HYPERBOLIC CATTANEO APPROXIMATION OF HEAT-CONDUCTIVE
COMPRESSIBLE FLUIDS
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ABsTrACT. We investigate the Navier-Stokes-Cattaneo-Christov (NSC) system in R? (d > 3), a model
of heat-conductive compressible flows serving as a hyperbolic relaxation of the Navier-Stokes-Fourier
(NSF) system. The (NSC) system addresses the incoherent infinite heat propagation speed observed
in (NSF), commonly referred to as the paradoz of heat conduction.

Within a critical regularity functional framework, we prove the global-in-time well-posedness of
(NSC) for initial data that are small perturbations of constant equilibria, uniformly with respect to the
relaxation parameter € > 0. Then, building upon this result, we obtain the sharp large-time asymptotic
behaviour of (NSC) and, for all time ¢ > 0, we derive quantitative error estimates between the solutions
of (NSC) and (NSF). To the best of our knowledge, this provides the first strong convergence result
for this relaxation procedure in the three-dimensional setting and for ill-prepared data.

The (NSC) system is a partially dissipative system that incorporates both partial diffusion and
partial damping mechanisms. To address these aspects and ensure the large time stability of the
solutions, we construct localized-in-frequency perturbed energy functionals based on the hypocoercivity
theory. More precisely, our analysis relies on partitioning the frequency space into three distinct
regimes: low, medium and high frequencies. Within each frequency regime, we introduce effective
unknowns and Lyapunov functionals, revealing the spectrally expected dissipative structures.

1. INTRODUCTION

1.1. Presentation of the systems. In the Eulerian description, a general compressible fluid evolving
in RY (d > 3) is characterized at every material point z € R? and time ¢ € R by its density p = p(t, ) €
R, velocity field u = u(t,r) € R% and its internal energy e = e(t,r) € R,. Those physical quantities
are governed by:
e The mass conservation:
Oep + div(pu) =0,
e The momentum conservation:

O(pu) + div(pu @ u) + VP = divr,

e The energy conservation:

Ju? : Juf? : .
O | p 7—+—e +div | pu 74—@ +uP | +divg =div (7 - u),

where 7 is the viscous stress tensor, P the pressure and ¢ the heat flux. In the regime of Newtonian
fluids that we adopt here, T is given by

72 2uD(u) + MdivuId,
where A and p are the shear and bulk viscosities satisfying g > 0,v := A+ 2u > 0 and D(u) =
2(Vu + TVu) is the deformation tensor. We restrict ourselves to a pressure function of the form

1) P = P(p,T) = Tr(p),
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where 7 is a smooth function and 7/(p) > 0 for p > 0. Moreover, we assume that the fluid obeys Joule’s
law: the internal energy e is a function of the temperature T' € R, only and, for a positive constant C,,,
we have e = C,T. Hence, using Gibbs relations for the internal energy and the Helmholtz free energy,
we obtain the following temperature equation

(2) pCy(0T +u - VT) + Pdivu + divg = div (7 - u).
Assuming that the heat flux ¢ follows the Fourier law:
(3) q= _K:VTa

where k > 0 is the heat conductivity coefficient, we obtain the Navier-Stokes-Fourier equations modelling
viscous heat-conductive compressible flows:

Op + div (pu) = 0,
(4) Or(pu) + div (pu @ u) + VP = divr,
pCyo (0T 4+ u - VT) + Pdivu — kAT = div (7 - u).

The Fourier law has been widely and successfully used to approximate the phenomenon of heat
propagation in continuous media. However, its relevance comes into question in various applications
where alternative approaches are more appropriate for accurate heat conduction modelling. A notable
limitation emerges when employing the Fourier law to close the system , introducing an intrinsic hy-
pothesis regarding heat transfer —the instantaneous response of the heat flux to a temperature gradient.
In other words, this assumption, while mathematically convenient, leads to an unrealistic prediction:
the infinite speed of heat propagation, commonly referred to as the paradox of heat conduction. In
particular, the inadequacy of the Fourier law becomes apparent at the nanoscale or in scenarios with
short timescales, as detailed in [67], [46] (highlighting high-energy laser technology), and [57] (addressing
nano-fluid heat transport). In such contexts, the response of the heat flux to the temperature gradient
in the material is no longer small enough to be neglected and deemed instantaneous.

To address this limitation, hyperbolic heat conduction models have been introduced, proposing
different constitutive equations for the heat flux. One of the best-known is the Maxwell-Cattaneo [9]
heat transfer law:

(5) e20,q + q= —kVT,

where the relaxation parameter £ > dﬂ represents the time lag required to establish steady heat conduc-
tion in a volume element once a temperature gradient has been imposed across it. The law corrects
the paradox of heat conduction as it ensures a finite speed of propagation of the thermal signal. Indeed,
inserting in the equation of the temperature (2)) gives, for u =0, p =1 and C, =1,

(6) 20T + 0,T — kAT = 0,

which is a damped wave equation ensuring the propagation of damped thermal waves with the finite
speed v/k/e. Such reformulation is often referred to as second sound in the context of thermoelasticity
[44].

Although the Maxwell-Cattaneo law preserves the causality principle for heat propagation in
steady continuous media, it is incompatible with the Galilean invariance of frame-indifference when the
medium is in motion. To address that, Christov and Jordan [I5] replaced the partial time derivative
with the standard material derivative, leading to the following formulation

(7) e2(0rq +u-Vq)+q=—kVT.

The constitutive law @ is Galilean invariant and resolves the moving frame paradox as the wave speeds
of thermal disturbance are now ¢; 2 = u £ /k/e, which is coherent inside a body moving with velocity
u. However, this law remains imperfect as it does not lead to a single equation for the temperature field.

ts value can be experimentally determined for different materials [14} [15].
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To remedy that, Christov [I4] proposed an alternative formulation using the Lie-Oldroyd upper-
convected time derivative. The following equation for the heat flux leads to a truly frame-indifferent
formulation?]

(8) 2 (0uq° +u - Vq°© — q° - Vu© + q°dive®) + q° = —kVT".

Coupling the fundamental conservation laws of fluid mechanics with leads to the Navier-Stokes-
Cattaneo-Christov equations:

Orp® + div(pu®) = 0,

) O (pfu) + div (pfu® @ u®) + VP = divre,
p°C (0T + ue - VT?) + Pedive + divg® = div(r° - u?),
e2(0,9° + uf - Vg° — q° - Vuf + g°divu®) + q° = —xVTEe.

In summary, the physical significance of system @ can be distilled into three aspects:

e It corrects the unrealistic feature of heat propagation presented in the Navier-Stokes-Fourier
system : the thermal signal in @[) exhibits a finite speed of propagation;

e It satisfies the Galilean invariance principle of frame indifference;

e Formally, in the relaxation limit € — 0, system @ can be understood as a partiallyﬁ hyperbolic
approximation of .

For comprehensive reviews on the topic of hyperbolic approximations, interested readers can refer to
[10, 39, 53| 27] and references therein.

1.2. Overview of our findings. Our paper aims to improve the understanding of the Cattaneo-
Christov approximation in addressing the paradoz of heat conduction.

First, we establish the uniform-in-¢ existence of unique global-in-time small strong solutions to the
Navier-Stokes-Cattaneo-Christov system @D in dimensions d > ﬂ cf. Theorem ﬂ The solutions we
construct are small perturbations around the constant equilibria

(10) (p,u,T,q) = (p,0,T,0)

where p, T > 0. The choice § = 0 comes from the fact that the equilibrium considered has to satisfy the
system (J) to have a suitable linearized structure (see [65} [7]) and, in the context of fluid mechanics,
the assumption @ = 0 is natural due to the Galilean transformation, as explained in [5, p. 6] or [21].

Then, building upon our global existence result, we recover the sharp time-decay rates of the
solutions in Theorem [2.2] and we establish global-in-time quantitative error estimates between the
solutions of @D and as € — 0, leading to our relaxation result: Theorem 2.4

To the best of our knowledge, our work is the first to show that the formal link between @D and
is rigorously valid in a multi-dimensional setting. Additionally, we justify that the convergence
between both systems holds in a strong sense and without assuming that the initial data satisfy the
limit system constraint, i.e. the Fourier law: q5 = —xVT§. In this sense, our result holds in an ill-
prepared context as we handle the initial-time boundary layer. Furthermore, as discussed in Section [7]
our approach is robust enough to be applied in justifying the hyperbolization of other parabolic models.
Overall, our research contributes to the understanding of Cattaneo-Christov’s law mechanism through
the combination of a meticulous frequency analysis and hypocoercive techniques.

20bserve that the equations @ and are the same in the one-dimensional setting.

Stisa partially hyperbolic approximation of system as there are still parabolic effects in the equation of the velocity
in the approximating system @ Fully hyperbolic approximations of the Navier-Stokes-Fourier system are discussed in
Section

4The dimension restriction is explained in Remark
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1.3. Existing literature on Cattaneo-type relaxation model. In contrast to the attention given
to 7 as depicted in the next subsection, there is relatively less research dedicated to the Navier-Stokes-
Cattaneo-Christov system (@ Angeles, Malaga and Plaza [4] showed that system @D is dissipative in
the one-dimensional setting, in the sense of the Shizuta-Kawashima (SK) condition [55], and established
time-decay estimates for a linearization of the system around constant equilibrium states. Then, some
references were interested in fully hyperbolic approximations of the Navier-Stokes Fourier system in 1d.
In addition to the equation for the heat flux, one also incorporates an evolution equation for the viscous
tensor, thereby transforming the velocity equation into a hyperbolic form; see in the Appendix.
For such models, in [35], Hu and Racke established the global existence of smooth solutions for small
data in H?(R) and the local-in-time relaxation limit towards (4 as ¢ — 0 in H°(R). Peng and Zhao [52]
established the global uniform existence of smooth solutions and justified the global weak convergence in
H?(R). Conversely, in [36], Hu and Racke proved a blow-up result for the fully hyperbolic approximation
of the Navier-Stokes-Fourier system when the initial data are large. This observation is consistent with
the inherent contrast between hyperbolic and parabolic PDEs.

Recently, Angeles [I [3] showed that the coupling between the compressible Euler-Cattaneo-
Christov system is unfit to model the propagation of thermal and acoustic waves in several space
dimensions. More precisely, it signifies that the inviscid version of @ cannot be written in a conserva-
tive form, leading to a lack of hyperbolicity. The well-posedness theory remains unresolved in that case.
In the viscous case, Angeles [2] developed a metric fixed point theorem for Fibonacci contractions and
proved the local-in-time existence and uniqueness of solutions to @ in any dimensions. In the present
paper, we build upon this result to perform our global-in-time analysis.

We also mention the work of Dhaouadi and Gavrilyuk [27] where, using Hamilton’s principle and
an augmented Lagrangian procedure, the authors derive a purely hyperbolic approximation of the Euler-
Fourier system in every dimension. In Section [7} we discuss the extension of our methodology to study
models arising from their approach.

1.4. Some literature on the Navier-Stokes-Fourier system. So far there is a huge literature on
the existence, blow-up and large-time behaviour of solutions to the Navier-Stokes-Fourier system .
The local existence and uniqueness of smooth solutions away from vacuum were proved by Serrin [54]
and Nash [50]. The local existence of strong solutions in Sobolev spaces was constructed by Solonnikov
[56], Valli [58] and Fiszdon and Zajaczkowski [29]. Matsumura and Nishida [48] [49] established the
global-in-time existence of strong solutions being small perturbations of a linearly stable constant state
(000, 0,050) (With g > 0) in three dimensions. Moreover, with an additional L' smallness assumption
on the initial data, the optimal decay rate coinciding with that of the heat kernel was obtained. Later,
those results were generalized to other regions: for example, exterior domains were investigated by
Kobayashi [42] and Kobayashi and Shibata [43], and the half-space by Kagei and Kobayashi [40] [41].
Results related to wave propagation are also available: Zeng [66] investigated the L' convergence to the
nonlinear Burgers’ diffusion wave. Hoff and Zumbrun [32] performed a detailed analysis of the Green
function in the multi-dimensional case and obtained the L> decay rates of diffusion waves. In [47], Liu
and Wang exhibited the pointwise convergence of solutions to diffusion waves with the optimal time-
decay rate in odd dimensions, where a weaker Huygens’ principle was also shown. For the existence
of solutions with arbitrary data, Xin [60] found that any smooth solution to the Cauchy problem of
compressible Navier-Stokes system without heat conduction (including the barotropic case) would blow
up in finite time if the initial density contains vacuum. Huang, Li and Xin [37] established the global
existence of classical solutions with small energy that may have large oscillations and contain vacuum
states. A breakthrough is due to Lions [45], who obtained the global existence of weak solutions with
finite energy when the adiabatic exponent is suitably large. Subsequently, some improvements were
achieved by Feireisl, Novotny and Petzeltova [28] and Jiang and Zhang [38]. However, the uniqueness
of weak solutions remains an open question.

Regarding frameworks similar to the one we employ in this paper—specifically, strong solutions
being small perturbations of constant equilibria—we refer to the following references. Danchin |20} 21]
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established the global existence of unique strong solutions to in critical homogeneous Besov spaces of
L2-type. That result was extended to Besov spaces of LP-L2-type by Charve and Danchin [I1] and Chen,
Miao and Zhang [12]. Haspot [30] achieved a similar result by employing a more elementary energy
approach based on the viscous effective flux introduced by Hoff in [3I]. In a LP-type critical regularity
framework, Danchin and He [23] justified the low Mach number convergence to the incompressible
Navier—Stokes equations for viscous compressible flows in the ill-prepared data case. Then, Danchin
and Xu [25] [63] developed a time-weighted energy approach in the Fourier semigroup framework and
derived optimal decay rates in LP-type critical spaces. Following this, Xin and Xu [6I] introduced a
Lyapunov-type energy method for deriving time-decay rates. In this approach, there is still a requirement
for a Bioo—condition on the low-frequency part of the initial data, though it does not necessarily need
to be small. More recently, Danchin and Tolksdorf [24] investigated the scenario in which the equations
are posed on bounded domains of R?.

1.5. Outline of the paper. Our paper is structured as follows. In Sections we give the
linearization of system @[) and introduce the functional framework that we use in our analysis. Sections
2:32:4) are dedicated to presenting our main results and outlining the methodology employed. In Section
we prove uniform-in-¢ a priori estimates for the linearization of system @ Section [4] is devoted to
establishing our global well-posedness result, while Section [5| delves into the study of the large-time
behaviour of the solution. In Section [f], we prove our strong relaxation result. Section [7] presents a
discussion regarding possible extensions of our findings. Some technical lemmas are provided in the
Appendix.

2. REFORMULATION OF @ AND MAIN RESULTS

2.1. Reformulation of the system. Let p > 0 and T > 0. Linearizing the system @ around
(p,0,T,0) and, as in [21}, 26], nondimensionalizing it to simplify the expression of the linear system, we
obtain

0ra® + dive® = F€,

oyt — Ave + Va® +yVo° = G=,

040° + Bdiv gt + ydive® = HE,

£20:¢° + ag® + KV = 2I°,

(11)

where the new unknowns a®, v¢, 6° and ¢° are time and space rescaling oiﬂ (0°—p)/p, us, T*—T and ¢,
respectively, and the Lamé operator is defined as A := (uA + (A + p)Vdiv)/v. The exact rescaling, the
constant coefficients «, 5,y and the source terms appearing in are defined in Appendix Applying
a similar procedure to the Navier-Stokes-Fourier system leads to

Oia + dive = F,
(12) 0w — Av+ Va+ V0 = G,
010 — ﬁﬁA@ + ~ydive = H,

@
where a,v,0, F, G, and H are defined similarly to a%,v%,0°, F¢, G° and H°®.

2.2. Functional framework. Due to the dual partially dissipative nature of the Navier-Stokes-Cattaneo-
Christov system (elucidated in Section [2.4]) our strategy relies on the analysis of the solutions in
three distinct frequency regimes. Within each of these regimes, the solutions exhibit very different
behaviours, necessitating the use of hypocoercive methodologies adapted to each regime.

A spectral analysis of the model suggests to consider the following thresholds to separate the
frequency regimes

k
(13) jo:=K and jo:=—,

5The particular way we write the perturbation of p® is tailored to handle the factor p® appearing in front of the
time-derivatives in the equations of the velocity and temperature.
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where K is a suitably large integer and k is a suitably small integer to be determined lateﬂ Given
that our analysis will rely on the dyadic Littlewood-Paley decomposition to split the frequencies, we
also introduce the thresholds

(14) Jo :=1logy K and J. := —[log, €] + log, k,

Remark that the thresholds Jy and J. correspond to those employed in the study of partially diffusive
systems in [23] and partially damped systems in [18] [19], respectively. Then, to justify our computations,
we assume that

(15) Jo < J..

This assumption is crucial in our computations to ensure that verifies hypocoercive stability prop-
erties. In particular, it implies that the well-known (SK) conditiorﬂ [55] is satisfied. It is also in line
with [33, Theorem 2.2] where the authors show that does not satisfy the (SK) condition when ¢ is
too large. Since K and k are constants, the assumption implies that € must be sufficiently small.

This preliminary analysis suggests working in a functional framework that would facilitate the
decomposition of the frequencies. In this regard, the Littlewood-Paley decomposition and homogeneous
Besov spaces emerge as natural tools for analyzing our model. We define the following frequency-
restricted homogeneous Besov semi-norms corresponding to the decomposition induced by :

¢ j E j he _ j
ey Iy, = D0 2 Wfillees IFIGS = 3 270fsllee and NIFIGE = >0 27 illee,
' J<Jo ' Jo<j<Je ' j=Je—1
where f; := Aj fand Aj is the classical Littlewood-Paley frequency-localization operator, see [0l Chapter
2]. We also introduce the following semi-norms that will be useful in our analysis:

(17) IFI%E =" 2% fillee and f1%. = 2% £]ce-
S VA SR

Note that the norms without the e-dependency correspond to the spaces used to treat the limit system
(4) in [21, 23 26]. We emphasize here that our utilization of Besov spaces serves not only to obtain results
in a critical regularity setting but is pivotal for deriving our strong relaxation limit result, as it enables
us to recover sharp dissipative properties. The key insight is that, without implementing a frequency
splitting, only the worst behaviour among the three regimes would prevail, making it impossible to
establish uniform bounds to justify the relaxation limit.

Given the dependence of the norms on K, k and ¢, it is necessary to monitor these parameters
when employing Bernstein-type embeddings within each frequency regime. We recall that, in the context
of the Littlewood-Paley theory, Bernstein-type estimates can be applied to each localized-in-frequency
component and allow for the control of the behaviour of the function across different frequency scales.
For instance, one can show that for a distribution localized in the low-frequency regime |¢| < 1, the L?
norm of its gradient can be bounded by the L? norm of the distribution (see the first inequality of
for s =1 and s’ = 1). The following proposition does this seamlessly in our context and directly follows
from the standard Bernstein inequalities derived, for instance, in [6, Chapter 2].

Proposition 2.1 (Bernstein-type inequalities). Let f be a smooth function, p € [1,00], s € R and
s’ > 0. The following inequalities hold true

s’ h, s s’ h,
(18) ||f\|€~;1 S K® ||f||f§;?u ||f||B§1 Sk e f] Bil
B B ’ P,
19 Z_,e < ks’ —s’ Zje me < ks’ —s’ m,e d m.e <K—s’ me
19 WA, SEE MG I SE AR, and I S KNG

6The values of K and k can be explicitly determined in our computations. It is essential to choose K and k suitably
large and small, respectively, to ensure that some linear source terms can be absorbed.

"We recall that the (SK) condition is a sufficient algebraic criterion ensuring the stability of partially dissipative systems
and that it is equivalent to the Kalman rank condition, as pointed out in [7]. However, it is not a necessary condition
in the multi-dimensional context. Consequently, whether global-in-time solutions exist when fails remains an open
question.
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2.3. Main results. Before stating our results, we define the functional norm X§ associated with the
initial data:

(20) X o= X5+ X5 4+ X0,
where
X6 = ll(ag, v5,65,¢a5)II° o o Xo"" =105, ea)™s_,  a_, + oGl + lagl™s
B2, BP, nBP, P B?,
h,e __ h,e h,e h,e h,e
Xy = ellwg] 4 + el|vg] 4 +EIIGSIIB§1+1 +&[(65: 246)| g

We are now ready to state our first result: the well-posedness of system within a critical regularity
framework, provided that the relaxation parameter ¢ is small enough so the (SK) stability condition
holds.

Theorem 2.1 (Uniform-in-¢ global well-posedness for small data). Let ¢ > 0, d > 3, p € [2,d) and
p € [2,2L]. There exist constants K,k € Z and 19 > 0 such that for all € satisfying and if

-2
X5 <o,

then system admits a unique global-in-time solution (a®,v®, 0%, ¢%) satisfying, for allt >0,

(21) XE(t) < OXG,

where X¢(t) is defined in and C > 0 is a constant independent of t, € and the initial data.

Remark 2.1. Some remarks are in order.

e To the best of our knowledge, Theorem is the first result to show the uniform global well-
posedness of the Navier-Stokes Cattaneo-Christov equations in a multi-dimensional framework.

e The condition allows to employ our hypocoercivity-based methodology. If it is not satisfied,
the frequency regimes are interchanged, rendering our method for deriving uniform a priori
estimates inapplicable. Notably, the condition is equivalent to the (SK) condition (|55]), as
elucidated in our computations.

e The bound provides uniform-in-¢ and O(e) controls of the solution for all times which are
essential to justify the relazation limit (¢ — 0) in Theorem . It results from a sharp linear
analysis combined with refined and new product laws, in hybrid Besov spaces of L?-LP-L?-type,
to bound the nonlinear terms (see Propositions[B.1{B.2).

e The limitation to dimensions larger than 3 arises from technical difficulties in establishing prod-
uct laws within the critical reqularity framework, as apparent in for instance. An alternative
approach to deal with the two-dimensional case, based on a Lagrangian reformulation, is dis-
cussed in Section [

Building upon Theorem we analyze the large-time asymptotic behaviour of the solutions of
(11).

Theorem 2.2 (Large-time behaviour). Let the assumption of Theorem be in force and (a®,v¢, 0%, ¢°)
be the corresponding global-in-time solution of associated to the initial data (af,v§,05,q5). If
(a§,v§,05,q5)" € By 2 for1— g <oy <og= i)—d - %, then, for all t > 0,

22 A% (a®,v")(t LPSClth_%(%_%)_UZUI if *51<0§£l*1
’ p
and
oto d
(23) IA”(6%,2¢°)(#) |1 < C(1+)"$G—9)= 775 4 ~h<os -2

with 61 = o +d(3 — %), where the operator A is defined by A°f = F~1(|¢|]°Ff) and the constant C
is independent of t and €.

Remark 2.2. Some comments are in order.
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o In the seminal work [49), the L -control of the initial data was pinpointed as a sufficient condition
to derive the large-time behaviour of solutions. Here, our assumption is less restrictive thanks
to the embedding L' — B2_o%o

o The decay rates in and are sharp in the sense that they are uniform-in-¢ and align
with the optimal rates achievable for the limit system (derived for instance in [260] ).

Before presenting our relaxation limit result, we recall (in a simplified statement) the global well-
posedness result for the limit system established by Danchin and He in [23].

Theorem 2.3 (|23]). Letd >3, p € [2,d) and p € |2, f—_dz]. There ezists K € Z and n > 0 such that if
XO < 7o,

then system admits a unique global solution (a,u,0) that, for all t > 0, satisfies

X(t) < X07
where
Xo = Jlaol™ &+ lwoll" a, +160ll" a_, + ll(a0, vo. o) 4,
B;-,l ;1 ;,1 Bz,l
and
24) X =(a,v,0)° 4, +(a0,0)] 4,
LE(Bs, ) Ly(B3y )
+ Jla]” P T I ] LR 17| L
FNLL (B, Ly (BY, Ly (B, L¥ (B, LL.(BY,)

Finally, we present our result on the global-in-time relaxation limit of the Navier-Stokes-Cattaneo-
Christov system to the Navier-Stokes-Fourier system as e — 0.

Theorem 2.4 (Strong relaxation limit). Let ¢ > 0 and assume that the hypotheses of Theorem are
fulfilled. Let (a®,v¢,0%,q%) be the global solution of given by Theorem supplemented with initial
data (a§,v5,05,q¢5) and let (a,v,0) be the global solution of given by Theorem [2.3 supplemented
with initial data (ag,vo, 6p). We define the error unknowns

(@,7,0) := (a° — a,v° —v,6° —60) and (dy,7o,00) := (ag — ag, vy — vo, 05 — o).

If we assume that

(25) 1@, Do, 00) 1% 4, + 1@oll™ a_, + 11@o, 00)[1" u_, Se,
B22,1 :,1 il
then, for all'T > 0, we have
X(T) <.,
where
(26) XM = @0l 4, +1@TOI° o +log® +6V|  a,
F(B2, ) Li(B$y) Li.(BY,
+ lla)” oy HI@ONT L, + @O .
L?QL’}(BPJ LE(BY, L%"(B;,l)

Thus, as € — 0,
ag® + KV — 0 strongly in  L'(R™; Bil_l),
and
(a® —a,v® —v,0°—0) — 0 strongly in E,

where E is the functional space associated to the norm X.

Remark 2.3. Some remarks are in order.
e Theorem[2.4 is, to the best of our knowledge, the first result establishing the global-in-time strong
convergence, in dimensions d > 3, of the Navier-Stokes-Cattaneo-Christov systems towards the
Navier-Stokes-Fourier system.
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e The convergence holds in an ill-prepared scenario in the sense that we do not assume the initial
data of to satisfy the limit system constraint: the Fourier law aqf = —kVj. To deal with
the initial-time boundary layer formation, we show that the quantity Q) := aqf + kVO§ behaves
as e~t/¢ in suitable norms.

o As explained in Section[7, our methodology is robust enough to analyze fully hyperbolic approx-
imations of the Navier-Stokes-Fourier systems explored in [27, [34], 511 [52].

2.4. Strategies of proof. We present our strategy to analyze the system .

2.4.1. Partial dissipation. In the Navier-Stokes-Cattaneo-Christov system , dissipative operators
are present in only two of the four equations: there is diffusion for the velocity field u® through the
stress tensor 7°¢ and damping for the heat flux ¢°. However, to justify the stability of the system, it is

necessary to recover dissipation for all the components. To that matter, it is important to understand
(11) as a combination of

(i) A partially damped coupling between 6° and ¢, enabling to recover dissipation for 6°.

(ii) A partially diffusive coupling between a° and v, allowing to recover dissipation for a.
Both of these coupling are related to the study of partially dissipative hyperbolic systems, a topic initially
developed by Shizuta and Kawashima in [55]. There, the authors developed an algebraic condition,
the (SK) condition, ensuring the stability of the system when the hyperbolic eigendirections of the
system avoid the kernel of the dissipation. More recently, Beauchard and Zuazua [7] have framed the
partially dissipative coupling (i) into Villani’s hypocoercivity theory [59] and enhanced its understanding.
Employing tools from the control theory, they show that the interactions between the hyperbolic and
dissipative parts of the system can propagate the dissipation to directions that are not affected by the
damping operator. Then, inspired by this work, Crin-Barat and Danchin [I6], T9] obtained new results
for the relaxation associated with partial damping using frequency-localization arguments. It is their
approach that we shall employ to deal with the partially damped coupling inside .

The analysis of the coupling of type (ii) goes back to the theory developed by Danchin [20]

concerning the compressible Navier-Stokes equations. However, as we will see below, this coupling
can also be comprehended as an application of the hypocoercivity theory.

In the following two subsections, we revisit the essential aspects of the strategies employed to
investigate linear partially diffusive systems (ii) and the relaxation of linear partially damped systems
(). The interested reader may also consult [22] for a comprehensive survey on these two phenomena.

2.4.2. Partially diffusive setting. We examine the simplified model
Ora + divu = 0,
(27)
Oiu+ Va— Au=0.
A spectral analysis of the system reveals the following behaviour:

e In the low frequencies regime, |{| < K, the solution (a,u) exhibits characteristics akin to
solutions of the heat equation.

e In the high frequencies regime, |{| > K, a undergoes a damping effect, and u has a parabolic
behaviour.

Hence, it is appropriate to analyze these two frequency regimes using different techniques.

The low-frequency regime |¢| < K. In the reference [20], the author formulates a Lyapunov
functional that allows to recover dissipation for the component a, it reads

1
(28) £10t) = [|(ay ) ()2 + 5/ u-Va.
R4
Taking the time derivative of £; and applying Young’s inequality yields
1d
(29) L1+ [[(Va, Vu)|j3: <r1.hs,

2dt
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where the linear terms on the right-hand side can be absorbed in the low-frequency regime with
Bernstein-type inequalities. Then, using that £1(t) ~ ||(a,u)(t)||?, leads to the spectrally expected
stability estimates. Within this regime, computations are restricted to a L2-in-space framework as the
coupling between the equation is necessary to justify the stability of the system. It is worth noting
that the utilization of the perturbed energy functional , as well as the others below, aligns with the
theory of hypocoercivity developed by Villani [59].

The high frequencies [{| > K. In [30], Haspot introduces the effective velocity unknown

w=1u+ (—A)"'Va and rewrites as
ora + a = divw,

(30) _ -1 €

Ow — Aw =w+ —(—A)""Va'.

Estimating each equation of separately, one obtains

1d

(31) ];%Ila(t)ll’ip + llall7, <rhs,
1d » »

(32) s 0Ol + Vel <rhs,

where the linear terms on the right-hand sides can be absorbed in the high-frequency regime with
Bernstein-type inequalities. Furthermore, within this regime, due to the partial diagonalization of the
system with the effective velocity w, computations can be conducted in a LP-in-space framework for
p=>2.

2.4.3. Relazation of partially damped systems. Now, let’s explore the justification of the relaxation limit
for a partially dissipative toy model. We focus on the linear heat equation
(33) 00 — Af = 0.
Its hyperbolic Cattaneo approximation read, for a € > 0,
8t95 + Cldi‘S = O7
(34) 2 € & €
e“0yq°* +VO° +¢° = 0.

An analysis of the spectral properties of the matrix associated with the system:

0 i€
e (1)

reveals that:

1 1
e In low frequencies, |¢| < =, there are two real eigenvalues — and 2.
€ €
1
e In high frequencies, [£| > —, two complex conjugate eigenvalues coexist, whose real parts are
€

. 1
asymptotically equal to %
€
e The threshold between low and high frequencies is at 1/e.

This analysis reveals that the solution’s behaviour is significantly influenced by the relationship between
¢ and €. Notably, there exists a purely damped mode at low frequencies, which contrasts with the purely
parabolic behaviour at low frequencies described in [7, [55]. Additionally, as e — 0, the high-frequency
regime disappears, leaving the low-frequency behavior to be dominant in the whole frequency space.
This observation is consistent as what persists in the limit exhibits the same behaviour as the limit
equation: a parabolic behaviour for 6, and the Fourier-type law ¢ = —V86.

In summary, the hyperbolic Cattaneo-type approximation introduces a purely damped regime in
high frequencies, while preserving the nature of the limit system in low frequencies. Next, we revisit
the analysis of in both frequency regimes.
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The low-frequency regime || < 1/¢. In the low-frequency regime, we introduce the effective
unknown Q¢ = ¢¢ + V6° to rewrite as
0:0° — AG° = divQ®,
(36) g
€0:Q° + % = —eAQ° — eAVE°.

Estimating each equation of separately, we obtain

1d 1
(37) 5@”(96,6@?5)@)”%2 +[[VE°)I72 + gHQslliz <rhs,
where the right-hand side linear terms are of high order and can be absorbed in the low-frequency regime
using Bernstein-type inequalities. As for the high-frequency regime in the partially diffusive case, the

partial diagonalization of the system enables to work in a LP-in-space framework with p > 2.

The high-frequency regime |{| > 1/e. Drawing inspiration from hypocoercivity-type argu-
ments (refer to [7), 17, (18| 20, 59)]), we define the perturbed energy functional

(39) £a(6) = (0", ea" )OI +27% [ o - 00,

Taking the time derivative of Lo and applying Young’s inequality, we obtain:

St 10,63 < vhs,

Here, the right-hand side linear terms are of low order and can be absorbed in the high-frequency regime
through Bernstein-type inequalities. Then, using that L£o(t) ~ ||(6°,2¢%)(¢)||3. leads to the spectrally
expected stability estimates. Again, due to the lack of partial diagonalization for the system, the
computations are restricted to a L2-in-space framework in this regime.

(39)

2.4.4. Decomposition of the frequency space for . Synthesizing the insights gathered in the preceding
two subsections, to analyze , we partition the frequency space into three regimes as follows (refer to
Figure [1)):

e Low frequencies: j < Jy.

e Medium frequencies: Jy < j < J..

e High frequencies: J. < j.

Low Medium High
| frequencies\ frequencies | frequencies

0 LP—I1? j, LP—L* 5 [2-rr [

FIGURE 1. Frequency domain splitting for

In Figure (1} for ¢,r € {2,p}, the notation LY — L" indicates that the analysis of the partially damped
coupling can be conducted in L4-type spaces while the partially diffusive coupling can be studied in L"
spaces. As ¢ — 0, J. — o0, so (cf. Figure

e The low-frequency regime is not modified.

e The medium-frequency regime covers the high-frequency regime.

e The high-frequency regime disappears.

Low Medium-high
| frequencies | frequencies
| I >
0 L2 Jo Lr €]

FIGURE 2. Frequency decomposition in the limit € — 0
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This is consistent as the frequency regimes in the limit correspond to the frequency decomposition used
to study the Navier-Stokes-Fourier system in [2I]. Furthermore, the analysis outlined here aligns
with the hybrid Besov framework discussed in Section

3. LINEAR ANALYSIS: A PRIORI ESTIMATES FOR ((11))

In this section, we derive a priori estimates for ([11)):

0zaf + dive® = F©,

O — A%v® + Va® +4Vo* = G°,
0:0° 4+ Bdivq® + ydive® = HE,
€20:¢° + aq® + KV = e2I°

(40)

where the source terms F©,G¢, H¢, I¢ are assumed to be smooth functions. In what follows, we assume
all constant coefficients to be equal to 1, except for e. The computations for general coeflicients can be
performed similarly, but we opt for this simplification to maintain clarity in our argumentation.

The following proposition gives a priori estimates for the system .

Proposition 3.1. Let (a®,v%,0%,¢°) be a smooth solution of satisfying
(41) Xe(t) < 1.

Then, we have

(42) X(t) S Xo+ | (F5, G5 HE e)|" | e
+IFE™E +IIGEII’”A¢ - +6HIEH"” i,
LY(BL,) Ly(Byy ) L; ﬂLQT(B ) LA(B], )
+||F5||’” o et L @ e, +\|G5||h8 4o
Li(B 221) Ly 322,1 Lz 322‘1 LZ.(B 21 )

where X¢(t) and X§ are defined in and respectively.

The proof of the Proposition [3.1] will follow directly from the propositions [3.2] [3-3] and [3.4] related
to the analysis of each frequency region.

Before stating its proof we define the following quantities that play a crucial role in justifying our
bootstrap argument. Let

(43) XE(t) := XO(t) + X™5(t) + X (1),

where, for Q := ¢+ V60 and w := u — (—A)~!Va, the low frequency part reads

¢ ¢ ‘ ¢ ¢
I O [ R [ PR ' LIPS [0 P
L (Bsy ) Li(B2 ) Li(B#,) le )
the medium-frequency part is defined by
(45) X =% e ™ 4, a, ||9||m€ 44
LEBrP, nBP ) (B” nBP2 )
+ [lg°[I™* d_, d + g ™" d_ 5 d_, HQEHWE 45 4
LL(BF, NBP)) LZ(BF, nBP, ) LL(BF, nBP, )
Flw ™ a ™ L e,
LEBP, ) i LENLL(BL,)
S A (PR [ P +HUEHms 4
LE By NBya) Ly(Byy L3 (B, )
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and the high-frequency part reads

h, h, h,
(46) XM (t) = el|a®||™* o HIEE SO IO,
L%QQL’IT(BZZ,I L%O(B221 ) LT(BZ2 )
h h h,
QN 4 +ellwt T, Feflw T 242,
LY.(BY,) L (B3,) Ly (B3,
+ ellos||e + e|lot||e
L e ]

3.1. Low-frequency regime. Let j < Jy. We introduce a suitable unknown that partially diagonalizes
the system. We define the effective unknowrﬁ

(47) Q= + VP,
which satisfies
QE
(48) 0@ + = eff +el*+exkVH®,

where ff = k(Vdivg® + Vdivo®). Inserting in (40, we obtain

0ra® + dive® = F,
0 + Va® + Vo — Av® =G,
(49) 0405 — AG® + dives = —divQ® + H,

0e@® + % =¢ff +el +exVH.
In this subsection, we prove the following result.
Proposition 3.2. Let (a®,v%,0%,¢%) be a smooth solution of such that holds. We have
(50) X(t) < X+ ||(F°, G5, HE eI%) | .

Ld
l/'llq (B22,1 )
Proof. The equation of Q¢ can be studied separately from the others. By Lemma [B:2] and Proposition
we have

4 ¢ 14 0
(1) <@, f||@€|| oty SN, Ly + el VHIL,
%0(32,1 ) 21 ) LT(BZ,l ) (B21
14 £ V4
Sl N, g HMN, g R
B3, 21 2.1 )

To derive a priori estimates for a®,v* and 6%, we define the following functlonal of Lyapunov-type

1
(52) Eﬁ = ||(a5, 5, 65)]172 + 3 / v;Va5 for j < Jo.
R
Using Young inequality and Proposition 2.1} we have
(53) L5 ~ (a5, v5, 65)II7-

Differentiating in time Lﬁ, we have

(54) gﬁﬁ +c2% (a5, 05, 05172 < Ildiv@5llz2 165122 + |(FF, G5, H) 2l (a5, v5, 65)| -

Employing Lemma using , multiplying the resulting equation by 2i(5-1) and summing on
7 < Jo, we reach
(55) I(a®, 0%, 6)I° 4y +l(a®,0f GE)IIZ gi1 S ||(‘10a1’0790)||£ 4o T IIQEHZ 4

T( 21 ) (B221 ) 21 (3221)

£ € e|1L
+||F ’G aH ||L%(B%71).

Then, using the Bernstein-type Proposition [2.1] we have
(56) ||Q€||C < K[Q°|I°

. d d_q
2 Ll 2
2, TB21 )

8For general coefficients, one should consider Q¢ := ag® + KV here and in the rest of the paper.
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Gathering (51) and , and using , we obtain

I(a®,v%,6%, Q)| 4 (**K)HQEIIZ goo (@, 0%, 6%

LEBi) € Ly (B2 (82
< e & pe y4 F¢ e HE oI y4 )
_“(a0a007007€Q0)||B2%;1 +|| aG ) , € ”L%(B%71)
Since ¢° = Q° — kVO° and K < 1/¢, updating the constants, we have
¢ ¢ ¢ ¢
1@, 0%, 6%, )" a IIQEII T Ll I (CT Ll Y T
L (B3, ) »(BZ ) LL(B2)) L (B2
< ||(a07’00?607‘€620)”z d 1 + ||F€ GE H* EIEHZ B%—l)
2 1
which concludes the proof of Proposition [3.2} O

3.2. Medium-frequency regime. Let Jy < j < J.. In this intermediate regime, roughly, we will
rely on Jy < j when dealing with the unknowns a® and u® and on j < J. for the unknowns 6 and gq.
Inspired by the high-frequency analysis performed for the Navier-Stokes systems in [30], in addition to
the damped mode Q¢, we introduce the effective velocity w® = v + (—=A)~*Va® to further diagonalize
the system, it reads

0a® + a® + uf - Va® = divw® + FF,
Ow® — Aw® = w® — (=A)"IVa® + VO° + G5 + (—A) "IV Fe,
(57) 816° — A6* = —divu® — a° + divQ® + H°,

€

0@ + % =cff +eVa® +¢el® +ekVH®,
where F} = F¢ +u® - Va®. We have the following proposition.
Proposition 3.3. Let (a®,v%,0%,¢%) be a smooth solution of such that holds. We have
(58) X)) S X+ IFEI™ o HIGEN™ L el ™ L +||H5||me -

LL(BF,) LENLZ(BE, ) Lyp(Byy ) Ly(Byy )
Proof. Since all the linear part of the equations in are decoupled, up to low or high-order linear
source terms, they can be estimated separately and one can derive a priori estimates in a LP framework.
For the first two equations, employing Lemmas and gives

o™ & +UaI™" o SHaSIT + ™1™ o, A+ IVl gm0l e gy +IETI™
L5 (BE, LE(B]) A s Fer) o) L(B])
(59) Sllagl ™ + llw® IIT”,M + X+ ™
By, Ly(Byy ) Lr(Byy)
and
Il ™ gy A ™ g Sl ™+ ™ +||a€||m 4,
LE (B, ) LL(BP, ) Bpl Ly(Byy ) LL(BF, )
(60) o™ o NG X L,
LL(BEF)) Lyp(Byy ) Li(Br, )
Thanks to Proposition we have
1
(61) o™ 4, Sozle® ™ & and [lw™° L, < Sllwf ™
i) T KR T LB K2 <Bpf)

Multiplying by a small fixed constant, adding it to , using and choosing K large enough
so that 1/K? > 1, we get

L S o L P o [ PR 1] (i ] i L
LFE(By, ) Lp(Byy ) LENLL(B,,) By, Bpl Ly(B ,,1)
(62) HIGE™S s+ X+ IFF™E

da
LL(BE, ) L3(By )
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For 6° and ¢, we have

1051 a, O™ 4 S ||90H [t e, IR +||H5||m8 4
and
1
@™ 4, Q™ 4, SXGHelltI™ 4 Hellwt™T L Fellat™T L
Lg®Br, ) & LL(BP, ) LL(BP,) LL(BP,) Lk (B
FelE ™ eVE
Ly(BYy ) Ly(BY, )
Using Proposition 23] we get
1
101 u, O™ & < (16511 +ﬁ(Hw5|Im€.d+l +Ha®™ 4 )+ *I\Qellma g +||H8Hm€ 4
L%O(B;f),l L(;)l) pl 1 p,1 ) é‘ pl) B;fi,l
and
€
™ a4, *||Q8||m5 d s <Xo+*\|QE||m€,d , O™, +?(Hw5||m€,d+1 + la Ellm
LE (B, ) Ly (BY, ) Ly(Bry ) LlT(B”l) Lr(BY, )
FelIe™ L, HIE™
LL.(B}, Ly (B,
where we used that )
K
ellgl™ & < =N N™" L, FE[O°]™" 4
Lh(Bry € LB ) LL(BP))

Adding the above estimates for 6 and Q¢ with multiplied by %, and adjusting the constant k,e
and K so that the linear right-hand side terms can be absorbed by the left-hand side terms, we get

(63) ™™ AT eI T
LF(BE, ) Ly (B2 LgnLL (B ) LEBE, )
HOE™° o +ellQF™ L, *HQEIIM 4,
IZNCEN) LE(BE, Ly (BYL)
SXGH X HNGN™ o, FIFEI™ o +NH™ L, TN
Lh (B2, ) ZNCES) Lh(BYL) Lh(BYL)

Then, using that ¢ = Q° — KV, we recover

64) el ™" o, AN o, FEIT L S XS +€IIIEII”” 4, +||H8Hm€ PR
LF B:l L%“ B:,l LT Bp 1 T B;ﬁl (Bp1 )

To control the nonlinear terms, additional regularity properties are necessary for 8%, Q¢ and v°.

Additional regularity for §° and @°. Performing similar computations at a higher regularity index,

we derive
1
(65) 101", +H98Hm5 o SO+ U™ g, + 1™ )
L Bpp,l pl pl L] (Bppl L%“(Bpﬁ
+gHQ5||m’E o, FIHEETE L
Ly (B, Ly(BY, )
and
(66) €|IQE||”” 4 *||Q5Hm5,, L SXg+ ||Q5Hm5,d . +’f||98||m6 dp
F(B b Ly (B, ) Ly (B, ) LL(BF,
e([Jw* IImE,dH + ™ 4 )
Ly (Byy ) LlT(B”l)
+ellIFI™ L FIHEETT L
L (Byy Ly (Bp,
Using that ¢°* = Q° — kV6°, we have
(67) leg® ™" a_y + U™ o, NI o SXG+el ™ IHATE
L (By, L3(Byy ) Ly (B 1) Lyp(Byy ) Ly(Byy )

LL(Br )
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Additional regularity for v*. The equation of v¢ reads
0yv® — Av® + Va® + VO° = G°.
Using Lemma [B-2] we obtain

(68) o™ o ™ .,
L (BP,) L3(B?

Conclusion of the proof of Proposition Adding —— to and , and using
and that

< Mgl +1(Vas, VeOI™ +||GEHM

—1
o1 Bpl LE3(BYy ) (Bpl )

e||m,e
ele™ 4,
1 (P

LT Bp,l T

m 1 m m,
+HIE™ ., SK<EIIIEII 7?1_1)+||H€|\ ) )
Lz(Bga

Lr(Byy ) (Bpl b

conclude the proof of Proposition when ¢ and « are chosen small enough and K large enough. [

3.3. High-frequency regime. Let j > J.. In this regime, we cannot use the unknown @ to partially
diagonalize the system but using w® = v* + (—=A)~!Va® is still effective. The linear system we are
interested in reads

0ra® + a® +v° - Va® = divw® + FT,

Ow® — Aw® = w® — (=A)"Va® + V¢ + (—A)"IVF® + G,
0p0° 4+ v° - VO° + (1 + J(a®))divg® + divw® = HS,

e204q° + 2v° - V@& + ¢° + VO° = 215,

(69)

where I§ = I 4+ v° - V¢° and Hf = H® — J(a®))divg® + v° - V5. We prove the following statement.
Proposition 3.4. Let (a®,v%,0%,¢%) be a smooth solution of such that holds. We have

XMt) < XP+ell (G H)E , +ellGE™T .+ |(eFf e2H €3 2R |

T(B#,) LZ(BF,

(70) + e8I (@) [El
1 B2

. d
L%O(Bzz,l) (B3

Proof. Since j > J. implies j > Jy, the estimates for a® and w® follow the same lines as in the previous
section, we have

h, h, h, h,
(7)™, e, et g Slwgl™s +llag)" d+1+H95|| S a
T 22,1) LlT(B22,1 L%OOL%“(Bzzl ) B21 21 (3221 )
et o I
Ly (B3y) Ly(B3y )
Concerning 0 and g, we define the functional of Lyapunov-type
(72) ﬁ?:/ |9;?|2+/ (1+J(a5))|q§|2+2_2jn/ ¢ Vo5 forj > J.
Rd Rd R4

and for 7 > 0 a positive constant to be adjusted. Differentiating in time E?, we get

1 d 124 € € . 5 I3 A e e e €
oY (/R \9j|2+/Rd(1+J(a ))%IQ) 7||6qu|%2 5/ divuws -6j+/ Aj (0 - Vg)g5 (1 + I (a%))

/A V09)gE (1 + I (a))

+/ Hf’jﬂ;—&—/ 52Iij~q§(1+J(aE))

/ J(a ‘q]|2 /at |€q]|2 /R;Q;
R2 JR4
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where RS = [J(a®), Aj]divqs. Then, using Lemma to deal with the advection terms, we obtain

1d & £ : € € —jd e € €
s (L1057 [ @ gl + Sl < livogllalbf s + 2 7 4X2 0PI o0+ 16 =)
T 15, B 221 05,65
I ATl

where (¢;j);>,. is a sequence such that >, ; ¢; = 1. Then, thanks to and composition estimates,
we have ||J(a%)||L~ < 1 and

1 . _id
) g (L2 [ e r@nig? ) + Sl £ ivaslos165]e + 2 X @2 e
I 15, B2 65,65
10T D e g3

Differentiating in time the third term of the Lyapunov functional , we obtain

d

1 . 1 . .
— | q;-VO; + 7||V9§||%2 S ||d1vq§\|%z + 7/ q; - VO; + | divw; - divg;
dt 9 9 Rd

Rd !
—i—/RdVHj-qjﬁ—/Rdevej.

Using Cauchy-Schwarz, Young and Berstein inequalities, we have
i 7
2L o052 6 1V o

il
S27 7||%|\L2||9 (P&

k
< i 211051 22
k 77
< g5 112> + 5= 522 ||9§-||i2.
Similarly,
2 [ divus-dive; S glhusli + 5l
Thus, choosing 7 small enough such that n < k, we infer
: _id
(74) @Ef = ||(9§-,6q§)||i2 S lIdives |2 (165112 + ;2772 X (1)

1
+ICHT, eli 5, Bl 22165, eq5) |22 + 227 T H || 2lleg5 | 2

+ (10T (a%)) | o< lleg 1172,

where we used that

2 [ VH; g2 [ 15V S N sl e + T 65

Then, we prove the following lemma
Lemma 3.1. The function E;‘ is equivalent to the L?-norm of the solution, we have
h
L7~ [1(65,¢45) 72
Proof. Using Young’s inequality, we obtain
2 [ 5905 S 216 s + 216512)
S 27%|g5 (122 + 1165122
S elaslize + 16512

<1065, 4512
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and since implies that ||J(a®)||z~ < 1, we obtain the desired result. O
Applying Lemma and Lemma to , we get
1
75 ¢, 2q°)||"° + = |1(6%, e¢°)||"° <165, eg) ™5 . + |Jwt|| ™
(75) I, )||L%O(B§1+1) = 1007, )||L1T(B§1+1) 11065, O)||B§1+1 | |\L1T(B§1+2)

h,
IIHEII :

+ ||(Hf, eI, BO)||"*
Ll ( 21)

s
T

+ 0Tl g o115+ X7(0)
0 21

Multiplying by e, adding it to , yields

1
[ P o [ P o [ o [ A= O Y [ 1 [l d
Ly 322,1) L%C(B22,1 ) L%" 322,1 € L%"(Bzzl LooﬂLl (B22,1 )
S Il 1" a (e, a5, a5) 1" pin
2 1
(76) + X+ NG , + ||F5||h€
Li(B3h) Li (3221)
+(HT, 1% eRY)™ , +IH"E
Ly (B3, ) Ly(B3,)
T
Oy (a® €
Y e
Again, to deal with nonlinearities we need additional L2-in-time information for v°.
Additional regularity for the velocity. Recall that v® satisfies
(77) Op® — Av® + Va® + VE° = G°.
Applying Lemma to yields
(78) o)™ L, o) g1 S <logl™5 +1(Vas, Vo)™, +lIGe™e
L%O BZZ,I L%‘(BZ 1 ) 3221 L%‘(Bg,l ) L2 (B221 )
Multiplying by 1/2, adding it to and multiplying the resulting inequality by ¢ concludes the
proof of Proposition O

4. PROOF OF THEOREM [2.]} NONLINEAR ANALYSIS

In this section, we estimate the nonlinear terms appearing on the right-hand side of in
Proposition

4.1. Low frequencies: nonlinear analysis. We prove the following lemma.

Lemma 4.1. Let (a®,v%,0°,¢%) be a smooth solution of , we have
I(F, G5 HR e ) ||© 4, < X(1)°
Ll

d_q
(P31

Proof. First, we focus on the term I = v® - V¢© — ¢° - Vo© + ¢°divo®. To this end, we shall employ the
following two inequalities (see [23]):

d :
(79) ITsgll oveg-sg SIFI a-allollg, i d>2and 7o < p < min(4,d°),
21 pl
d d
(80) 1RGN gy SIS gallolsy, s> 1 —min (7, 5) and 1 <p< 4
2,1

where 1/p+1/p' =1 and d* £ dTQ. Using Bony’s para-product decomposition, we have
(81) v - V¢ = Tyg-v® + R(V®,v°) + Ty Vq"e + T V.
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Thanks to and with s = d, we get

I Tog=®ll° 4, S|V || N [
LL(BZ, ) (Bpl ) LE (B L)
[R(Vq®,v )||Z g SIVE || Sl e
LL.(BZ, ) LL(BE, ) LE(BrL)
It follows from the definition of X¢ and ( E— that
(82) Vel oy SN ™ o+l ||h S Xe
L3(By, ) T(BZI) Ly.(BY, T(BQI)
and
(83) (el 4 <KIIUEHIz ay Fv sHm o )" S X
F(BP) 21 ) Ly (BP, Ly (BF 1)

.d_q .d_q
3 [e.¢] 2 2
Since T' maps L> x B3, ~ to B3, ",

(84) [T quEHZ g1 SIlega=lIVe™ eIl g Sl i

g Il g S XX
(B21 ) L (321 )

d
Bp 1) (322,1)

In order to handle the term T, V¢", we observe that owing to the spectral cut-off, there exists a universal
integer Ny such that

¢ . ,
(Tv€th> = SJ0+1( Z Sj_l'UEAjvqh>.
|7—Jo|<No
Hence ||T,-Vq" ||¢’ ~ 2J0(4-1) S o[ <No [S;-19°A;Vg"||p2. If 2 < p < min(d,d*) then one may
use that, for |j — J0| < Ny,
200185 10" 894" 12 S 18510l (2 F D14, 94" )

S%llpy IVa" o Sl a- ld" I,

dx
Bd* oo p,1

Ld_ Ld_ _
where we have used the embeddings B, ! — Bd 1= L? and B,ﬁ"ool — de;OO . If d < p <4, then it
holds that

20 D185 107 A Vg 12 S (2418510 e ) (24014, 1)

<20 (2GS 0 e ) (26D e ) S 1]l

d .
BP
pl p

Hence, we deduce that
S ay llg®l

IToe Va1 40 S
Lh(B2,) B A LR ELN

5 (XZ,E X e —I—EXh’E)(Xm’E —‘th’E) 5 (XE)2.

(85)

Bounding the other nonlinear terms follows from a similar process, we give the sketch of compu-
tations since we need to track the uniformity of relaxation parameter €. Let us take a look at the term
q° - Vv®. We have

(86) 1 Twwg® + RV, ) 4 SVl oy |l I < (X9,
LL(BF, LE(BY, ) (Bpl)
87 T,- Vvt ., Sllg 4 |vbe g, SXEXbE
1) I, oy S e
and
1Ty V0" ||‘Z g Sl e ot
LL(BZ, ) LE B, ) Li(By 1)
1 le 1 m,e 1 h,e m,e h,e 1 e m,e h,e
S (=X 4+ =X 4 X)) (X 4 eXM) = X (X™ +eX™°).
13 3 13 g



20 T. CRIN-BARAT, S. KAWASHIMA, AND J. XU

Similarly, we have

< Lixee

(35) Ja*diver] -

g—1 N
T( 21 )

Next, we estimate the nonlinear terms F¢, G%, H¢. We write
v - Vaf = Tya-v® + R(vE - Va®) + T Va' + T Vale.
We have

(89) [Twasv® + R(v" - Va* )lll PR chf\\ a4y vf H 4 S(X°),
Lp(Bzy ) L3(BY, ) L3(B)))

where we employed the interpolation and the definition of X¢ to get

Slla™l a4 iy A+ [la™ 4+ la™] ¢ SX°

Ha' .4 ~ L2 —1 .4
LE(BY 1) LE By, INLyp(By, ) LOO(Bpl)mL (B, 1) L (B )NLY(B)))

“

and

N,oa Sl s 4 0™ P S Gl

d_ d
L3(B,) LE(BP L NLL(BP, ) LE(BP L NLL(B, ) L (B )NLH(BE)
< XE,E Xme th +€Xh’6 < XE€.

It follows from Sobolev embedding that

90 T,-Va*<|* - S o ||z | Vate e, <ot 4 |ab® 4 S XEXHE
©0) | L L i B L I i Fy
Similarly,
ITe¥a g STl a e
LL(BZ, ) LEBL, ) Li(By 1)
(91) S (Xé,s +Xm,e +€Xh,s>(Xm,s +Xh,e) 5 Xs(Xm,e +Xh’€).
For a®divv®, we obtain
(92) IIGEdivvalle d
Ly (B3, )
< IIUEII lall a4 + a7 IIU“II 41 el e M
(Bp1) LT(Bzil) T(B§1) (BQ T(Bpp ) L’]i"(Bpp‘l)
(93) 5 (Xe) +XEX€76+(X€7E+X"L’E+8Xh7€)(Xm7E+€Xh7E).
We now focus on G¢. Regarding v¢ - Vv, we have
[ T PR /7 +||v5|| IIU“II 4-1) +l e ||vh||
T(Bz,l L3 B;l (Bpl) (Bz T(B;il ) (Bpl)
(94) 5 (X5)2_|_X5X£,5_|_ (XZ’E—FXm’E—I—EXh’s)(Xm’s +€Xh’5).
Using the composition estimate [315] we obtain
J(af) Ave || < |v® a a® 4 +|af 4 e 4
L T L TN o T el PRI L IO P
+la® 4, II'UhH 44
LE(BP, ) LL(BP, )
(95) 5 (XE)Q—I—XEXZ’E—F(XZ’E—FX"L’E—I—EXh’e)(Xm’e—‘th’E),
1Ki(@)Va |y S el a0 et la®l o Hllal asy @] s
" 55 1 ~ . 2 2 /1 . 1 .
L3(B3y ) L3.(B},) L (B”l) L(B} 1) LE By ) Ly (B 1)
(96) 5 (Xs)2+X6X€,s+(Xé,s+Xm,s+€Xh,s)(Xm,s+Xh,e)
and
[K2(a )V o SN0 e et e
L%"(Bzz,l L2 B;fl) L2T(B;1)
97 +|la® . |65 a +la® o" .
(o7) e L e L WONEN LS S
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Using an interpolation inequality, we have

101, ) SO s T SO
(B;1) LFE(Byy INLp(Br, ) LFE(Byy INLy(Br, ) LF(By)NLy(B,)
1
S Xt X e Sl g S X

T(B 1) € Ly (Bzgl)

which leads to

(98) K2 (a )Wallf s (53 1)5(X€)2+XEXZ’E+(X“+X’"’8+5Xh’8)(xm’8+gxhaf),
B21
(99) 179 r5(a5)0° + R(VK3(a )GE)IIZ a, SIVEs@)| = a_, [16° || < (X9)?,
Lh(B2, ) L3(Br, ) <B"1>
100 Tp- VK. ¢ 6° 4 ||[VKs5(af)* a .
(100) 1Ty VK3 (a®)"|| 1(Bfl_l)NH [ s, [V K5( )||L2T(B§1)

Using that VEKs3(a®) = K4(0)Va® + K3(a®)Vac for some smooth function K3 vanishing at zero, we have

1K (a vl S et

[la”

,_1 4
L3(B3, ) L3(By,) L (B 1)
+a®|l la®|l | 4+ oIl a1 la|
T pl) 7(Bga) 301 L2(Bp)
(101) S (Xs)Z _|_X5X£s + (XZ.,E +Xm€ SXh s)(Xm,s —I—Xh 5).
The final term Ty VK3(a ) can be similarly estimated as follows
IToVEa@) g S0 1||VK3( D
Ly(B3y ) LFE (B, ) Lr(Bgy )
(102) < XE(X™E 4 XM 4 (XF)?).

For the nonlinear term v - V#¢, we employ Bony’s para-product decomposition: v° - V5 £ Tygev® +
R(v® - V0°) + T, VO + T, VS We have

|Two=v" + R(v* V95)||‘ 4o NIIQEH 4 ol e S(XE)
T( 21 B:1) L%"(B;l)
(7= v9“||Z e Sl 10971 ey S XEX5,
T(3221 T( 21 )
and
T,V ¢ o Sl 6|| 41, [ 1 S(XPT X e X (X e X ).
r(Bsy ) 1 L3(B)

For the term I(a®)A6° £ I(aE)AQZ’E + I(aE)AOE*E, we obtain
IZ(@)Aae%|® S I (a%)lles 1 S el . o<1,

. 4d . d
LL(B3, ) LL(BZ, ) LE(BP)) L} (B2

< xexte.
) ~Y

+
1
For the second term, we write I(aE)AOE*E = T1(a) N/ R(I(a%), Aﬁh) and we use that R and 7" map
.d_o
By, x B 1= Bfl )

for p < d and d > 3. This leads to

”TI(GE)AHTL+R(I(a€)’A0h)”i1 (Bgfl) S/ KHT](GE)Aeh+R(I(a5),A0h)”
3.1
(103) S (@)l 120"
L (B 51) T(Bp,l %)
S el . 6"
L (BE 1) L (Bpl)

(104) < XE(X™E 4 eX ™).
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N(Vv®, Vo) o

. 1 + as .
and remainder operators, we obtain

Next, we focus on (1 + J(a))N(Vve,Vov®). Using the continuity of the para-product

(105) s Ve Dl s S g am 90 @ Ve, o
(106) IRV @ VN, g S W @lipam 90 9,
and
IToveovee J(@ll | g SIVO° ®Vv6|| 4, [[J(a)] e
LL(BZ, ) (Bp*1 ) LP(BY1)
(107) SIveeeve]| | g lJ@l g
(3221 ) LFE(BY,)

It follows from the mapping

nd-1 . 42
By pr *)BQI,

for 2<p<2d/d—2,p<dandd>3, where 1/p+ 1/p* =1/2, that

N(Vve, Vo©) N(Vve, Vov©)
=", .. SKl—FT"— ||’Z 4
1_|_a LI(B221 ) 1+a/ (B )
(108) S (1A [lal )||VUEH2 oy S (X)X
L (B2 ) L3.(B),

Now we bound Hi(a®)§°div v¢. We write H;(a®)§°div v° = 1 (asydives 0 T R(H;(a®)div v¢, 6°) +
Ty (Hy(a%)dive®)t + Tye (Hy (aE)diva)E. Similarly, one gets

1=,

T,  \div..0°+R(H divo®, 69)||¢ < ||Hy(a®)dive® d_,
i i RURGEIE Oy I 107, g
(109) S el o [l 16l < (X9
LF (B 1) LQT(BP, L3 (B”l)
By applying a similar procedure that led to (102]), we obtain
[Hi(a%)dives ||y S (ldive®]| o ay [l s
L’21“(322,1 ) L%"(B;,l ) %0(351)
+la”] [[dive ZEII 541 a4, divet] e,
LT(Bpl 2 L ( pl ) %"(B;J )
(110) 5 (XE)Z+X5Xle+(X€,e+X7rL,a+EX}L E)(X"LE-‘,-Xh’E),
which yields
(111) | Ty (H (a%)divos) [y, SALa N HH1( divet||© - a, S (X0
L (3221 ) ( pl L3 (3221 )
It follows that
|1 To: (H1(a®)dive)"|[© o, SN0 aoy [(Hi(a®)dives)"|| 4o,
Ly(BSy ) LE By, ) Ly(Byy )
(112) SNl any et eIl s S (X9,
F (B LF (Bpl) LL(BP, )
which concludes the proof of Lemma [1.1] O

4.2. Medium frequencies: nonlinear analysis. In this section, we show the following lemma.
Lemma 4.2. Let (a®,v%,6%,¢%) be a smooth solution of , we have

+||H5||m5 4,
Ly(BF, )

IETN™ o +G™ el ™ L < XU
Lip(BJ4) LyNLi (B, ) Ly (B,
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Proof. First, we handle with the nonlinear terms in I¢. It follows from standard product law that

(113) 0% - Vg™ a S = IVl 4, SX°()?
(B F (B, Ly (B},
and
(114) lg®- Vo™ u Sl o (Vo] 4l S XA
Ly (B, ) Lr(By 1) LE(BY, )
Similarly,
(115) lg*dives||™ .o, < X(1)*
Ly(Byy )
Regarding Fy = a®dive®, it is easy to see that
(116) [a*dive® ™ 4 < lla”]] ldives]] 2 S S XE(1)%
r(Byy L°°(Bp1) Ly.(B} )
Secondly, we bound the terms of H¢ in turn. We have
(117) o SO S g IV S X5
3P, L5(BY,) L3(Bg,
It follows from standard product laws and the composition Proposition [315] that
(118) 17 (a)divg | 4y S et Il 4 S X1
LL.(BP, ) (B”l) Ly (By,)
Similarly, we have
N(V/UE,VIUE) m 13 g 13
(119) =17 e STl g DIV V7]
+a LL(BF, ) Lg(BE)) LE(BY, ) (B”l)
S 1+ X5(1))X (1)
and
(120)  |[H(a%)0°divos||™ 41 < el o°1 a4 fdives]| o al, S XE().
Ly(Byy ) Ly (B 51) L7.(B pl) L3(Byy )
Finally, w estimate the nonlinear terms in G¢. Precisely, we have
(121) [0 - Vo™ Sl s S XE()
L’}‘ Bp 1 L%‘(B;,l
(122) [(a) A" 4 -1 < 7]l [[o°]l S XE()2
L(BP, °°(Bp1) L} (Bp Y
(123) 1K1 (a) Ve[ a NHaEIIQ . SXE(H)
L%“( pl ) (Bp1)
(124) [52(a) VO™ - S lle”ll, 165 4 S X1
L(BE, (Bpl) LZ.(B},)
(125) [0°VEs(@)™ 4, < ||95|| o Jlafll 4 S XA
LL(BY, ) (Bg1) L7(Bga)

Ld_q
In a similar way, one can get the corresponding estimates in the norm L%(B;l ). We obtain

(126) o - Vo™ Sl e e S XA
L2.(BF, LF(B}1) 7By
(127) [/ (a®)Av?|™ 4o < llas|l o7l e S XE()
LZ(BF, ) L (B 1) L3(By, )
(128) [K1(a®)Va ™ a ) < a7 oIl , . S XE(1)*
LZ(B}, ) T(B,f’l) L2.(B}))
(129) [K2(a®)VE[™ 4, Sl 1611 4 S XE(1)*
L2(BF, ) Ly (B"l) L3.(B} )
(130) [0°VEs(a)[™  a, NII9EH a Jlaf]l 4 S X))
2(Br, (By1) LE(BL))

The proof of Lemma [4.2)is concluded.

23
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4.3. High frequencies: nonlinear analysis. We show the following lemma.
Lemma 4.3. Let (a®,v%,0°,¢%) be a smooth solution of , we have

(131) G HN M el GEIE IR H ST R |

Ly (B3y) L7(B31) Ly(B3y )

T
2
e [ 10T g 121, S X402

2,1 21

Proof. Using commutator estimates from [I9], i.e. Lemma we obtain

h, h, £, 4,
(132) 2IIREII © an SElVI@) o a el +e g™ a0 IV

g d P .d
Lh(B2,) LE(BL,)  Lh(BF, ) LL(BP,) LE(B2)
h ¢,
+ Nl g V@ g N VI,
Li(B},) LE (B3 ) LL.(BP)) L2 (BF))
< X°(t)?
since, for a > 0, we have e ||a®||™ d+a < la||™; and similarly for ¢°. Moreover, we have
21 B22,1
g h, h
(133) / e?|0p T (a%)||" | d+1 < lldives|™, ellal™ 4.,
0 32,1 2 1 %(322,1) L3 (322
+ &0 va | | HhE g4
L¥(B31) Ly (B3,
Using Proposition we have
lof - Va ™y Selfl a IVt +el Ve ]
®(B2) L (BE,) Ly (B2,) LeBEy LeBE)
(134) + et Ivas)™ |
Ly (Bpl) L (BY,)
which yields
’ h h,
(135) / 21007 (a5 llea” |5, S X°(H)* + X=(t)*.
0 322,1 B21
For the remaining terms, we rely on Proposition Concerning I§, we have
Ellg - Vorll" g SENEN | a IVt Ve g $41,
Ly(B2, ) L3(By4) L7(B31 ) 2(B")l) L3.(B3y
+e i Vo +e8a]|* HVWEH“ 44
L3(Bgy ) L3(By 1) L3.(B pl) L3(Bg,
(136) < X°(1)?,

”Z,e

where we recall that the notation || - refers to the sum of low-frequency and medium-frequency

norms. Handling ¢=div v is the same as handling ¢° - Vo© and we obtain |37 i, S X© ()%
LL.(B?

2.1
Regarding Fy7 = a®divo®, we have

elladives ||c < ella® 4 || dives||™e + ¢||divo® 4 las e
[ ™ gy S | ||L%Q(B§1)|| ™ 4 [ HLIT(BE)H ||LQC(B2+1
5 L dives | L +eflat] o . [dive|[>
L (B ) Lp(BY, ) LE(BY, ) L (B})

(137) S XEOXME() + (X™() + X59(1)? £ X°(1)*.
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Concerning H¢, we have
. h . h
el g eldive] )]
(B Li(By 1) L (B 1)

el J(@)dive|" 4 SelJ@) | a
Ly (B3 LZ(B;::Jl L7(Bs; T

2,1 T

+el| T (a%)|"* Idivg® |~
L) LL(B])

(138) S XE(t)?

Using that 1/a® =1+ I(a®), we have

N(Vve, Vo)
(139) 5||?th
a L (3221)
Sell@+ 1@ )Ver| o VRl e VeS|l e [[(L 4 I(a ))Vvellh
7By, F(B31) L3(By1) (Bz)
+ell(1+I(@)Ver||™ 4 [Vof]
L3(B 1) L3(B}1)
el a e I el e (L I(a ))Wellh
F(BL) : :f) 355 2B 13.(B,)
Fe(l+ e a7 4y
L%O(B:l) L2T(Bp1 ) L%(Bppﬁ1
Then, we have
H(1+I(a5))VUEHh g <l (e )VUEHh
L3(B7,) LI (B3, ) L3.(B7 1)
and from a composition law
le h,e Le
@l 4 S Q+lal™ o +elal™ 4 )Ulal™ . +lal™ )
LF(B31) LE(BP) LF(B31) LE(BF) T(B 1)
(140) S L+ X5() X (t).
Employing Proposition [B-I] implies that
12 (a%) Vs || S @) e IVE" e IVl e (e )||h 4
L3 (B221) L%(Bﬁl LF(B3,) LT (B, F(BY)
+|I(a)]|* Vo)
LOO(BPI) L3(B},)
S XTOXE() + (1 4+ X (0))X(1)? + XE(0)(X™ (1) + X5 (1))
(141) < (14 XE(1)XE(1)%
Gathering (138), (139)) (140) and (141)), we arrive at
N(VvE, Vo
(142) 5||¥| oy SO+ X))+ X)) XE(1)2
L+a®  “ri82)
Similarly, we have
el Hi(a%)6°dives | 4 SellHi(@)e|| |4 [dive|"
1 2 2 P 2
Lt 2,1 T(Bpl) T( 2,1)
+ el|dive®| ||H1( )HEHh g FelH(a)e?||™ o fdives]™
L% Bp ! 7(B31) L2.(B?)) L2.(BP))
§€Ila|| o 05l N g el e [Ha(a )eellh
B awhy e AL 13.(8%,)
2
(143) tellall g 67, a7l R
Ly : B:l) T :,1
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where
[ Hy(a )9€Hh
(B 1)
e el,e l,e
Slefll | . ||96||h P (I ||H1( L PP 5 N (]
LE(By1) 2,1 7(By 1) LEF(B31) LE(BF) L3(B} )
(144) SO+ X)X (t)2.
Hence, we deduce that
(145) e||Hy(a )HEdlvaHh < (14 X5(8) X5 (8)%.
T( 2, 1)
Bounding H; follows from similar considerations and we have ||e2Hs||"* L SXE()
L’}' 322,1
Finally, we bound the nonlinear terms in G¢. We have
ellv? - Voo" g Sellfll a1t s el V| lo®®
Ly 22,1 %“ ;f,l L%‘(Bzz,ﬁ T(B;ﬁ Loo(Bz 1)
+elofo Vet
L3(By 1) L3(By 1)
(146) < XE(t)2.
Using (297) together with composition estimates, we obtain
el (@) A" 4 S €||a5|| PN [ty [ +elfv]™* lall 4
Lh(B2, (BF)) 221+2 LT(BEI+2 LE(BP))
(147) . d ||’UHm,E )
L%‘(B;,l) L3(Byy )
S X1
For the terms K7, using (297)), we obtain
0, m
1K1(a )Vasllh 4 Sela]] B I(a" )|| g tellall™ 4 et e tellal™ L flal™ L
(Bz 1 ( B, (Bz LT(B;I) T p,l) L% B;il % B;l)
(148) < XE(b)%
Using (296)), we have
ellEa(a®) VO 4 SellKa(a)| o (V" s e VO ([Ka(ad)]
LlT 2,1 %" ;1 ’2r 322,1 LIT(B;J) L%O(Bzz,l)
+ & Ko (a®)]| Ives|~
L%"(B”,l) Ly (B}))
(149) < (14 X5(1)Xe(t)?
and using (297))
S e I I [Ct +ella®]™ 4 0%l lal™* a4,
LL(BE) 3(B7) B85 LaBry LB Ll 1wk,
(150) < XE(t)%
We now control ||G5[|*° ., . We only treat the term J(a?).Av®, the other terms can be treated
L%"(BZZ,I)
in the same way as in the medium-frequency regime. Using (297, we have
h,e 5 6
ellJ(a%)Av g Sellaf]] @i 1™ 091 s (5h 7
21 7 (Bpa L7(B;3
) L,
(151) +elll™® o, 1T 4 +eflaf™” lol™* 4.,
7(Ba LT (Bya LBl LB
< XE(1)2,
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4.4. Concluding the proof of Theorem [2.1] Gathering the estimates from the previous section, we
obtain

(152) XE(t) < X5+ X°()2.

From here, a classical bootstrap argument applied to the local-in-time solution constructed in [2], similar
to the one used in 23], allows us to conclude the existence of global-in-time solutions for the system
We omit here the estimates to justify the uniqueness of the solutions as it follows closely the stability
estimates that are established in Section [6] This concludes the proof Theorem

O([L1)
5. OPTIMAL TIME-DECAY ESTIMATES: PROOF OF THEOREM [2.2]

In this section, we follow the Lyapunov-type energy argument developed by Xin and Xu in [6] to
derive large-time decay estimates. The main difference is that we need to perform the analysis uniformly
with respect to the relaxation parameter € in each frequency domain.

5.1. Linear estimates. For low frequencies, j < Jy, it follows from that
d .

(153) Lo+ e20(a5,05,05) 12 S KNQ5ll + (FF, G5, H)ll 2

for 7 < Jp. On the other hand, we have

(154) ||QEHL2 + *IIQEIILz S ellfiy + 15 + sVHS| L2 | Q5| 2

2 dt
which leads to

d 1
(155) G 1e@illee + Z1Q5l e S e(Ifi; + I + KV H | 12).
Adding (153) to , we have

d ; 1 .
(156)—(£; + [1Q5 [12) + 2% [|(5, 05 HE)HL?"'?&”Q;”L?5522j||q]€‘”L2+H(Fj€7G§aH;)5ls)HL2-

VARG

Note that Q° = ¢° + V6%, thus choosing ¢ sufficiently small, we obtain

d
(@05 0%, ) gy + (0%, 0%, 091 g *IIQ”H i sl 54,

2,1
(157) SIKFinyHiefﬂﬂgg,
322,1

Q
3t

2,

1

For medium frequencies, Jy < j < J., applying the operator (%Aj to the first equation in and
denoting R; £ [uf - V,0;A]a® gives

(158) 6,582@]‘ +u - V@iaj + 81‘&]‘ = —82»Aj(adivu) — 8idiij + R;, i=1,---,d.

Multiplying by \8,»a§|p*28ia§ , integrating on R¢, and performing an integration by parts in the second

term of (158)), we get
1d 1 . i A . . -
%H@-ajﬂip + Haiajﬂip = E/dlvue |0;a;|P de + /(Rj — 0;Aj(a*divu®) — Oydivw;)|0;a5|? 28¢a§ dz.
Summing up on i = 1,--- ,d, and applying Holder and Bernstein inequalities implies that
1d 1, .. . . .
(159) ];%HVa;HLp +Vas|[zr < 5||d1vu8HLeo Va5 ||lLe + VA (a*dive)| s +22% w51z + 1 RSl 2o
Similarly, we have
d _ 1., _ _
(160) aHEA 1Q§||Lp + g||A 1Q§|\Lp <eg|A 1(f1€j +Va; + I; + kVH;)| Lo

Applying Aj to the second and third equations yields for all j € Z, with the help of Lemma we
obtain

d € 1 [ 001E 5 —23 € 5 € —23 3
(161) sl + 22 ws v < sl + 272 Va5 lo + IV ll2 + 1G5 1o + 27 VS 2o
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and
d . . _
(162) aIIA*@?HLP + 27| A0 | Lo < (w5 e + AT a5 e + AT div QS| L + [[AT HS | Lo

Since Jo < j < J., we have 272/ < 1/K? and 27¢ < k/e. Choosing K suitably large and k suitably
small in the inequalities (159))- , we get

d _ _
(163) = (1Va5ller + lw5llee + [lEA Q5 ller + [A7165 ] 20)
€ 25 5 1 —1e 25 —1pe
Va5 lle + 27 w5 e + ZIAT Qe + 27 AT765 | 20
S NGl + 272V ||e + ||dive® || e || Va5 || e + VA, (a*divu®)|| Lo
+ [R5 llee + el AT (fE; + 15 + WV HS) [ 1o
Recalling that Q¢ = ¢° + kV6° and w® = v° + (—A)~1Va®, we have

o k2 .
(164) e[ VAivAT ¢S ||r S ?HA YQ5 | L + k27165 Lo
and
(165) el VAiv A~ o5 || e S K(22ﬂuwf||Lp) %Hv@;nm.

Multiplying by 275~ on both sides of (163) and summing over j € [Jo, J¢], it follows from (164))-(165))
that

d
(166) (10" sy + [0 s + 6@ s + 1071 )
1
E||lm El|lm El|lm € || T
sy + 107 s + 21N B + 1671y
S NGy P s+ IV g + DT s+ 1o
In high frequencies, we have j > Jy, so it follows from the previous lines that
d , L
(V5o + 1wfllee) + Va5 oo + 22wl o < [IV6;][20 + 1G5 ll2e + 272 IV FE | v
Hlldives|l Lo [Vagle + [[1R; ] o

On the other hand,

1
e A [ A v

(167) 5/divw§9§+/H;9§+52/1§jq§+62/Aj(vf.vq€)q;—?

S ldive§li2 105112 + | (H5, e15)1 221165, e5) 2 + (€A (0% - V)|l 22 llegj [l >

d —2j € e e112
(o8) 5 [ 2065+ 51651
272 e € € € e
< g5 1122 + 511651122 11V65 | 2 + w5 [l 22 165 || = + [1H || 22 |5 | o2 + lleI5; | 22 (1651 2

Combining (167] -, we get

d .
(169) %E? 2H(9§-,€q§)\|iz5||d1vw§||L2||9§||L2+II(vadfj)llLQH(9§,€q§)||L2+H€Aj(v€~Vq€)||L2-

Using that L ~ [|(05,¢¢5)||7 > leads to

d e € e . e € €
(170) 2 1€85.6% )= + - ||(9 eqi)lr2 S elldivws|lzz + [[(eHf, € I;)| 2
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Therefore, we obtain

d
7)) (e s + lew s + 126 i + 1% rsen )

172 °|1%

+ ||€a€||%g/12+1 + llew a/2+2 + (6%, eq )H /241

173 S eIG gn + 2UF Wgacs + 90 L galla g

(171)
(172)
(173)
(174) +el Vol garslla®ll gars + 1€ HE, €2 I5) [/
By By 3211
5.2. Nonlinear analysis. In this second step, we bound the nonlinear terms. First, we prove the
estimates for ||(F°,G¢, H®,I°)||* , .. We have
BZ

2,1
a75) oV
2,1
1
(176) < (el aramr t vallmd/pﬂBd/p 1+ IIUEth/z)(Ilq I, a/2 gnqsug%p + IIQEIIZ;ﬁz)
¢
() S XA g+ 2107 W+ 1)
and

(178) |l¢” - vvell’Z w21 SVl garp-lla®ll garp + 10l garp 052 gares + llg® IIBd/pHU “lpar-

The term ¢°divo® can be treated similarly as in (178). Next we bound F*.

79) 1P Naras € 100 s S N0l gm0l gprpes + 10 gppms (10 gper + 0™l )
Regarding G¢, we have

(180) [10° - Vo lywas S 10 garp IV g + 19 s (105 g + V0P ),
(181) 170 )A arams S 0%l 1V gy + ol gy (A0 gy + A0 ),

|H1(a%)Va©||%, aamt S ||a“||Bd/2 1IIC/EIIBd/H1 + Hahsllzd/p +lla® gar- 1(||a5|\‘d/2+1 + IIGEIIhd/p)
and

12 (a%) Vo<, wrz=r SNVl garp-slla®ll garp + lla”ll garp- L1091 grzen + 107 garp +

By
Then, using an interpolation inequality, we get
196 vl oy S 0% 69) s 10,0 gy + (I + 16N uspms)
+||(aE,V95)||;§‘§(1p + ||(5a€a5296)||%;(12+1||(5a€79€)‘|%;(12+1-
Moreover, we have
(182) 16% Hz (a%)||', ara=r SN0 garellall garp + 0% yare- s(lla 1 araer Hagllhd/p)

Regarding H¢, we have

(183) [v® - VeI, ara=r SAVOH garp-sllvll gary

(184) + [[0° )l garo- (1109 | garar + |l sa/p + 1|\9h’5||3r1/2),
p,1 2,1 p,1 g 2,1

(185) 17 (a%)dive® |, ara=r SNl garp lla”l gary

(156) 10 0 1971 e+ 0 g (1071 + e )
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and
N(Vve, Vo©)
||71+a5 I% aamr = =1+ J(a ))N(vavws)llggf—l S ||(1+J(as))N(Vv€7Vvs)llf;;flg_Q
SR ] Pt P
(187) S (@ 1ol a1,

where 1/p* +1/p =1/2. Then,
(183) [|H1(a%)6°divo®|, ara=r S0l gar W garp 10°1 o s + 10 arp | Ha(a F)divo®|y /215
and
1H1 (a%)divo®|y wre= 140 garn ] garp + llal| garp— (1% 5y + ello” 1% arzr)-
We now provide the estimates for HFfH’];Ld/p_2 + ||G€||’Brfd/p_1 —|—5||I‘€||;§d/p_2 + ||H5|\’gz{1p_2. We have

(189) 1T 0= S T W0 S ol garplldives]l gare.

For ||G5H’];d/p_1, we have
p,1

(190) o=+ Vo[l S 107 ||2d/p7
(191) 17(a%) AV arp s Sl parp 107l s
(192) 1H1(a)Va [ S lla” sz/p,
(193) 1H2(a") VO 0o S o[l garp 10
(194) 16=V Hs (@) s S N0 garollall gare,

Using Proposition gives

(195) sHFHmd/,, > N€||IE||md/p .-

We have

(196) [v¢ - Vg© II’"d/p v S ol gare—s @l gare

(197)  ell¢® Vva\lmd/p ' S (IIEqule/z v lleg™ Ml garp—r + le%q hEIIBd/w)IIv Igareers
and

(198) 6||q€divv€||md/p S (||€qEEIIBd/2 L+ qumslle/p 1+ le qh5||33/12+1)||115||Bg(1p+1~

Employing Proposition 2.1] we get
(199) 1= garp— S A a1

Furthermore, we have

(200) [[v* v9E||maz/p L S f HBd/p 1|0° \|Bd/p+1,
(201) [[J(a®)divg® ||md/p 1 S ||a€||Bd/p||q ||Bd/p7
N(Vve, Vo),
(202) HTHB%p—l SO+ ||a5||]-3§(1p)||Vv€|\,-3z{1pfl|\VU€||BZ{1P
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and
(203) [ H1(a )esdwveumd/p v S el garp 100 garp— 0% garp s
(204) S IIGEIIdelp(IIGEIIf;d/zfl + ||9E||gd/p71 + ||620€||’;d/2+1)||v5||3d/1p+1.

Finally, we provide the estimates for 5||G5||hd/2 + »3||F€||hd/2 L+ |[(e2He, ?’Is)||hd/2+1 First, we pay
attention to ||3If ||h et It follows from Prop051t1on that

(205) [lq° - Vvallhd/m S e ||Bd/P||VU6||hd/2+1 V]l garnlle® ||hd/2+1 +1lg°I%, arp[[VV° 14 A/
which leads to
(206)  €°ll¢° - VU8||};;/12+1 S XE(t )(Hng”hd/uz + lleg” ||hd/2+1 + HUEHZ /2t + ||U€|| d/p+1)
Bounding the term £3¢°divo® is similar to bounding £2¢° - Vv®. We obtain

1F I S la

~

Elle/plldIVUEth/z + ||d1VUEHBd/p||a€||hd/z + a4 d/plldlvvslle asp

(207) < XE)(lvl5 gz T g +E||UE||hd/2+z)

Next, we handle ||52H€||h a2 We claim that ||f( )||h a2 D < (14+X4(t))X¢e(¢) for some smooth function
satisfying f(0) = 0. Indeed it follows from (315]) that

(208) Hf(ae)llif?gf SO+ ||a5||%§(1p + €||a€\|},§;(12)(||a€\\z afp + Haellhm) S (14 X5(0) X5 (8).

Therefore, we have

(209)  [|J(a%)divg® th/z S lla®ll garp lldive® th/z+Hd1Vq I garpll I (@ )||7-3§/12+||J( I’ arplldive® 1% s/

and

Ve, Vu
(210) H%”hdﬂ S (Ut llall garp) 10l garper V0 garz + V0" gare || T (a® Vvs\\}gg/lw
where

17 (a® VUEth/z S e d/plleEth/z VOl garvlla®] garp-
B! B! B
Similarly, we have
(211)  [[Hi(a )9€dlvva\|ha/2 S ||a€HBd/p||0€||Bd/p(\|v5||f arzsr T [0 Garpin + ellvl5a242)
D, )
190 g 12 (016
where i i
12100 5 0 10° s 167 g 1 (0% g+ o s 1071
Finally, we bound the nonlinear term G¢. Precisely,
0% Vo are S 10l g 190 o + 190 g e g+ 10 5 V0
’ ’ ) ’ ) D, D,

(212)

N

1
h 0 h
IIvEIIB;QpHWII 42 (IIvEIIB;/szl + g\\vfll’ggﬁﬂ + €||v5||33/12+1)Ilvallgsgfﬂ,
h h h 7 7
(213) 1170 A Wyara S 1o o 1Ao7 e + 1AV s 190 o+ 110 g | AV [y
h h h h 7 ‘
(214)  [[H1(a®)Va®|? d/zNHaEIIBd/zJIIVaEH d/z+||Va8II d/,,llHl( I d/z+||Va€|| d/pHHl( I, 0/

(215)  [|H2(a )Wallhd/z < ||a8||Bd/p||V66||”d/2 + IIWEth/pIIHz( Migarz + 1V0 e IH1 () a7
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and

(216) 16 VH(@) s S 167N o [V H (0 ) s + IV Hs 0] s |6 s
167N IV @)

5.3. The regularity evolution of negative Besov norm. In this section, we establish the regularity
evolution of negative Besov norm in low frequencies, which is the key part in deriving the decay estimates.
We have the following lemma.

Lemma 5.1. Let (a%,v°,0% ¢°) be the solution of giwen by Theorem . If (a§, v5,05,2Q5)"
Bz_gg, we have

(217) I(a®, 0%, 6%, eQ%) He o Nll(ao,voﬁo,EQo)He o+ XO(1)%,

Proof of Lemma[5.1] Set w® = A~'dive® and Q° = A~'curlv®. The first three equations in can be
written as

0ra® + Aw® = F©,

O’ — Aw® — Aa® — AG° = A~ 1divGe,

02 — AQF = curlG®,

040° — AO° + Aw® = —divQ® + H°®.

(218)

Energy estimates give

1d
(219) 5 dt(llaellm + w5 lZz + 196172 + 165172) + [1Av5 (172 + [[A05]172
<1F5 lz2lla5 e + AT div G| 2 llwf || 22 + [[A curl G5 || 22 1€ ]| 2
+ || = divQ5 + Hj | 22|05 2
and
(220) HE2Q6HL2 + Q5172 < lle(f5 + I5 + £V HS)|| 22 |eQ5 | 2

2dt

It follows from (219)) and . ) that

(221) @(Iléﬁlliz + lwslZ2 + 1961172 + 165172 + 1eQ511Z2)
< (||F-5||Lz + |\A*1divG?||L2 + HAflcurlGjHLz + ||H;HL2
+ le(f5 + KV H)||L2)(af, w5, €5, 65,eQ5) || L2

A standard procedure leads to
2 2
222 (la", 0%, 0, 6Q) %o, ) S (I 06,05, 2QE) 501 )

t
+ /0 |(Fe, GE,H‘S,EI‘E)H%;’Q |(a®,v®, 495,z;‘625)||%2,’;,01 dr.

In what follows, we focus on bounding the nonlinear term ||(F*, G¢, H®, €IE)H€ o It is convenient to
decompose them into low-frequency and high-frequency parts. Precisely,
Fbe = —gfdivo’s —o° - Vae’g, Fﬁ’E = fasdivvﬁ’a — - Vaﬁ’s,
GY = —v° - Vo' — J(a®) A" /v — Hy(a%)Va"* — z(aE)vo&S — 0“°V Hs(a®),
Ghe = v . Vot — J(aE)Avh’E/V — Hi(a®)Va Q(LLE)VH}L’E — H}L"EVHg(aE)7
\VZIAV/ l,e -
Hé,e — . V@Z,s +J(a€)divqe’€ + ( v, Voo ) le(CLE)HEdiV'UZ’E
1+as
- - - N(V E,v h,e . -
HI = 90 1 J(a%)divghe + TV V) o ) B (0% divo e
a

I8¢ = 0 . Vgl — ¢ - Vol + ¢°divo’s
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Ih,a — o - vqiz,a _ qe A V,Uft,s + qadiV’Uil’E

Using standard product laws, we have

(223) la®=dive® |, — S S [[dive® EHBd/plla“HBwl S IRl d/mllas\le o
, 00 , OO
(224) lla™ < dive’||, - S < Jla" d/plldlvv“HBw S (lagary + IIGEth/z)llvglle s
4, OO
(225) [v" - Va2l — S < el d/wll’vellf o
, OO , 00
and
h Lt ¢

(226) R A O M OO P

, OO P, ) » OO
Similarly,
(227) [v® - Voh el ;o S < (el aravr VNG + 62||v€||hd/2+z)||vsllf§;al

,00

Since J(a%) = J'(0)a® + J(a) for some smooth function satisfying J = 0. It follows that

(228) T A vy

2 3¢
(220) RV oy S Pl e A0 s S (0 + 0 )7 oy
(230) ()0 A0 [ty S 1) g 1A gon S 0% [0
(231) ||H1<a€>Vaf’€||g;;3 S (0 s + la s + oIl o
(232) 1E2(a) 984,y S (I Wgaraes + g + 0" ) 671 o

Notice that VHs(a®) = Hj (O)Va6 + V(H3(a%)as), we have
(233) |65V at

I I%

oo SV llgup 0l -0 S lla g/ 107

(234) 0= VaP EHZ — S ||9“Vah5||€ dogom S (lal5arp + |\af||hd/2))||ef o

200

where we used the fact that p < d*, which implies that d/p —d/2 — o1 + 1 > —0o;. Concerning, H¢, we
have

(235) v* vi9e||€ — S ||9€||Bg+1||vé||32—al
2,1 e
and
YANN4 h m 4
(236) [ - V6|, — S (llv ||B§1 + v ”1’35?) 1% =1

Using that J(a®) = J'(0)a® 4+ j(ag)ae, we have

)4 14 L h V4 14
(237) || (a%)divg"|, s SN g llatllpre + <||a€||md + la”]I” 4 > g1l o1 + a1 & Nlall o
B2 2,00 BP 2,00

21 p,1 2,1 p,1

N(Vve, Vohe )”15

238
R

S (el )||N(VUE7VUE’E)||B£Z§

p

< el el e e e Z'
S+ e ”BEI) <||’U Fyga v ™, o I d+1> o1l o0

2.1 Bp 1 B3y

—91 ~
,00
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and
(239) 1H1 (a%)0%divo (|} o, < llal], 4 [10°dive™]| 4.,
,00 BY, B?,
¢ ¢
S Haanfl||vf||B§1+1||9€HB;3
(240) +lla”l L <||95|| ||9€|| Y > [ s
p pl 21 2,00
Using that V(K3(a%)a®)0° = V(K3(a®)a®)0"+V (K3(a)a®)0" and p < d* = 24 gfgfaﬁrl > —oy,
we have
(241) IV(K3(a®)a )9€He ;o S (a%)a] HQEHZ 4g g

2 oo
£
< o2 “95“3;1;0

p,1

The estimates for I%° in low-frequency follow similar lines. We now focus on the high-frequency coun-

terpart. For F", we have

(242) la®div o™ || —1 S a1 g, + a5 +ella®]™ Y Idivos|" .,
e B3, Bp B3, BY,
) h,
(243) [o*Va |G o S (IIvsllng_1 o™, et ) IIWEIIh 4y
2 2,1 o1 3,1 By
(244) [V o S (IIUEIIUI o™, +ellotl > IIWEII}’ 4y
2,00 B, BY, B3
(245) 17 (a%)Av" | ;o S o) 4, + llas|™5 +ella”|™ Y I\Avgllh 4y
BQ 1 BP 1 2
(246) | H1(a )Vahllé o1 S (el 4, + lla”™ +5Ha5|| \Vas\lhd »
B2 1 p 1
(247) (| Hz(a )Whllz —a S o] 4, + lla®]™ +6||a5|| 4 IIWEIIh
B2 1 Bp 1 2
and
(248) IIHEVahHé — S ||9€||£ gy FOCI™ + ||95|| _ HVaEHh
2 1 Bp 1
Concerning the other terms, we have
h
(249) HvEWhHZ —a S [ P (e +€HUEH y IIWEIIh
BQ 1 Bp 1
and
(250) 17 (a%)divg" %, ;o S <|a€||’?2 + lla®|I™ +€Ha€||h6 > [[divg® IIhd r
2,1 BP "
2d d
Concerning V(K3(a®)a®)0", we split its analysis into two cases. For % 4 <o <og= i

2d

using the embedding LP — 32 oo’ » We have

(251) IVE5(a%)0" | ;7o S IK(a M 16,

§ap

<d,
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which leads to

(252) IVK3(a®) e S IVa®||zr S [|Va®||” 4 gt IVa|lo
P
2,1
S PR P P L
21 Bﬁl B22,1
d_d
Then, using an interpolation inequality, for 5 = 212_’1’ , we have
2
1-0, 02
253 Ny a S (el || :
(253) la ”BQ%I% < (a ||32;;; la ||B§1,1

Thus

(254) HVKS(GE)@hllfg;ao < <||a8|; +Ha5||€ L F+ e d> <|I9EII + 6™ Y >
e 2,1 Bpl

p1 By, 21

Ld_q
Inthecasel—%<01§%—%go,p<d,wehaveB;’1 < L% and thus

(255) IVKs(a )9h\|€ ;o Sllefll g (II9€II”” +[6°1™5 )
p,1 pl Bpl

N(Vove, Vosh))

Since = (1 + I(a®)N(Vv®, Vo=")), in the case % — 4 < 5y < g9, we have

1+ ac
s M) ||4_M<1+a€||§>||vv€|m|wh|m,

2,1

(1 +lla®|l 58 ) <|UE||€ 4t ||UE||z oy 0T+ HUEH 4 )
By B21 Bpl 21
<|Uam6 + [lo® )™ 4 > :

B2

Inthecasel—%<01S%—%So,weha\/e

N(Vos, Vo)) ¢ h
(257) o R [ P P
h
(258) ST Nl I O (A
Bp,1 Bp,l Bp,lp
) h,
(259) [v°Vg" ||€ —a S oI gy + ™0 + el ) 1IVe th .
B3y BY, B}, BY,
0 4 h
(260) a9l o, < (q P P e ) Vel
21 Bp1 21 315,1
and

(261) IIquivvhHé 1 S <||q I g + a1, +elld® || ) IIdivvgll’;%,l
21 p,1

21 pl
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Concerning H;(a®)#°divo®, in the case % — % < o1 < g, we have
(262) |11 (a®)0°divo %, —o Sl g ||9€||£  t ||9E||Z st 16°01™5 , +116°01™5
00 B?, B, Bp 1 B3,
h,
<|| I T )

B2 1
and,inthecasel—%<01S%—%SO,Wehave
(263) [ H1(a”)6"divo™ hlle —o S [Hi(a )9Edivv€’hlle-o

S ||as\|Bg 16°]] . 771||v€|| e
p,1 P 1 p 1

Gathering the estimates from this section and using that all the right-hand side can be bounded by
X¢(t)? concludes the proof of Lemma [5.1] O

5.4. Conclusion of the proof of Theorem Gathering the estimates from the previous sections
and using that X¢(¢) < X§ < 1, we obtain

d e € pE e\|1£ d e|m e|m e|m e||m
@00 g+ 10 Gy s+ Qs+ 1071 )

d
+ it (Hgasngg’/lzﬂ + ||Ew5||h'd/2 + ||5296||h'd/2+1 + ||53q5||%;(12+1>

+(a%, 0%, %) *IIQ”H g0+l

st S o e

.4y d
>t B2
Bs. B3,

1
+ EHQEHgg,/lpfz + “96||g3{1p + ||5aa‘|%gf12+1 + ||5w6||%2df12+2 + ||(98a5q5)||};'32d,/12+1 <0.

Then, we employ a classical interpolation argument to derive the time-decay estimates. Since —o; <
%—13%<%+1,wehave

91 1-64
e . pe|I¢ e e pe|I¢ e € pet
(264) a7, g < (U 0 ) (87 )
where 0 = m. Using the BQ_ J2-boundedness obtained in Lemma we deduce that

1

ooy
(265) 1(a®, 0%, 6% 4\, = co | [I(a”, 0%, 691" 4, :
322,1 221

In addition, it is easy to see that

=
(266) Il 4 > (Isqslle. d1> :
BZZ,I 322,1
Concerning the medium frequencies, using Bernstein inequality, we have
(267)

o o o
la®|™s = C (IIaEII’f’f) w5, = C <||w“7’fl> 05 > ¢ <|95| ) :
B:1 BPpJ BPpJ B;)vl Bil P 1

Moreover, it is clear that

(268) *IIQEII i, 2 <€QEII > :

pl
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Concerning the high frequencies, one has

e =
eth,e eth,e 2 eth,e eth,e
’ > ’ k] > ’
(269) ea HBffl > <||€a ||B§1+1> ; € llew ||B§1+2 > (lle |B§1>
and
T—0;
(270) (6%, ¢%)1™5,, = <|(€295763q€)ll}f’3+1> :
322,1 Bzz,l
Therefore, defining
271) Ly = (a5, 6% eq)| g, + 10 asn + 0% 1 Garn s + 1€Q N Fasp2 + 10 asp—
322.1 p,1 p,1 p,1 p,1

(272) e o + e llyrn + 1220 g + 1% e

and gathering the previous estimates, we obtain
14—z
273 iﬁl + oL T <0.
dt !

Solving (273) and following the embedding arguments from [61] gives the desired decay estimate ,
which concludes the proof of Theorem [2.2) O

6. PROOF OF THE RELAXATION THEOREM [2.4]

6.1. Formulation of the error system. Let (a§,u®,0°,¢%) and (a,u,8) be the solutions of and
from Theorem and associated to the initial data (af, v§, 05, ¢5) and (ag, vo, 6p), respectively.
We will prove that as ¢ — 0, we have (a§, v§, 05, ¢5) — (a0, vo, o) strongly in some suitable homogeneous
Besov norms. To that matter, we define the error unknowns (a, v, 5) as

(@,9,6) := (a° — a,v° —v,6° — 6).

The couple (@, v, 0) satisfies
dya+ divo = —F, o
(274) 8@— A@;-ﬁ- Va+ Vo =-G, B
00 — Af + divo = —divQ — H,
where
F=1v°-Va+7- Va+adive® + adivv,
G=70-Vo—1v°-Vo+ (J(a) = J(a)) Av® /v + J(a)AD/v + (Hi(a®) — Hy(a))Va® + Hi(a))Va
+ (Hy(a®) — Hy(a))VO° + Hy(a))VO + OV Hs(a®) + 0V (Hs(a®) — Hs(a)),
H=70-V6 +v-V0+ (J(a®) — J(a))divg® + J(a)(divg® — Af) — R,

where
B N(Vo®, Vo) N(Vv, Vo)
1+ af 1+4+a
The linear part of has a similar structure to the Navier-Stokes-Fourier system , thus, as in [21],
we analyze differently the low and high frequencies. In order to control the linear part of the source

+ Hy(a®)6°dive® — Hy(a)fdivu.

terms, we derive a priori estimates at different regularities in both frequency regime. To find the optimal
regularity indexes to do so, we first check in which space we are able to extract a O(e) bound for the
linear source term divQ. From Theorem [2.1I] we have

) h,
(275) IIQEIIil o TIQEI™ a, o, QI

d_
TV 721 Ly(Byy NBYy ) Ly(B3y )

= O(e).

This suggests us to work at the regularity index d/2 — 2 and d/p — 2 in low frequencies and high
frequencies, respectively, for the component 6°.
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6.2. Error estimates: linear analysis. We have the following proposition.

Proposition 6.1. Let (a®,u®,6%,¢°) and (a,u,0) be the solutions of the system and from
Theorem[2.1] and respectively, such that their initial data satisfy

(276) [(ag — a0, vg — vo, 05 — 90)”2%_2 + lla§ — aoll” a_, + 11(v§ — vo, 65 — fo)|I" a_, < Ce.
2,1 ;])1 B;J
Then
X =l@v0) ., +I1@v) .
FT(Bs: ) L (B3y)
+ lla)” o IO i, @O . Se+ XXt +Ty+ T,
LENLL (B, ) F(BY ) Li(BYy)

where

and Tp=|F—v-va|" ., +|CH|" .

1 4- 552
LT(B2,1 ) LT(Bz,l ) LT(szl )

Proof. Stepl: low-frequency estimates: j < Jy. Applying the localization operator Aj to (274)),
we obtain

draj + dive 4 v° - Va = —F},
(277) 0iv; — Av; + Va; +Vo; = —Gj,
8t9j - Aej + divﬂj = —diVQj — Hj.

Defining the perturbed energy functional
~ - 1 (. .
(278) L’ﬁ = ||(a;,v;,0,)|3: + 3 RvjVaj for 7 < Jy,

and following the exact same steps as in Section [£.I} we obtain

(279) 1@o.0l° 4. +1@7v.0)

¢ < (@0, B0, 8)||%. a . + QI
S S ||L%(BZ%1)_||( 0,00,00) 4, + 1Qll

(B3
InEVall s eIl
FIEGH, Ly

Using (275)), we have
(280) o]’ _—

.d_
L; (322,1 )
and thus

281 a,7,0)|" + (@@, 0)|° < |[(@o, 30, 00)I“. a, +e+ |(F,G, H)|", 4 ,.
@) N@EDN g NGO, g <GS0 Bl g, e IE G,
Step 2: high-frequency estimates: j > Jy. In high frequencies, we follow the computations done
in the medium-frequency regime in Section We introduce the effective velocity w = v+ (—A)~'Va
to partially diagonalize the system, it reads as

O +a+v°-Va=diva + F,
(282) O — A = @ — (—A)"'Va+ VO + G + (~A)IVE,
00 — A0 = —div — a + divQ + H,

Then, standard estimates for damped and diffusive equations leads to

~1h, ~1h, ~ 1h, —~ 1A, ~ ~ = 1h,
@l e Sl 1B+ IVl g 18 e garery + IR,
F(Bga ) Ly(By, ot Ly (Byy " " Ly(Bpy )
~ 1h, ~ 1A, = 1h, ~
(283) Sllaol™s, +181™ o 1B, + 1l e @l e
B;;D,I L%"(B;f,l) L%"(Bi,l ) LT p,1 ) LT (prl )
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and
(284) @)™ ., Il . S lwol™e, @™ ., +llal™ .,
LE (B, Ly (B, By, Ly (B}, L3 (BY,
+16]|"™ 4 +IG)"™ 4 +I1F th P
LL(BY, ) LL(BY, ) LL(BP, )
Moreover, for 5, we have
a1k h, h, R, ~
(285) IS [ L 121 A 2 (RN - L
LE(Byy ) LL(BF) By, Ly(Byy ) LL(BY, )
h, ~\h,
+lI™ o, +IHI™ o,
Lr(Br, ) Lip(BY, )
Gathering (283)), (284]) and (285)), and using Berstein inequalities from Proposition the linear source
terms can be absorbed for Jy large enough and we obtain the desired estimates. 0

6.3. Error estimates: nonlinear analysis. We are now left with the estimation of the nonlinear
terms. Together with Proposition [6.1} the following proposition concludes the proof of Theorem [2.4]

Proposition 6.2. We have
T+ T < eXe(t) + X()(X(t) + X2 (¢)),
where X (t) is defined in ([24)), X°(t) in and we recall that

(286) X(t)=@v,0)° 4, +l@so)) 4
LE (B3, ) Ly (B3y)
~h, o~
+ lla)™* o @0 4 + (@, 01"
LFENLL(By, ) LE(By, ) LIT(B’H)

Proof. Step 1: Analysis of Z;. In this section we mainly rely on Proposition [B:2] to control the
nonlinearities. First, we estimate the terms coming from F. Using (309)), we have

4 1
lo=-vall | g SHVall | g V7] +lvall, Nl

Pl .
Ly (B2 1382, L3(B]) NE RN T
+val™ o el
LL(BP D) LE(Bya )
S X)X ().
Thanks to (308]), we obtain
I-5all, ga S, oIVl
21 ) T p,1 Bp,l )
< X ()X (t).
Employing (308]), we get
@dives || a, SIal e ldivet] o as S X(O)XE(),
L(BE ) LZ(BF, ) L3(BY, )
ladival® 4, Sllall  aoy [ldivel] s, S X(X().
Ly (Bry ) LE(By, ) Ly (BY, )

Gathering the above estimates, we obtain

F S X()(X() + X5(t)).
171, -2 S XOXO + X°0)
Next, we estimate the terms coming from G. Using (308)), we have
3 Vo

S XX (1),

- Vol S
L3 (Bp1 B

vl

4, S
Lh(BE?)

- vall® ., S IIUEII 4o, IIWII L S XX(),

Ld_g
Ly (B3, ") LE(BE, ) B, )

La_
P
P
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Applying composition estimates and (308]), we obtain
1(J(a%) = J(a)) Av* /vl 4, < al - A
LIT(Bz21 ) LT(Bpl (Bp,l )
S llall, [o°]] | a
IR
S X(H)X(t)
and
|(H1(a®) — Hi(a ))Vaslll g Shal , o IVar]l | g
Lyp(BZ, ) LZ(BF, ) 2(BY, )
Slhal , a-llofll g
L5(By, ) L3.(B},)
S X(H)XE(t).
Using (308), (B10) and (309), we obtain
IHi(@)va'(|* 4, <lla] St s SX@0X()
Ly(B3, ") L (Bp,l ) LL(BF,
[ H1(a )Vﬁhllz g SAVall s llal oo +IValt s el 4
(321 ) T(Bpl ) LT( ppl) L 21 Lg (B;),l )
+val™ ., el e S XX,
LL.(BP, " L¥BY. )
[(H2(a®) — Ha(a ))V@EII'Z a2 S llall - Vo=t L S X(B)XE(0),
Lyp(BFy ) LT(Bpl (Bp,1 b
[ H2(a )W’IIZ g2 S llall - HV9H L SX(MX(®),
LL(BZ, ) LT(Bpl ) (Bpl )
16V Hs (a4, SNO1 . o [IVa7| L S X(H)XE()
Ly(B3, ) LB, ) T(B;n,l )
Using (310)), we have
16V (H3(a%) — Hs(a))I* 4, S|Vl ||9H 4 +||Va||£ 4 (101l -1
Lh(B2, ") Lq"’f’(Bpl Ly(Byy) Ly (B3, ) L°°(B )
~nh,
+lval™ L el .
L%"(B:,I ) LTO"C(B;),I )
S X)X ().

Below, we estimate the terms coming from H. Again, using (309)) and (308)), we obtain
d_y 5 X(t)XE (t)7
LZ(BF, )

. HWH - L SXWX().

< l|v a
e

|- wfnZ 4 Sl 41 Vo=t
2 2
(321 ) LT(Bppl

lv- WIIZ 4
(3221

The product law (308) together with composition estimates, we have
1(J(a®) = J(a))divg® IVZ 4, S |J(a%) = J(a)
Ly(Bf, )

- [ldive]

T(pl)

?'d\m.

2By )

N ||aH a_y |lg°|l
L2(BP, ) L3 (Bpl)
< X(H)XE(1).
Since
e S (e divQell L, +IJ@)AN" .,
r(Bry ) Lyn(BY, )

21

[17(a%)(divg® + A@)He
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we have
1(a%)divQ|* ., NIIdIVQEII B lall 4 +||d1VQ€H£ L
(B ) Byi ) T (Bpa 321 L¥ (B, )
. h
+ v ., (et e,
LL(BF, ) LE(BY, )
SeX(t)
and
17 (a)A0]* 4 SIAG) ay el s +||A9IIE do el a_,
1 ) TBp1 F(By1) $1 ) L (B), )

T pl
h,
a0 el
LL(BP, ) LFE(By1 )
< X(H)XE(1).
N(Vve,Vvf)  N(Vv, Vo) n
1+a® 1+a

Finally, it is casy to show that || R||* i, S X(t)X=(t) where R =
L%"(B221 )

Hy(af)0%dive® — Hy(a)fdivo.

Step 2: Analysis of 7. First, we estimate the terms coming from F. We have

[5-Vall 4 SIEI IVall ., S X@®X),
L;(Bzf1 ) (B NL>) L%"(B;l )
Gdiver] a STEl g divet] s S XE0X ),
»(BE, LE(Br, LL(BE,)
ladivall a Sl vl a S KX
L} (Bp 1 L (B 1) L;(B”1 )

Gathering the above estimates, we obtain

Then, we deal with G. We have

BVl al, SOl e IVl e S X(OX(),
%‘ pl T( ;?1 ) T(BZI )
[[o® Wl\h a, SN g 1||Vv|| i X(t)X(t)
(Bppl T( pl pl )

Using product laws and the composition proposition 15} we have

I (J(a®) = J(@)) Av*fu|* o, Slall 2.1 1A
1 p T oo (BP )

T p,1 T p,1 (B )
Slhall | a0l
LE(Bg, ) Ly(Byy )
< X(0)X(1).
Similarly,
IIAUH > S X()X(1),

17 () AB/w||" g 2 S el

. d
P
Lt Bpl By,

T
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and

S X(B)X(),

I(H1(a%) = Hy(a))Va®|" 4, Slall | a2 [Ve7] L

Tp,l) (pl)

[1H(a )Vallh g Sllall , g IIVall | g S XX @),
v (Bpl) L(Bgy )
lall , - IVl a0 S
LB, ) LB, )

Bp "
|(H2(a%) — Ha(a))Ve*|"
Ly (Bg,

1Ha() V0" s, S al IIWII L SX(MX(),

LL(BF, ) T<B:1) <Bp1 )

VE @O g SO o IV S XX

S X(0)X°(1),

.d2N|

~J
T\"p,1 T(pl P,

Decomposing § = #¢ + 0", we obtain
10 (Hs(a®) = Hy(a))|I" 4., S0"V(Hz(a®) = Hy(@)||" ., +[0°V(Hs(a®) — Ha(a))|" 4
Ly(Byy ) Ly(B)y ) LL(BP, %)

5H9||h6 ||Va|| a 610 a vall o a,
(Bpl) L pl T(Bpl L (B 1 )

h 4
S H9|| o lal e ]

(Bpl) LFE(Byy L%(B

S X(5)X ().

lall | s

L3(Br, )

d
p,1 T P,

Finally, we estimate the terms coming from H. We have
[-vel" ., S S Vel
%“(B;fl ) T( p 1) T(

lo-vo)* o, Sl ||V9|| o S X)X ().
L%(Bpl ) T(B;H (35,1 )

< X(H)XE(t),

~

The composition inequality coupled with product laws gives
17 (@) = J(a)dive™|" 4, < [J(a%) - J@I , 4 lldive]

7 Li(
Tpl T\"p,1

S llall = el , e
L (B} Ly(BY )

SX(t )XE()

?'ﬁ\s.

BP )

and

17(a%)(dive” + AO)|" 4, S[J(a%)(dive” + A" 4, +T@)a0" .,
1 1 p )

(B 7(Bpa Ly(By )
S el IIQEII ay Flet] g ||9|| d
LF(B}1) (B ) LBy Lip(Byy)

S eXE(t) 4+ X(8)X5(1).

Then, it is easy to show that

IIRHh L S X(H)X(t).
1

Step 3: Conclusion of the proof. Gathering the estimates of Step 1 and Step 2, the proof of
Proposition [6.2]is complete. O

7. EXTENSIONS AND OPEN PROBLEMS

In this work, we justified rigorously the relaxation relation between the Navier-Stokes-Cattaneo-
Christov system @D and the Navier-Stokes-Fourier system . Our analysis opens up several possible
extensions and problems. We discuss some of them below.
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1. The fully hyperbolic Navier-Stokes system. We expect our method to be able to treat a fully
hyperbolic version of the Navier-Stokes system. Replacing the constitutive law for a Newtonian
fluid

(287) T =2uD(u)l; + Mdivuld
where 7 is the stress tensor, by the Maxwell’s relation
(288) e3(0m +u - V7 + g(1, V) + 7 = 2uD(u) I + Adivuld

for a relaxation parameter g5 > 0, where g(7, Vu) £ 7W (u) — W (u)T and W (u) is the skew-
symmetric part of Vu, namely, W(u) = %(Vu—TVu). To deal with such a system, and show
that (9) with the law converges as 1,2 — 0 toward the Navier-Stokes Fourier system
one would need to consider an additional frequency-threshold J., = 1/e5 and distinguish
four frequency-regimes instead of three. For more information on fully hyperbolic Navier-Stokes
systems, see [34], 52] and references therein.

2. Two-dimensional hyperbolic Navier-Stokes systems. Due to technical limitations in the product,
composition and commutator laws, we are restricted to the case d > 3 in the analysis presented
here. It would be interesting to develop a method for the d = 2 case. To this end, one could
adapt the Lagrangian analysis used in [13] to the present framework.

3. A complete hyperbolic structure. As demonstrated by Angeles in [I], the inviscid form of system
@D lacks hyperbolicity, posing a challenge in establishing the well-posedness, particularly for
the Euler-Cattaneo system. To address this issue, we identify two potential approaches. One
option is to utilize the modified Cattaneo-Christov law introduced in [3], which renders the
system hyperbolic. Alternatively, we could follow the methodology introduced by Dhaouadi
and Gavrilyuk [27], who recently proposed a purely hyperbolic way of modelling heat transfer
with a finite speed of propagation. In both approaches, the relaxation structure is similar to
the one studied in the present paper and achieving the strong relaxation limit associated with
their hyperbolic heat transfer can be done using the methodology we developed.

APPENDIX A. REFORMULATION OF THE SYSTEM

We adapt the reformulation done in [21] [26]. Recall that the Navier-Stokes-Cattaneo-Christov
system @D reads
Op® + div (p°u®) =0,
P (Opuf + u - Vu) + V(T (p®)) = divre,
p°Cy(0:TF +u - VT¢) + Tem(p®)divus + divg® = div(7° - uf),
e2(0eqf + - VqF — qF - Vs + qfdives) + q° + kVTE = 0.

(289)

Let p > 0 and T > 0, linearizing the system (289)) around the constant equilibrium

(p,u,T,q) = (p,0,T,0)

(4

and setting a° = 2 — P and 95 =T¢ — T, we obtain
Ora® + divu® = —div (E’Sus), )
B + 4 - Ve — p(f—zaaf) w’(ﬁ(lljacslg))T . mwa n wﬁewg ~0,
9% +uf - V< + (T + 198)7;(;:(111“:2)) divus + pcf(ilv q:as) = ZMID;ZJ;T?(:%V uE)Q,

e2(0iq° + uf - Vg° — q° - Vs + g°divu®) + q° + kVI€ = 0.

where Auf = pAuf + (u + \)Vdiv uf. Denoting v := X\ + 2u, v := v/p, xo = 9,P(p, T)~1/? and
performing the change of unknowns

a®(t,z) = a*(Dxgt, vxox), v (t,x) = xou® (VXgt, VX02),
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Cy /= - c Cy e/~ —
0°(t,z) = Xo\/?ﬁ (ngt,l/an:) and ¢°(t,z) =1/ ?q (ngt, Uxox),

0ra® + dive® = F€,

oy — Ave + Va® + Vo = G=,
040° + Bdivg® + vydive® = HE,
e201q° + aq® + kVO° = 21¢,

we arrive at

(290)

| T 2
with o = x3, v = X—_O C—W(ﬁ), b= _XC(') and the nonlinear source terms are given by
14 v

v

F¢ = —div(a®v®), G = —v° - Vv© — J(a®)Av® /v — H1(a®)Va® — Ha(a®)V* — 0V H3z(a%),

N 5 £ ~
M — Hy(a®)6°dive®,
1+ac

IF = —v® - V¢© + ¢° - Vv© — ¢°dive®,

H® = —v® - VO + J(a®)divg® +

£

where J(a®) = . i — and the H; are smooth functions, written explicitly in [2} [26], such that H;(0) =
a

Hy(0) = H3(0) = Hy(0) = 0.

APPENDIX B. CLASSICAL LEMMAS AND HARMONIC ANALYSIS

B.1. Classical lemmas. We often used the following well-known result (see e.g. [18] for its proof).
Lemma B.1. Letp > 1 and X : [0,T] — R™ be a continuous function such that X? is a.e. differentiable.
We assume that there exist a constant b > 0 and a measurable function A : [0,T] — Rt such that

1
fiXp—i—bXp < AXPTY qee. on [0,T).
pdt

Then, for all t € [0,T], we have
t t
X(t)+b/ X§X0+/ A.
0 0

B.2. Harmonic analysis tools. We consider the Cauchy problem for the damped heat equation

ou—cAutcou=f, xzeR? t>0,
(291)

u(0, ) = uo(z), T € Rda
where ¢; > 0 and ¢z > 0. The following lemma gives estimates for equations of the form (291).

Lemma B.2. Lets € R, p > 2, T > 0 be given time, and ¢; > 0 (i = 1,2) be positive constants. Assume
ug € By, and f € LY(0,T; By 1). If u is the solution to the Cauchy problem (291) fort € (0,T), then
u satisfies

(209)  Nullze s+ exllul s +eollul s ) S luollg, | + 1,0 € O,7),

and for co > 0,
1
(293) [ullZge (3y + Verllulzz ey < Cllluollpy | + ﬁ”fz”@@;jﬂ t€(0,7),

where C' > 0 is a constant independent of c;.

To deal with nonlinearities in our hybrid L? — L? framework with need special product laws. First,
we state high-frequency product laws which improves the oen derived in [19].
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Proposition B.1 (High frequencies product law). Let 2 < p < 4 and p* = 2p/(p — 2). For all s > 0,
we have

(294) o  Slall 4 e el Lt 1% rd_g % llall®S g
~ B}f’ B3, B” Bpl Bp*ld 4 Bpl -;td ¢
h e, €,
(295) ;S lall s 1||b||Bs+1+||b|| SIS, BN Hlall™
By By, Bp1 B e Bp1 B, P 7
206 B S blI"e 4+ || o2 Il b :
(296) S ||aHB§1H gy, + 1181 1||a||Bs+1 + el ,p1|| ||B +4-4 +1 || t% 4
For s =d/2, we have
¢
(297) labll™5 < llall .« Q™69 2 +101™5 llall 2+ lall % 110]™5 -
BP 2 P
21 By By, pl By ;,1 B;f),l

Proof. We recall the so-called Bony decomposition (first introduced by Bony in []) for the product of
two tempered distributions f and g:

ab=T,b+Tla with T,b2 S 1aA;b and Tla 2 SiiabAsa.
b J J b j j
JEL JEZ

Using this decomposition and further splitting a and b into low and high frequencies, we get
ab = / h N + Tabh,s + T/Bhygal,s + Tah,sb&s + a@,st,e.

All the terms in the right-hand side, except for the last one, may be bounded following the computations
done in [I9]. We have

(208) Tl 55, S Wl lally
(299) Tt S Nl IS
Since a’* = Sy, 11a and b = (Id — SJ1+1)b, we see that

Tl 0" = 55, 120" Ay ya"e

Consequently, as SJ1+2bh’€ =(Ay_1+ AJI + AJ1+1)bh’€,

IThn-a Mgy, S 150 420™ N2 | A 10" o < ||b|| Nallze.

Similarly, we have
||Tah15 bhe |

h
55, S lally 161

Next, we deal with the term a“*b%° as in [64]. We have

hE < ||v( ZEbZE)‘

ot e

<||Va®

B< 1+ ||CL£ EVbZEHBe 1

By symmetry, we only deal with Va®® b%5. We have

IVa™

LS I Tggee 05155

B'S 1 + HTBZ 5va£€|

Bal

Then, standard paraproduct estimates give

[ SIVa | a6 sre-d)
1

p*,l

y4
< lall®s \bll °

Bcl

Ud
w
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Concerning TBLEV@“, we have

150 Va"*I5; S > PEI)S b5 AA Va1

_]>J57‘j_j,‘gl
3 2 Ay, Sy 1bAVate e,
J=2Jdeili—j5'1<4
:R1+R2-

For R1, we have

Ry < 6%z IIVa||B> .

For R9, we using commutator estimates yield
S YOS A Ve S YD PO Ay e
J2Je,|i—5'1<4 J'2Jeli—5"<4

Y g e DU e D U e Ayt e
li—j'1<4,Je>5'>J.—4

SV L IICLHBS |+ 26

a|| iy

p,1
d

Ld_ 4 .
where we used that d/p* = d/2—d/p and d/2—d/p—1 < 0. Then, employing B}, " < L¥ ,as p < p*,
we have

L -1)J. , - L,
A O PR e
pl
gg%—wg?(l—p—*m te,
BY,
S el
S P
p,1
Gathering these estimates, we obtain
vafsbéa . a L,e le + b&& 4 h,e + b@,s 4 lla
| IB a3 ”B,,l d-d I IIB§1 By, T ”351” [ it
Symmetrically, for a®*Vb*¢, we obtain
IVo*e a “IIBS S IIbII ,S+d g +|Ia“|| IIbII +||a“|| o pe
pl BP pl
athering the above estimates yields . To prove (| and (296)), we modify (| an Yy
Gatheri he ab i 1ds (294). T (295)) and (296 dify (298]) and (299) b
(300) ITpa" N gy, < bl IIaHBsH,
(301) ITab™ Ny, < llall o, HbIBbH

d_
Then, using B}, ! — BO_O%OO concludes the proof of (295). To prove (297)), we decompose ab as

(302) ab = T,b™ + T, _a+ ab’ + ab™*.

Bm,e

Using standard product law yields

(303) lab™ +ab |, < lall .-
B2 BP,

1™, 09)| 4
2,1 , B3,

Employing , we have

(304) 1Tl y S I6™] 4 flal s
Bz,l Bppl :1
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For T,b™*, we perform a more refined analysis. We have

(305) AjTb™) = A; | Y Sjioqadjbme
J'EZL
= Z S-/,laAj/Ajbm“E + Z [Aj,Sj/,la}Aj/bmﬁ.
Jhli=3'1<1 Jhli—j5'1<4

When j’ > J., the first and second terms can be treated as (303). When j’ < J; and J > Jy, we have
(306) 25N[A, Sy —1a]Ajb™ || 2 < 277 20D A S0y a]Agi o™ 2

SelVSy—iall e

where we have used a Young-like inequality as in [62]. Therefore, for j' < J. and s = g, we have
N .
(307) S YDAy, Saaldg b S e Vall Y 6™
5P pF B
32Je j',li—5'|<4 By P
<EEP%—1 K,Ed Hbm,e” 4
~ 3P B2
p,1 Pl
all%, en % oll™
By By,
since % + 1% = %. The proof of Proposition is concluded. O
We now state low-frequency product laws.
Proposition B.2 (Low-frequency product law). We have
(308) Hfglle g2 SIFll 2 allgll 4o
p 1 p 1
(309) Hfglle.g_Q <IN aallgl o + 1A 4 gl ae + IIth,_ lgll 4
B BP P 2
p 2,1 p 1 p 1 p,l
(310) Hfglljz e, < SI ——2”9” Bt +Hf||€ a gl a- +Hf||h,, HgH 4y
p 2 1 p 1 p 1
(311) Hfglle.%,l <l .gflllgll i + Hfllz a4 gl i +IA" L, ||9|| 4
B3, By B, B3, B, BY,

Proof. Estimate (308]) is classical. To prove estimate (309) and (310]), we use Bony’s paraproduct
decomposition to rewrite fg as

(312) fg=Tro" + R(f, )+ Tyf + Ty f".
Using that R and T map Bp X B 1 to 32 1 ifp < d and d > 3, we have

s and RGOy S Ig ol

1 2,1 :D

ITrgll” 4 o S IIFI 472||9||.
P

da _
2
2
A . .41 .d_q . d_o
Similarly, and with the fact that 7" maps B;; x By ; to B3, ", we have

(313) 1Ty féllz 4. Sl ——sz”e 4 and [T, f‘llz 4. Sl Wlllf\le

21 1 21 ,1

In order to handle the term with T, f*, we observe that owing to the spectral cut-off, there exists a
universal integer Ny such that

(Tgf’L)ZZSJ0+1( > 5j71gAquh)~

|7—Jo|<No
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Hence HTgfh”f;%*z ~ 270(5-2) D i ol <No 18,194, || 2. Then, if 2 < p < min(d, d*), for |j — Jo| <
3,1
Ny, we have

27085 1A fllzs S 15-1ll e (27F DA 1)

S HgHBngthB%ﬁ S HgHBgflllf’lllBgfg,
’ p,1 p,1

d*,00

L4 . L4 .4 Ld o
where we have used the embeddings BY, < BY, < Lé and B!~ < Bjo < Bif 2. I d<p <4,
then it holds that
270G D185 194, 1 122 S (24185190100 ) (27F 2 N4 10

cod . i(d_
<22 (20718, gle ) (G e ) S lgll g7
p,1 P

;1

Hence, we deduce that

h€ < h
(314) I 0 S 150 gl
which concludes the proof of (309) and (310). Proving (311)) follows the same lines replacing d/p — 2 by
d/p—1. O

Then, we state a hybrid composition estimate from [64].

Proposition B.3 ([64]). Let f(u) be a smooth function satisfying f(0) = 0. If u™* € B3, and

d
ube € By for s> 1 and s > g, 2<p<4ifd=1and?2 §p§min{4,%} if d > 2, then we have
f(uw)"= € Bs | and there is a positive constant C independent of e such that

d_
19 +20 7 s ) (Tl + lullys ).
P B2 BpJ;J 2 2,1

Bp)l 2,1

(315) Hf(u)ll}];’;l <C (1 + [Ju

Finally, we state a composition estimate that was proved in [19].

Lemma B.3 ([19]). Let p € [2,4] and s > 0. Define p* £ 2p/(p — 2). For j € Z, denote

Zl £ /Rd AJ(’U) VZ)Z]

There exists a constant C depending only on s, p, d, such that

(2°T1) < Ceslzgllaz (19l g N3, + 1z
1

le Le h
Tl + 1ell g Tl + 1z

o el ),
1 P P

da
P
P p,1 Bp,l

p,1

where (¢;);>J. 15 a sequence such that Zj>JE c; = 1 and we recall that

le 2
71 = 51, , + 1

m,e
Bs
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