dimensional first order *n*-component systems in \mathbb{R}^d :

$$rac{\partial V}{\partial t} + \sum_{k=1}^{d} A^{k}(V) rac{\partial V}{\partial x_{k}} + rac{LV}{\varepsilon} = 0,$$

such that:

• The maps A^k are symmetric valued \rightarrow hyperbolicity of the system.

We look at multi-dimensional first order *n*-component systems in \mathbb{R}^d :

$$rac{\partial V}{\partial t} + \sum_{k=1}^{d} A^k(V) rac{\partial V}{\partial x_k} + rac{LV}{\varepsilon} = 0,$$

such that:

- The maps A^k are symmetric valued \rightarrow hyperbolicity of the system.
- $L+^{T}L$ is nonnegative \rightarrow only *partial* dissipation occurs.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

We look at multi-dimensional first order *n*-component systems in \mathbb{R}^d :

$$rac{\partial V}{\partial t} + \sum_{k=1}^{d} A^k(V) rac{\partial V}{\partial x_k} + rac{LV}{\varepsilon} = 0,$$

such that:

- The maps A^k are symmetric valued \rightarrow hyperbolicity of the system.
- $L + {}^{T}L$ is nonnegative \rightarrow only *partial* dissipation occurs.
- An Hörmander's hypoellipticity-like condition is satisfied: the condition (SK): ker L ∩ {eigenvectors of A} = {0}

We look at multi-dimensional first order *n*-component systems in \mathbb{R}^d :

$$rac{\partial V}{\partial t} + \sum_{k=1}^{d} A^{k}(V) rac{\partial V}{\partial x_{k}} + rac{LV}{\varepsilon} = 0,$$

such that:

- The maps A^k are symmetric valued \rightarrow hyperbolicity of the system.
- $L+^{T}L$ is nonnegative \rightarrow only *partial* dissipation occurs.
- An Hörmander's hypoellipticity-like condition is satisfied: the condition (SK): ker L ∩ {eigenvectors of A} = {0}

We are interested in:

We look at multi-dimensional first order *n*-component systems in \mathbb{R}^d :

$$rac{\partial V}{\partial t} + \sum_{k=1}^{d} A^{k}(V) rac{\partial V}{\partial x_{k}} + rac{LV}{\varepsilon} = 0,$$

such that:

- The maps A^k are symmetric valued \rightarrow hyperbolicity of the system.
- $L+^{T}L$ is nonnegative \rightarrow only *partial* dissipation occurs.
- An Hörmander's hypoellipticity-like condition is satisfied: the condition (SK): ker L ∩ {eigenvectors of A} = {0}

We are interested in:

9 Proving the global well-posedness in a critical homogeneous framework.

We look at multi-dimensional first order *n*-component systems in \mathbb{R}^d :

$$rac{\partial V}{\partial t} + \sum_{k=1}^{d} A^{k}(V) rac{\partial V}{\partial x_{k}} + rac{LV}{\varepsilon} = 0,$$

such that:

- The maps A^k are symmetric valued \rightarrow hyperbolicity of the system.
- $L+^{T}L$ is nonnegative \rightarrow only *partial* dissipation occurs.
- An Hörmander's hypoellipticity-like condition is satisfied: the condition (SK): ker L ∩ {eigenvectors of A} = {0}

We are interested in:

- **9** Proving the global well-posedness in a critical homogeneous framework.
- 2 Justifying the relaxation limit when $\varepsilon \to 0$.

We look at multi-dimensional first order *n*-component systems in \mathbb{R}^d :

$$rac{\partial V}{\partial t} + \sum_{k=1}^{d} A^{k}(V) rac{\partial V}{\partial x_{k}} + rac{LV}{\varepsilon} = 0,$$

such that:

- The maps A^k are symmetric valued \rightarrow hyperbolicity of the system.
- $L+^{T}L$ is nonnegative \rightarrow only *partial* dissipation occurs.
- An Hörmander's hypoellipticity-like condition is satisfied: the condition (SK): ker L ∩ {eigenvectors of A} = {0}

We are interested in:

- **9** Proving the global well-posedness in a critical homogeneous framework.
- 2 Justifying the relaxation limit when $\varepsilon \rightarrow 0$.

Our main example of application is the compressible Euler equations with damping:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho v) = 0, \\ \partial_t(\rho v) + \operatorname{div}(\rho v \otimes v) + \nabla P + \frac{\rho v}{\varepsilon} = 0. \end{cases}$$
(1)

同 ト イヨ ト イヨ ト 二 ヨ

New observations

イロン イロン イヨン イヨン

∃ < n < 0</p>

New observations

In the previous efforts, the analysis of the high frequencies was optimal but the low frequencies behaviour was not well understood.

< 注入 < 注入 :

New observations

In the previous efforts, the analysis of the high frequencies was optimal but the low frequencies behaviour was not well understood.

A spectral analysis of the matrix
$$\begin{pmatrix} 0 & i\xi \\ i\xi & \frac{1}{\varepsilon} \end{pmatrix}$$
 of Euler's system shows that:

< 三 > < 三 > 。

New observations

In the previous efforts, the analysis of the high frequencies was optimal but the low frequencies behaviour was not well understood.

A spectral analysis of the matrix $\begin{pmatrix} 0 & i\xi \\ i\xi & \frac{1}{\varepsilon} \end{pmatrix}$ of Euler's system shows that: • the threshold between low and high frequencies is at $\frac{1}{2\varepsilon}$.

通 と く ヨ と く ヨ と

New observations

In the previous efforts, the analysis of the high frequencies was optimal but the low frequencies behaviour was not well understood.

A spectral analysis of the matrix $\begin{pmatrix} 0 & i\xi \\ i\xi & \frac{1}{\varepsilon} \end{pmatrix}$ of Euler's system shows that: • the threshold between low and high frequencies is at $\frac{1}{2\varepsilon}$. • In high frequencies (i.e. $|\xi| \gg \varepsilon^{-1}$), two complex conjugate eigenvalues

coexist, whose real parts are asymptotically equal to $\frac{1}{2e}$.

通 と く ヨ と く ヨ と

New observations

In the previous efforts, the analysis of the high frequencies was optimal but the low frequencies behaviour was not well understood.

A spectral analysis of the matrix $\begin{pmatrix} 0 & i\xi \\ i\xi & 1 \\ i\xi & - \end{pmatrix}$ of Euler's system shows that:

- the threshold between low and high frequencies is at $\frac{1}{2\epsilon}$.
- In high frequencies (i.e. $|\xi|\gg arepsilon^{-1}$), two complex conjugate eigenvalues
- coexist, whose real parts are asymptotically equal to $\frac{1}{2\varepsilon}$. In low frequencies (i.e. $|\xi| \ll \varepsilon^{-1}$), this matrix has two real eigenvalues asymptotically equal to $\frac{1}{\varepsilon}$ and $\varepsilon \xi^2$ for ξ close to 0;

同 ト イヨ ト イヨ ト 二 ヨ

New observations

In the previous efforts, the analysis of the high frequencies was optimal but the low frequencies behaviour was not well understood.

A spectral analysis of the matrix $\begin{pmatrix} 0 & i\xi \\ i\xi & \frac{1}{\varepsilon} \end{pmatrix}$ of Euler's system shows that:

- the threshold between low and high frequencies is at $\frac{1}{2c}$.
- In high frequencies (i.e. |ξ| ≫ ε⁻¹), two complex conjugate eigenvalues coexist, whose real parts are asymptotically equal to ¹/_{2ε}.
- In low frequencies (i.e. $|\xi| \ll \varepsilon^{-1}$), this matrix has two real eigenvalues asymptotically equal to $\frac{1}{2}$ and $\varepsilon\xi^2$ for ξ close to 0;
- \rightarrow There exists a purely damped mode in the low frequencies regime associated to the eigenvalue $\frac{1}{\varepsilon}$.

伺下 イヨト イヨト ニヨ

New observations

In the previous efforts, the analysis of the high frequencies was optimal but the low frequencies behaviour was not well understood.

A spectral analysis of the matrix $\begin{pmatrix} 0 & i\xi \\ i\xi & \frac{1}{\varepsilon} \end{pmatrix}$ of Euler's system shows that:

- the threshold between low and high frequencies is at $\frac{1}{22}$.
- In high frequencies (i.e. |ξ| ≫ ε⁻¹), two complex conjugate eigenvalues coexist, whose real parts are asymptotically equal to ¹/_{2ε}.
- In low frequencies (i.e. $|\xi| \ll \varepsilon^{-1}$), this matrix has two real eigenvalues asymptotically equal to $\frac{1}{2}$ and $\varepsilon\xi^2$ for ξ close to 0;
- \rightarrow There exists a purely damped mode in the low frequencies regime associated to the eigenvalue $\frac{1}{2}$.
- Indeed, defining $z = u + \varepsilon \nabla \rho$ we can recast the linear Euler system into the following *diagonal* form:

$$\begin{cases} \partial_t \rho - \varepsilon \Delta \rho = -\operatorname{div} z, \\ \partial_t z + \frac{z}{\varepsilon} = \varepsilon \Delta v. \end{cases}$$
(2)

New observations

Moreover, it turns out that the asymptotic behaviour of the solution when $\varepsilon \to 0$ is not so intuitive.

< 注入 < 注入 -

Ξ.

New observations

Moreover, it turns out that the asymptotic behaviour of the solution when $\varepsilon \rightarrow 0$ is not so intuitive.

• Naively, we expect that as the damping coefficient becomes larger the dissipation becomes more dominant.

New observations

Moreover, it turns out that the asymptotic behaviour of the solution when $\varepsilon \to 0$ is not so intuitive.

- Naively, we expect that as the damping coefficient becomes larger the dissipation becomes more dominant.
- However, the so-called *overdamping* effect occurs: the decay rate behaves as $\min(\varepsilon, \frac{1}{\varepsilon})$.

New observations

Moreover, it turns out that the asymptotic behaviour of the solution when $\varepsilon \to 0$ is not so intuitive.

- Naively, we expect that as the damping coefficient becomes larger the dissipation becomes more dominant.
- However, the so-called *overdamping* effect occurs: the decay rate behaves as $\min(\varepsilon, \frac{1}{c})$.

A B M A B M

э

New observations

Moreover, it turns out that the asymptotic behaviour of the solution when $\varepsilon \to 0$ is not so intuitive.

- Naively, we expect that as the damping coefficient becomes larger the dissipation becomes more dominant.
- However, the so-called *overdamping* effect occurs: the decay rate behaves as $\min(\varepsilon, \frac{1}{c})$.

• \rightarrow To capture this phenomenon more precisely, we set the threshold between low and high frequencies at $J_{\varepsilon} = \lfloor -\log_2 \varepsilon \rfloor$ in our homogeneous Besov norms.

Theorem (Danchin, C-B '22)

Let $d \ge 1$, $p \in [2,4]$, $\varepsilon > 0$ and $\bar{\rho}$ be a strictly positive constant. Let $(\rho - \bar{\rho}, v)$ be the global small solution of the compressible Euler system with damping associated with the initial data (ρ_0, v_0) that we constructed. And let $\mathcal{N} - \bar{\rho}$ be the global small solution associated to the porous media equation:

$$\begin{cases} \partial_t \mathcal{N} - \Delta P(\mathcal{N}) = 0\\ \mathcal{N}(0, x) = \mathcal{N}_0 \end{cases}$$

Defining $(\widetilde{\rho}^{\varepsilon}, \widetilde{v}^{\varepsilon})(t, x) \triangleq (\rho, \varepsilon^{-1}v)(\varepsilon^{-1}t, x)$ and assuming that

$$\|\widetilde{\rho}_{0}^{\varepsilon}-\mathcal{N}_{0}\|_{B^{\frac{d}{p}-1}_{\rho,1}}\leq C\varepsilon,$$

then

$$\|\widetilde{\rho}^{\varepsilon} - \mathcal{N}\|_{L^{\infty}(\mathbb{R}^+; \dot{B}^{\frac{d}{p}-1}_{\rho,1})} + \|\widetilde{\rho}^{\varepsilon} - \mathcal{N}\|_{L^1(\mathbb{R}^+; \dot{B}^{\frac{d}{p}+1}_{\rho,1})} + \left\|\frac{\nabla P(\widetilde{\rho}^{\varepsilon})}{\widetilde{\rho}^{\varepsilon}} + \widetilde{v}^{\varepsilon}\right\|_{L^1(\mathbb{R}^+; \dot{B}^{\frac{d}{p}}_{\rho,1})} \leq C\varepsilon.$$

イロト イポト イヨト イヨト

▲御▶ ▲ 臣▶ ▲ 臣▶

Ξ.

• Compressible multi-fluid system: Pressure-relaxation limit for a one-velocity Baer-Nunziato model to a Kapila model. Joint work with Cosmin Burtea and Jin Tan.

- Compressible multi-fluid system: Pressure-relaxation limit for a one-velocity Baer-Nunziato model to a Kapila model. Joint work with Cosmin Burtea and Jin Tan.
- Global existence and relaxation limit for the hyperbolic-parabolic chemotaxis system. Joint work with Qingyou He and Ling-Yun Shou.

- Compressible multi-fluid system: Pressure-relaxation limit for a one-velocity Baer-Nunziato model to a Kapila model. Joint work with Cosmin Burtea and Jin Tan.
- Global existence and relaxation limit for the hyperbolic-parabolic chemotaxis system. Joint work with Qingyou He and Ling-Yun Shou.
- Anisotropic systems e.g. 2D Boussinesq with damping. Work in progress with Roberta Bianchini.

э

Extensions and perspectives

Merci pour votre attention !

イロン イ団 と イヨン イヨン

∃ < n < 0</p>

Well-posedness result

Theorem (Danchin, C-B '21)

Let $d \ge 1$, $p \in [2, 4]$ et $\varepsilon > 0$. There exists $k_p \in \mathbb{Z}$ et $c_0 = c_0(p) > 0$ such that for all $J_{\varepsilon} \triangleq \lfloor -\log_2 \varepsilon \rfloor + k_p$, if we assume

$$\|Z_0\|_{\dot{B}^{\frac{d}{p}}_{p,1}}^{\ell} + \varepsilon \, \|Z_0\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}^{h} \le c_0,$$

then the system admits a unique solution Z satisfying

$$X_{p,\varepsilon}(t) \lesssim \|Z_0\|_{\dot{B}^{\frac{d}{p}}_{p,1}}^{\ell} + \varepsilon \, \|Z_0\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}^{h} \quad \text{for all } t \geq 0, \text{ and where}$$

$$\begin{split} X_{p,\varepsilon}(t) &\triangleq \varepsilon \, \|Z\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{2}+1}_{2,1})}^{h} + \|Z\|_{L^{1}_{t}(\dot{B}^{\frac{d}{2}+1}_{2,1})}^{h} + \varepsilon^{-\frac{1}{2}} \, \|Z_{2}\|_{L^{2}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} \\ &+ \|Z\|_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}^{\ell} + \varepsilon \, \|Z_{1}\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}+2}_{p,1})}^{\ell} + \|Z_{2}\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})}^{\ell} + \|W\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}. \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Relaxation limit

Theorem (Danchin, C-B '22)

Let $d \ge 1$, $p \in [2, 4]$ and $\varepsilon > 0$. Let $\overline{\rho}$ be a strictly positive constant and $(\rho - \overline{\rho}, v)$ be the solution constructed in our global well-posedness result. Let the positive function \mathcal{N}_0 such that $\mathcal{N}_0 - \overline{\rho}$ is small enough in $\dot{B}_{\rho,1}^{\frac{d}{p}}$, and let $\mathcal{N} \in C_b(\mathbb{R}^+; \dot{B}_{\rho,1}^{\frac{d}{p}}) \cap L^1(\mathbb{R}^+; \dot{B}_{\rho,1}^{\frac{d}{p}+2})$ be the unique solution associated to the Cauchy problem:

$$\begin{cases} \partial_t \mathcal{N} - \Delta P(\mathcal{N}) = 0\\ \mathcal{N}(0, x) = \mathcal{N}_0 \end{cases}$$

If we assume that

$$\|\widetilde{\rho}_{0}^{\varepsilon}-\mathcal{N}_{0}\|_{B^{\frac{d}{p}-1}_{\rho,1}}\leq C\varepsilon,$$

then

$$\|\widetilde{\rho}^{\varepsilon} - \mathcal{N}\|_{L^{\infty}(\mathbb{R}^+; \dot{B}^{\frac{d}{p}-1}_{\rho,1})} + \|\widetilde{\rho}^{\varepsilon} - \mathcal{N}\|_{L^1(\mathbb{R}^+; \dot{B}^{\frac{d}{p}+1}_{\rho,1})} + \left\|\frac{\nabla P(\widetilde{\rho}^{\varepsilon})}{\widetilde{\rho}^{\varepsilon}} + \widetilde{v}^{\varepsilon}\right\|_{L^1(\mathbb{R}^+; \dot{B}^{\frac{d}{p}}_{\rho,1})} \leq C\varepsilon.$$

直 ト イヨ ト イヨト