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ABSTRACT. We investigate the compressible Euler-Maxwell system, a model for simulating the transport
of electrons interacting with propagating electromagnetic waves in semiconductor devices. First, we show
the global well-posedness of strong solutions being small perturbations of constant equilibrium states
in a critical regularity setting, uniformly with respect to the relaxation parameter € > 0. Then, for all
time ¢ > 0, we derive quantitative error at the rate O(e) between the diffusively rescaled Euler-Maxwell
system and the limit drift-diffusion model. To the best of our knowledge, this provides the first global-
in-time strong convergence result for this relaxation procedure in the whole space and in an ill-prepared
setting.

1. INTRODUCTION

It is well-known that the Euler-Maxwell system for plasma physics is widely used to simulate phe-
nomena such as photoconductive switches, electro-optics, semiconductor lasers, high-speed computers
and so on. In these applications, the electrons transport in devices interacts with electromagnetic waves,
which takes the form of Euler equations for the conservation laws of mass density, current density and
energy density for electrons, coupled to Maxwell’s equations for self-consistent electromagnetic field. See
[4, 5, 37] for more explanation. In this paper, we consider the following isentropic Euler-Maxwell system
in R? (d = 2,3), which reads as

Op + div (pu) =0,

O (pu) +div(pu®@u) + VP(p) = —p(E+u x B) — épu,
OFE —V x B = pu,

0B+ V x E =0,

(1.1)

with constraints
(1.2) divE=p—p, divB=0

for (t,z) € [0,+00) x RY. Here p = p(t,z) > 0, u = u(t,r) € R? are the density and the velocity
of electrons, and £ = E(t,z) € RY, B = B(t,r) € R? denote the electric field and the magnetic field,
respectively. In the momentum equation in (1.1), p(E + u x B) stands for the Lorentz force and Lpu is a
damping term with the relaxation parameter € > 0, which is associated with friction forces. The pressure
P(p) is assumed to be smooth with respect to the density satisfying P(p) > 0, where p > 0 is a constant
and stands for the density of charged background ions. We are concerned with (1.1)-(1.2) with initial
data

(13) (p,u,E,B)(O,x) = (p07u0,EOaBO)(x)v T € Rga

and we focus on solutions that are close to some constant state (p,0,0, B), at infinity, where B € R? is
a constant vector. Note that the constraint condition (1.2) remains true for every ¢ > 0, if holds at time
t = 0, namely,

(1.4) divEy=p—po, divBy=0, z¢€R3.
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The main interest of this paper is to justify the relaxation limit of solutions to (1.1) as ¢ — 0. For
that end, we change the time variable by considering an O(1/¢) time scale:

(1.5) (0", ¥, B*)(t, ) = (p, u, B, B)(L, ).

Then the new variables satisfy

Op® + div (p°u®) =0,

20y (p°u®) + £2div (p°u @ u®) + VP(p°) = —p°(E° + eu® x B°) — pus,
eOB® — V x B® = ¢gptu’,

1.6
(16) €0;B®* +V x E* =0,
div E® = p— p°,
divB® =0,
with the initial data
1
(17) (0 0%, B, B)(0,) = (fy —uf, B§, Bi) (@), @ € R

Formally, as e — 0, (p®,u®, E°, B®) converges to the corresponding limit (p*,u*, E*, B*), which solves
that

Op™ + div (p*u*) =0,
prut = =VP(p*) = p"E",
V x B* =0,

V x E* =0,

divE* = p— p*,

divB* = 0.

(1.8)

Clearly, if V x B* = div B* = 0, then B* = B. Due to V x E* = 0, there exists a potential function ¢*
such that E* = V¢* = V(—A)~!(p* — p). Thus, (1.8) can be reformulated as

19) {&p* - %P(p*) —div (p*V¢*) =0,
A¢p* =p—p".

The velocity field u* satisfies the Darcy’s law:

(1.10) u* = =V(h(p") + ¢"),

where the enthalpy h(p) is defined by
P DI
(1.11) h(p) := / mds.
5

S

System (1.9) is referred as the classical drift-diffusion model for semiconductor.

1.1. Exist literature. So far there are a number of results on global existence, large-time behavior and
asymptotic limit for the isentropic Euler-Maxwell system (1.1). In one dimension, by using the Godunov
scheme with the fractional step and the compensated compactness theory, Chen, Jerome and Wang [5]
constructed the existence of a global weak solution to the initial boundary value problem for arbitrarily
large initial data. In multidimensional case, the question of global weak solutions is quite open and
only smooth solutions are studied. Jerome [21] established the local unique smooth solutions to the
Cauchy problem (1.1)-(1.3) in the framework of Sobolev spaces H*(R?) with s > £ + 1 according to
the standard theory for symmetrizable hyperbolic systems. The global smooth solutions near constant
equilibrium states were obtained independently by Peng, Wang & Gu, Duan and Xu in [15, 36, 49]. Xu
[49] introduced the inhomogeneous Besov space and established the global existence of classical solutions
in B+ with the critical regularity index s, = g—i— 1. Furthermore, some singular limits, like the relaxation
limit, the non-relativistic limit as well as combined nonrelativistic and relaxation limits were justified.
Ueda, Wang and Kawashima [43] pointed out that System (1.1) was of regularity-loss type and the time-
decay estimates of solutions were shown by [15, 46], respectively. Hajjej and Peng [17] employed the
asymptotic expansion method and obtained the relaxation convergence rates of local-in-time solutions
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to (1.1) in the cases of both well-prepared data and ill-prepared data. Recently, Li, Peng and Zhao
[28] studied the relaxation limit for global smooth solutions from (1.1) to (1.9). The error estimates
between smooth periodic solutions between (1.1) and (1.9) are established by stream function techniques.
Concerning the stability of steady-states, we refer to the works [33, 35, 31]. Let us mention also those
results in [38, 56, 34] on global solutions for two-fluid Euler-Maxwell equations near constant states.

In order to investigate the large-time behavior of solutions to the system (1.1), as observed by Duan [15]
and Ueda, Kawashima and Wang [46, 43], there is a non-symmetric dissipation due to the coupled electric
field and the magnetic field, which leads to the one regularity loss when recovering time-decay estimates.
More precisely, assume that Uy, is the solution to the linearized system of (1.1) around (p, 0,0, B) with
€ =1, then the Fourier image of (/Jz verifies the following pointwise estimate:

—~ __clel?
(1.12) UL, &) S e~ T em2 UL (0,€) 2,

for all t > 0, ¢ € R? and ¢ > 0, which leads to the time decay property of L2-L'-L? type, see [46],
where the solution decays like heat kernel at low frequencies, and for the high-frequency part, it decays
in times in the price that the additional regularity is assumed on the initial data. Later, Ueda, Duan and
Kawashima [44] formulated a new structural condition to analyze the weak dissipation mechanism for
generally hyperbolic systems with non-symmetric relaxation (including the Euler-Maxwell system (1.1)).
Xu, Mori and Kawashima [54] developed a more general time-decay inequality of LP-L9-L" type, where
the minimal decay regularity is available. In the absence of damping term, we refer to those works by
Germain and Masmoudi [16] and Deng, Ionescu, Pausader [13], where the global existence of smooth
solutions was constructed by using dispersive estimates.

Without the effect of electric and magnetic fields, i.e. B = E = 0, the system (1.1) reduces to the
isentropic damped compressible Euler equations:

Op + div (pu) = 0,
(1.13) 1 d
8t(pu)—|—div(pu®u)+VP(p)—|—gpu:0, x € R%

Many advances have been made in the analysis of global solutions to system (1.13). For small initial
data being small perturbations in Sobolev spaces H*(R?) (s > % + 1), the global well-posedness and
asymptotic behaviours of classical solutions for (1.13) have been studied in numerous works. In Sobolev
spaces, Sideris, Thomases and Wang [41] and Wang and Tang [48] studied the optimal time-decay rates
of solutions. In [6, 29], Coulombel, Goudon and Lin justified the converge of the system, in a diffusive
scaling, toward the porous media equation. Then, the fourth author, Wang and Kawashima [50, 55]
extended theses results to the framework of inhomogeneous Besov spaces. Recently, the first author and
Danchin [7, 8] established the global well-posedness and optimal time-decay rates for (1.13) in the critical
homogeneous Besov space B%:2+1 = Bs 0 BE+1,

Both (1.1) and (1.13) can be symmetrized and reformulated as partially dissipative hyperbolic systems

of the form

vV KAV
(1.14) EJFZA (V)a?j =LV,

7j=1

where V' = V(t,xz) € R" (n > 2) is the unknown depending on the time and space variables (t,z) €
Ry x RY AI(V) (j = 1,..,d) are symmetric matrices, and L is a nonnegative definite matrix with a
nontrivial kernel. From the result of Kato [22], Majda [32] and Serre [39], it is well-known that for
smooth initial data, there exist local-in-time solutions to (1.14), and without the relaxation term LV,
the solutions may develop singularities (shock waves) in finite time, see the result of Dafermos [11] and
Lax [25].

In general, the degenerate relaxation matrix L is not enough to stabilize the whole solution and control
the nonlinearities due to its partially dissipative nature. In the case L is symmetric, to overcome the lack
of coercivity of the system, Shizuta and Kawashima [40] introduced the celebrated Shizuta-Kawashima
condition, which describes the interaction between the hyperbolic and dissipative parts of the system,

to stabilize the whole system. Based on this approach, for a global existence result in Sobolev spaces
and a proper way of symmetrizing partially dissipative systems, we refer to the works of Kawashima and



4 T. CRIN-BARAT, Y.-J. PENG, L-Y. SHOU, AND J. XU

Yong [23, 57]. In a similar framework, Bianchini, Hanouzet and Natalini [3] analyzed the Green function
and studied the large-time behaviour of solutions. We also refer to the works of the fourth author and
Kawashima [51, 52, 53] concerning the well-posedness in the inhomogeneous Besov space B £+1 More
recently, Beauchard and Zuazua [2] framed this phenomenon in the spirit of Villani’s hypocoercivity
[47] and showed the equivalency of the Shizuta-Kawashima condition and the Kalman rank condition
in control theory. We also refer to [7, 8, 9, 12, 52, 53] and references therein for recent developments
using Littlewood-Paley decomposition. Among them, under the Shizuta-Kawashima condition, Danchin
[12] observed that partially dissipative hyperbolic systems (1.14) can be characterized by a parabolic
system and a damped system in the frequency regime |£| < e7! and justify the strong relaxation limit of
(1.14) with an explicit convergence rate. This method is extended to study the relaxation limit of some
Euler-Possion type models [10, 26].

However, the classical theorems by Shizuta and Kawashima [40] and Beauchard and Zuazua [2] may
not be applied to the Euler-Maxwell system since it does not fulfill the Shizuta—Kawashima condition or
the Kalman rank condition. As observed by many works [15, 46, 43], the Oth-order skew-symmetric part
of the relaxation matrix plays a key role in capturing the dissipation of the electromagnetic part and
leads to a loss of regularity when the frequencies are away from 0. To the best of our knowledge, there
are no results characterizing the dissipation structures of the Euler-Maxwell system with respect to e.

1.2. Overview of the paper’s findings. In this paper, we enhance the comprehension of the partially
dissipative nature of the Euler-Maxwell system. While this structure has been investigated in existing
literature, there is room for improvement in the analysis. We frame the analysis of (1.6) in a hypocoercive
way with elaborate dependence with respect to the relaxation parameter . This provides us good
intuitions on how to deal with systems of the form (1.14) when L is non-symmetric.

First, we extend the current well-posedness theory for (1.6) to a larger class of initial perturbations
in the critical homogeneous Besov space B2~ 12+l = Bs~1n B2+! The high-frequency (critical) B% 11
assumption on the initial data is necessary to ensure a Lipschitz bound on the solution, which can be
obtained via the end-point embedding B+ < 11, Without such assumption, we mention the works
of Li, Yu and Zhu [27] and Linares, Pilod and Saut [30] concerning the ill-posedness of Burgers-type
equations for initial data in H® with s < g + 1. On the other hand, the choice of B~1is due to the

heat-like behavior of the system in low frequencies and leads to a L%(B%H)—bound on the solution.

Next, we derive uniform-in-¢ a priori estimates for the solution. For Uy, . = (p — p,eu, E, B — B) with
(p,u, E, B) being the solution to the linearization (3.4) of (1.6), we observe the following new pointwise
behaviour (see Proposition 3.1):

col€]?
(1 +e22)(1+1€2)’

where ¢p is a uniform constant. Compared to (1.12), the estimate (1.15) allows us to keep track of the
parameter e. In accordance with (1.15), the behaviour of the solution can be analyzed as follows:

(1.15) UL, P S MDUL0,0,  A(lé]) = -

e In the low-frequency region |¢| < 1, we have A\ (|¢]) ~ —col€]?.
o In the medium-frequency region 1 < [¢| < 1/e, we have A (|€]) ~ —co.
e In the high-frequency region |£| 2 1/e, we have A(|¢]) ~ — e

This reveals different behaviours: the solutions behave like the heat flow in low frequencies; the medium

frequencies are exponentially damped; in high frequencies, a loss of derivative occurs. For a more precise
analysis of the behavior of each component see (3.5) or Table 1. From this spectral behaviour, it is natural

<t [1<ig<’ > <

p° —p | Damped Heat Damped

u® Damped Damped Damped
E® | Damped | Damped | Regularity-loss
B —-B Heat Damped | Regularity-loss

TABLE 1. Behaviors of each component of the Euler-Maxwell system (3.2)

to split the analysis of the solution in low, medium and high frequencies. In each regime, we develop
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different hypocoercive methods combined with the Littlewood-Paley theory to capture sharp dissipation
rates (refer to Figure 1).

Therefore, we deduce that one needs to decompose the analysis in three frequency regimes to recover
the best stability properties for the Euler-Maxwell system. This contrasts with the classical Shizuta-
Kawashima theory where only two frequency-regime are usually employed. Here, to derive uniform
a priori estimates, following Proposition 3.1, we construct Lyapunov functionals localized in frequencies
(using the Littlewood-Paley theory) which encodes enough information to recover the spectrally expected
dissipative properties of the solutions, e.g. stated in Table 1. Then, to deal with the nonlinear terms, we
perform energy estimates at different regularity levels in low, medium and high frequencies (see Figure
1). Moreover, in Subsection 3.2, we use product, composition and commutator estimates, adapted to the
frequency decomposition, to control the nonlinearities. In particular, our functional framework allows us
to track the regularity evolution and obtain uniform estimates with respect to the relaxation parameter
€.

Low Medium High
| frequencies | frequencies \ frequencies
| 1 1 >
O ptn 1m0 pra [

FIGURE 1. Frequency splitting and regularity for the Euler-Maxwell system (3.2).

With these uniform estimates in hand, we establish quantitative error estimates between the solution
of the Euler-Maxwell system (1.6) and the drift-diffusion system (1.9). Note that, as the relaxation
parameter € — 0, the frequency regime [£| < ¢! will cover the whole frequencies and the high-frequency
regime will disappear. This is coherent as the density p° in the low and medium frequencies behaves
similarly to the solution p* of the limit drift-diffusion system (cf. Figure 2). To establish the error
estimates, the key ingredient in our proof is the introduction of the effective velocity (damped mode)

(1.16) 2 = uf + Vh(p?) + E° + eu x B,

which is associated with Darcy’s law (1.10). Based on the O(e)-bounds on this effective velocity 2¢, we
are able to obtain an explicit convergence rate in ill-prepared scenarios.

Low High
| frequencies | frequencies
I | >
0 pi-1 1 BY €]

FIGURE 2. Frequency splitting for the drift-diffusion model (1.9).

1.3. Outline of the paper. The rest of the paper unfolds as follows. In Section 3.2, we derive uniform
a-priori estimates for (3.2), and then based on these a-priori estimates, we prove the global well-posedness
of the Cauchy problem (1.6)-(1.7) (Theorem 2.1) in Section 3. Section 4 is dedicated to the justification
of the strong relaxation limit from (1.6) to (1.9) (Theorems 2.3 and 2.4). Appendix A collects some
technical lemmas that are used throughout the text.

2. PRELIMINARIES AND MAIN RESULTS

2.1. Notations and functional spaces. Before stating our main results, we explain the notations
and definitions used throughout this paper. C' > 0 denotes a constant independent of £ and time,
f < g (resp. f 2 g) means f < Cg (resp. f > Cyg), and f ~ g stands for f < g and f 2 ¢g. For any
Banach space X and the functions f,g € X, let |(f,9)|lx := [|fllx+]lgllx- Forany T > 0and 1 < o < oo,
we denote by L2(0,7T; X) the set of measurable functions g : [0,7] — X such that ¢ — ||g(t)||x is in
L2(0,T) and write || - | e(o,r;x) = || - [l e (x)- F and F~! stand for the Fourier transform and its inverse.

In addition, let A° be defined by A% f := F~(|£|°F f). Then we have A2 = —A and A=2 = (—-A)~L.
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We present succinctly the notations of the Littlewood-Paley decomposition and Besov spaces that we
employ in this manuscript. The reader can refer to [1, Chapter 2] for a complete overview. Choose
a smooth radial non-increasing function y(§) with compact supported in B(0,4/3) and x(¢) = 1 in
B(0,3/4) such that

o€ =x(5) ~x(©), Y eI =1 Swppc{EcRr! :

JEZL

< <

1.

=~ w
wl| oo

For any j € Z, the usual homogeneous dyadic blocks Aj and the low-frequency cut-off operator Sj are
defined by ) _ ' _

Aju = FHp(279) Fu), Sju = FH(x(277 ) Fu).
The homogeneous Besov space B;S),'r for any p,r € [1,00] and s € R is defined by

By, i={ueS) ¢ |lullp, = {2 llullir ezl < oo}

From now on, we use the shorthand notations

AjU:’LLj, BS :Bs,l‘
We also introduce the hybrid Besov spaces

B = fu e S s ullgees = 3P ugllee + 3 2% ugllze < oo}
J<0 j=—1

We have ) )
B°v®2 = B%if S1 = 82,

381’52 = le n BSZ if s1 < S92,

381’52 = le -‘rBSQ if 51> s9.
One of our key ideas involves partitioning the frequency space into three distinct regions. In each of
these regimes, the solution demonstrates significantly different behaviours from the others, prompting

the development of distinct methods for each. In this regard, we set the threshold J. between medium
and high frequencies as

(2.1) J. = —[logy ] — ko,

such that 27¢ ~ 1/ and k¢ is a sufficiently large integer independent of € chosen in Proposition 3.6.
Then, we define the frequency-restricted Besov spaces

el =Y 2% luglloe, Nullfe = D> 2%lusllee, Nullh = > 27°fluyllre.
J<0 —1<5<Je jzJe—1
Analogously, we decompose u = u’ + u™ + u” as
ul = Z uj, u™ = Z uj, ul = Z uj.
Jj<-1 0<j<Je—1 Jj=Je

Note that using Young’s and Bernstein’s inequalities, it is easy to see that

[l g S Nulles Mu™lge S TulFer Nulge S Nl
and for any s’ > 0
(2.2) {Hullé‘s S lulleeers lullBe S Nl
N ’ _ ’
lullg. S 27 ullBoewr lulle S 277 [l

Furthermore, we denote the Chemin-Lerner type space E‘—’(O, T; B;’T) by the function set in L2(0,T;Sy)
endowed with the norm

S 9%yl 4y <00, 1< 0 < 00,
JEZ

u . = X

1z 0 =\ S o sup fug e < 00, if 0= oo

JEZ  te[0,T]
By the Minkowski inequality, it holds that

lullz, ey = Il ey and Nulzg gy 2 lull g ey for 0> 1,
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where || - || e (B 19 the usual Lebesgue-Besov norm. We omit the similar definitions of time-space hybrid
spaces and the ones restricted in low, medium and high frequencies.

2.2. Main results. Before stating our main results, we introduce the energy functional

(2.3) £(a,u, B H) = @, B H) g g g+ el BEDIE
and the dissipation functional
D(a,u, B H) = lallzy g gy + lall, g + 017, g

- el g1, Ml g, Tl g, 7,
F 1Bl 41, + HEH‘LI(BJH BT, g
gy ) + I, g, + I,

We also denote the initial energy

(2.5) &5 = I1(o5 — 7 uf, £5, B5 — B)ll y4 1.4 +ll(0§ — 5w, B5, B — B)|', g,

In our first theorem, we prove the global existence and uniqueness of classical solutions and derive
uniform regularity estimates with respect to the relaxation parameter

Theorem 2.1. Let 0 < € < g9 with a suitably small constant 9. There exists a constant cg independent
of € such that if the initial datum (p§,uf, E§, B§) satisfies

(26) SS S Q,

then the Cauchy problem (1.6)-(1.7) admits a unique global classical solution (p°,us, E¢, B%) satisfying
(p° — p,us, B, B° — B) € C(R*; BE~12+1) and

(2.7) E(p° — p,u, E°,B° — B) + D(p° — p,u’, E°, B — B) < C&5, tcR,.
In addition, it holds that

el e|m eh e
<
28) 121, g, + 1717, g, + 171 ) < O, teRe,
and
(2.9) 15Nz sy S (65 + 148l p)es ¢ € R,

where C' > 0 is a constant independent of € and time, and 2° is the effective velocity given by (1.16) with
its initial value z§ == Lug + Vh(p§) + u§ x B.

Remark 2.2. Some remarks are in order.
e Theorem 2.1 extends the previous results about the global well-posedness of the Euler-Maxwell
system to a broader functional framework. This can be seen with the following chain of embed-
dings

d iy
H*(s >3 +1) = BE o BE1EH (@ =3) = I nWwh™.

e In the limit ¢ — 0, the regularity properties obtained in Theorem 2.1 match the properties of
the solution for the limit drift-diffusion model given in Theorem 4.1. This is consistent with the
relaxation limit process described in Theorem 2.3.

e In low and medium frequencies, we obtain (end-point) L!-in-time estimates for the solutions in
(2.7). However, in high frequencies, due to the regularity-loss property of B when estimating
the nonlinear term u® x B¢ associated to the Lorentz force, we only obtain L?-in-time estimates.

e It should be noted that the effective velocity 2°, related to Darcy’s law (1.10), verifies stronger
regularity properties than the whole solution. This fact is key in proving our relaxation result:
Theorem 2.3.
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Next, we justify rigorously the relaxation limit from (1.6) to (1.8) and exhibit quantitative convergence
estimates which are uniform with respect to time. Below, We state our relaxation limit result for ill-
prepared initial data.

Theorem 2.3 (Ill-prepared case). Let 0 < e < &g with a suitably small constant £y. Let (p®,u®, B¢, B®)
and p* be the solutions to the Cauchy problems (1.6)-(1.7) and (1.9) obtained from Theorems 2.1 and 4.1
and associated to the initial data (p§,u§, E5, BS) and pfy respectively. Let E* = V(—A)"Y(p* — p) with
its initial datum Ef = V(—A)"Y(ps — p), and B* = B.

Suppose that

(2.10) 1EG — Egll yg.9 - +11Bo — Bl 44,41 <&
Then for all t € Ry, we have

e *
nt 1B — B HZgo(B%%*)mZg(B

g _ | o "
+B°-B ”L;O(B%%*l)an(B

e

5 *
Hp - P HZ?O(B%—L%—%O’Ef(Bgf ,%71)

(2.11)
%+1,%71) S Clsa

where Cy > 0 is a constant independent of € and time.
We also prove stronger convergence estimates for well-prepared initial data.

Theorem 2.4 (Well-prepared case). Let 0 < € < gg with a suitably small constant eg. Let (p°,u®, E€, B®)
and p* be the solutions to the Cauchy problems (1.6)-(1.7) and (1.9) obtained from Theorems 2.1 and 4.1
and associated to the initial data (p§,u§, ES, BS) and pfy respectively. Let E* = V(—A)"(p* — p) with
its initial datum E§ =V (—A)"Y(ps — p), and B* = B. If we assume that

(2.12) |E§ — Bll g + 185 — B*ll 4 <,
and
(2.13) ol g0 <1,

where z§ := Tu§+ Vh(p§) +u x B, then, for allt € Ry, the convergence holds in stronger norms, namely

(2 14) Hpa - p*H’LVfC(B%—l)mZ%(B%A,%) + ||uE - U*HZ%(B%,%—I)
FIE = Bl gtz ity T 1B = Bllie st st g) < O25

where Cy > 0 is a constant independent of € and time.

Remark 2.5. Some comments on Theorem 2.3 are in order.

e Concerning the regularity assumption on the initial data in Theorem 2.3: we do not impose
conditions on the initial error pj — p§. In fact, the regularity of the density and the electric field
are linked since (1.4) implies

(2.15) o6 — 0y = —div (B — E).

e The condition (2.13) on z§ is equivalent to the fact that u§ has a O(e)-bound in B2!. It enables
us to establish additional regularity estimates for the effective velocity 2° and obtain a stronger
convergence result.

e We are able to establish the strong convergence for high-order norms. For example, using a
interpolation argument between (2.7) and (2.14), for all o € [¢ — 1, ), one has

1p" = P7ll ey moyre@ymoeyy + 10 = Wl 2wy 50

+||EI€7E*HL°°(]RJF;BU)NLz(RJr;B‘7)<i>HBE*B*” 0.

i cot1,d, T
Loe(Ry;B7)NLA(R4;B7T2) 60

We now explain the strategies for establishing the error estimates of the relaxation limit for (1.6).
Different from the damped Euler equations [9] or Euler-Possion type models [10, 26], we need to over-
come the regularity-loss phenomenon and carry out convergence estimates on the error unknowns in three
frequency-regimes due to the elaborate dissipative structures of solutions. In the low and medium fre-
quencies, our key step is to establish maximal decay estimates of the effective velocity z¢ defined in (1.16)
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associated to the L;-regularity estimates of solutions in (2.7). To this end, we decouple the equations
(1.6),-(1.6)5 and treat the terms involving H*® as source terms. In fact, the effective velocity 2° allows us
to reformulate the density equation (1.6), as

(2.16) Oip° — P'(p)Ap® + pp° = —pdiv 2° + epu’ x B + nonlinear terms,

which has a structure similar to the drift-diffusion model (1.9). Then, we have to derive decay-in-¢ for
the remainder term pdiv 2¢ to justify the relaxation limit. The effective velocity® ¢ satisfies the damped
equation

1 _
(2.17) e 2® + =25 =eVoun® + edE° — 2° X B + nonlinear terms.
€

To handle the £9; E° term on the right-hand side of (2.17), we observe that
(2.18) €0, FE° + epE® = ep2° +epVn® — e2p(2° — Vn® — E°) x B + VH? + nonlinear terms.

Given the L}-regularity estimate of VH® on the right-hand side of (2.18), we are able to treat (2.16)-
(2.18) separately as purely dissipative equations, where the higher order linear terms on the right-hand
sides can be absorbed if the threshold J. takes the form (2.1) with a ko chosen small enough. This enables
us to obtain the O(e)-bound (2.8) for the L}-regularity of 2¢.

Let (6p,0u,0E,0B) := (p° — p*,u —u*, E — E*, B — B*) be the error unknowns. Regarding the low
and medium frequencies, we observe that the error §p satisfies

(2.19) d:6p — P'(p)Adp + pop = —pdiv 2° + epdiv (u x B) + nonlinear terms.

Thence, the error estimate of Jp essentially comes from maximal regularity estimates for (2.19) and the
O(e)-bound (2.8) for the effective velocity 2. To handle (6F,JB), we observe the following partially
dissipative equations:

1 _
OWOE — =V X 6B+ pdE =V x BY* + p2° — epu® x B — P'(p)Vép + nonlinear terms,
€

(2.20) 8,08 + év < 6F =0,

divéE = —dp, divéB =0,

where the term BY* = —(—A)7!V x (p*u*) causes an additional difficulty in the analysis of (2.20). To
overcome it, we introduce the modified error unknown

OB :=0B +eBY*.

By employing a hypocoercive argument for (§ E, §B), we are able to recover the error estimates of (§F, § B).
Furthermore, the convergence estimates for high-frequency norms can be deduced from the uniform
regularity estimate established in (2.7) and the cut-off properties in (2.2). With these observations, we
prove the desired converge estimate (2.11), cf. Subsection 4.1.

Finally, under the stronger assumption (2.13), deriving L?-type estimates from (2.17), one can establish
the stronger decay estimate (2.9) of the effective velocity z° in the whole frequency space, which enables
us to perform the L?-type energy argument on (2.19) and (2.20) to obtain the stronger convergence
estimate (2.14) in Theorem 2.3, cf. Subsection 4.2.

3. GLOBAL WELL-POSEDNESS FOR THE EULER-MAXWELL SYSTEM

This section is devoted to the proof of Theorem 2.1. In this section, we omit the superscript ¢ in the
solution (p,u, E, H) for (1.6) to lighten the notations. We introduce the perturbations of n and H as

(3.1) n = h(p), H=B-B.

IThe effective velocity 2 is reminiscent of the ”good unknown” introduced by Hoff and Haspot in [18, 19] to treat the
compressible Navier-Stokes system and by the first two authors in [7, 8, 9] to analyze the compressible Euler type equations
with damping.
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Due to (??) and the fact that p is close to the positive constant p, the implicit function theorem implies
that the density p is a C® function in a small neighborhood of 0 with respect to the enthalpy n = h(p).
The system (1.6) can be rewritten as

on+u-Vn+ (P'(p) + G(n))divu = 0,

EQ(Otu+u-Vu)+Vn+E+u+su x B = —eu x H,

e E —V x H — epu = eF(n)u,

(3.2) e0H+V x E =0,
divE = —-Kn — ®(n),
divH =0,

1
(n,u, E, H)(O, x) = (ngv gu67 ES? HS)(x)’
with

ng = h(p;), H;:=B;— B,

R _ P
(3.3) K :=p'(0) = )
G(n)="P'(p)-P'(p), F(n):=p-p, 2n):=p—p—Kn

Remark that ®(n) is a quadratic nonlinear term with respect to n. Such formulation allows us to consider
general pressure laws.

3.1. Pointwise estimates for the linear Euler-Maxwell system. To better understand the dissi-
pative structures of the solutions to (3.2), we provide pointwise estimates of the linearized system

On + P'(p)divu = 0,

20u+Vn+E+u+eux B=0,
(3.4) ehE —V x H—¢epu =0,

e0tH+V x E =0,

divE = —Kn, divH = 0.

Since the seminal works by [40, 42], significant advancements have been made in employing the energy
method within Fourier spaces for analyzing various types of hyperbolic systems. These include systems
pertaining to viscoelasticity, radiating gas, compressible Euler-Maxwell equations, Timoshenko systems,
among others (see [14, 20, 45, 46, 24] and references therein for comprehensive discussions). Additionnaly,
[2] offers valuable insights into the perspective of hypocoercivity, while [44] delves into hyperbolic systems
featuring non-symmetric dissipation.

In this study, we introduce a parameter-dependent energy method using Fourier decomposition tailored
for (3.4) (see (3.5)-(3.6) below). These newly elucidated pointwise frequency behaviors provide insights
into the evolution of the dissipation rate concerning the relaxation parameter ¢.

Proposition 3.1. For all0 <e <1, let (n,u, E,H) be a solution to system (3.4). Then, there exists a
functional L¢(t) ~ |(A,eu, B, H)(t,€)|? and a constant co = co(p, B, P'(p)) > 0 such that

co(1+[€]%) colé]?

d N N co ~ ~
3.5 —Le(t) + ¢ u2+7n2 +7E2+ H2<0.
(3.5) i ¢(t) + colu] 1+ e2|€2 | 1+€2|§‘2| | (1+52|€|2)(1+|§|2)| "<
Furthermore, we have
(3.6) (A, B, H) (4,6 S eV @,em, B, H) (0,91, t>0, (eRY,
where A (|€]) is given by
2
¢
Aeh) =~

(I +e2gP) A+ 1E%)
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3.2. Uniform regularity estimates for the problem (3.2). In the next proposition, we derive uniform
a priori estimates for the Cauchy problem (3.2).

Proposition 3.2. For given time T > 0, suppose that, fort € (0,T), (n,u, E, H) is a classical solution
to the Cauchy problem (3.2). Let

(3.7) X(t):=&mn,u, E,H)+D(n,u,E, H),
with € and D defined in (2.3) and (2.4). Under the assumption

(3.8) 1] Loe Loy < 1, 0<t<T,

it holds that

(3.9) X(t) < Co(Xo+ X(1)* + X(1)%), 0<t<T,

where Cy > 0 is a constant independent of T and .

Proposition 3.2 is a direct consequence of Lemmas 3.3, 3.4 and 3.5 dedicated to the analysis of the
low, medium and high-frequency regimes respectively.

3.2.1. Low-frequency analysis. First, we derive low-frequency a priori estimates.

Lemma 3.3. Let (n,u, E,H), fort € (0,T), be a classical solution to the Cauchy problem (3.2) satisfying
(3.8). It holds that

0 0
(3 10) ||(n7€uaE7H)||Z$Q(B%71) + H(naquvH)HL%(B%JA)
! 4 4 < g€ 2
+ H(naqu)||Z$(B%_1,%+1) + “H||Zf(B%HB%+1) ~ 50 + X(t) .

Proof. First, we construct a localized Lyapunov inequality in the low-frequency regime. We aim to show
that for all j <0, there exists a functional LS(t) ~ [|(n;,eu;, Ej, H;)||7 . such that

d 4 .
(3.11) %Ef-(t) + 22 L5(8) + llugll7e + (g, By)lI7= + 27| H (122 S G5(t)y/L5(2)
with

Gﬁ(t) = || A, (u- Vn,G(n)divu,eu - Vu,u x H,eF(n)u, ®(n))| 2.
To achieve it, applying the frequency-localization operator Aj to (3.2), we obtain
dn; + P'(p)divu; = —A;(u- Vn) — A;(G(n)divu),
e20uuj + Vn; + Ej +uj +eu; x B = —Aj(EQ’U, -Vu) — Aj(zsu x H),
(3.12) e E; —V X Hj — epuj = Aj(st(n)u)7
€atHj + V x Ej = O,

divE; = —Kn; — A;®(n),  divH; = 0.

Taking the L?-inner product of (3.12), with n;, we have
1d N : . _
(613) 55 [l dot P) [ divagn do < (14,60 Vil + 185G m)div) |o2) -

To cancel the second term on the left-hand side of (3.13), we take the L%-inner product of (3.12), with

P'(p)u; and use (u; x B) -uj = (u; x uj) - B =0 so that

P'(p)e? d
(3.14) (5)6 %/'“ﬂ? dw+P’(ﬁ)/Vﬂj Sy d$+P'(ﬁ)/luJ'|2 dx—|—P'(/3)/Ej cuy dz

< P'(p)|Aj(eu- Vu,u x H)| p2eu]| 2
In addition, one deduces from (3.12),-(3.12), that

P'(p) d ) 1.
(315) D) 1B )~ P0) [ w5 By ds < LI (F ol Bl
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where one has used
/(VXf)~g—(V><g)-fdx=/diV(f><g) dr=0, Vf.geSE®).

Combining (3.13)-(3.15) together, we have

1d _ 1 1 _
23 [ (il + POl + B + LI ot P() [l da
(3.16) < (18- Iz + 1A (Gm)diva) 1) s
N1l A 1 .
P @A u- Vuux H)llzsellugllze + 185 (F(m)u) 125 o

In order to derive the dissipative effect for n;, we multiply (3.12), by Vn;, make use of (3.12); and
integrate by parts. In fact, by divE; = —Knj; — A;®(n), we see that n; satisfies

/Ej -Vn; de = f/diijnj dz = K|nj||3. + /Ajfﬁ(n)nj dzx.
Thus, we have
62% /uj - Vn; dz + / (IVn;? + K|nj|? — P'(p)e?|divu;|* + uj - Vin;) dz
(3.17) < ellAj(eu Vu,u x H)|2]|Vngllze + | VA (u - Vi, G(n)divau)| poel|u; | oz
+1A;@(n) |22l 2
Concerning dissipation for Ej, it comes from the interaction between the symmetric and skew-symmetric

part of the order 0 dissipation matrix. Indeed, taking the inner product of (3.12), with E;, using (3.12),
and (3.12); and noticing that n; = —div E; — +A;®(n), we get

d 1, ..

€2£/uj -Ej dw+/(|EJ~\2 + ?‘dlijF) dx

(3.18) + / (uj - Ej+e(u; x B) - Ej —eu; - (V x Hy) — £2plu;|?) dz
. . 1 . .

< ellAjleu- Vu,u x H) 2| Ejllzz + el Ay (F(n)u) || 2ellujlice + 5211858 (n)]| 2 (ldiv Ej 2.

Finally, taking the inner product of (3.12), with —V x H; and using (3.12),, we get dissipation for H;:
d

_Ea/Ej'VXHj d:v+/(\VxHj|2+Eﬁuj~V><Hj—|V><Ej|2) dx

(3.19) .
< el Aj(F(n)u)llr2|IV x Hjl| e

Let m; € (0,1) be a constant to be chosen later, we define the low-frequency functional
Los(®)i= 5 [ (il + POl + | B+ I P) do
+e2n1/uj.vnj d:c+s2m/uj-Ej dx—nl%g/Ej.v x H; dz,
and
Dy ;(t) : = P'(p) / luj|® +m / (IVn;|* + K|n;|* — P'(p)|divu;|* + u; - V) da
+m / (|1E;)* + %|diij|2 +uj - Ej +e(uj x B) - E; —euy - (V x Hy) — epluj|?) da
b /(|V x HjJ? — epu; -V x Hj — |V x E;[?) d.
Combining (3.8), (3.16)-(3.19), Bernstein’s inequality and 2/ < 1 with j < Jy leads to
@050+ Do)

(3.20) .
S A (u- Vi, G(n)divu, eu - Vu,eu x H,eF(n)u, ®(n))|| 2]/ (nj, eu;, Ej, Hj)|| 2.
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Hence, we claim that for € € (0,1), there exists a suitable small constant 7; > 0 independent of € such
that

(3.21)

Loj(t) ~ ||(nj,eu;, B, Hy)| 3,
Dy j(t) 2 [|(ng, uj, B;) |72 + 2% | Hyl|72 2 2% Lo (1)

Indeed, it follows from supp (A;-) C {327 < |¢| < 327} and 27 < 1 that

Los) < 5 [ (@ gl + (P/()+ m)lul? + (i + FmlEsl + (5 + gnd ) do.
Lost) 2 5 [ (= gmlnsl + (P () = Gm)Plul + (e = gmlBsP + (5 = gnd) ) do

Similar computations yield
_ 1 . 1
Dy ;(t) > P'(p) / luj|? dz +m / (§|an|2 dr + K|n;j|* — P'(p)|divu;|* — §|u3|2) dx

1 _
+771/(5|Ej|2 —(1+ B+

_ 1 1
T+ p)|uj)* — S IV x Hj|?) dz
2ny

g 1 2 P 2 2
i [(GIV < Hy" = T luy|” = [V < Ej[7) da

heY
(]

_ 64P' (p _ 3
> [ () 22— = s+ K )

1 32 1 9
Sme(l— 2D B2 + —ni2% | H,
+ [ Gme = FublE P + gl 2| P) do
where we used that, since div H; = 0, the div-curl lemma implies
9 ..
(3.22) IV Hjl 72 = IV H;[IZ2 > 1527 1H; 1 Ze-

Taking n; is sufficiently small, we have (3.21). Therefore, from (3.20) and (3.21), (3.11) follows.
Then, with the aid of (3.11), we are ready to prove the estimates (3.10). Noticing that 1 > 227 for
J <0, applying Lemma A.7-(1) to (3.11), we have

1(ny, euy, By, Hy)|l oo 22y + 2% || (ng, ug, By, Hy) || 2112
(3.23) + (g, ws, Ei)ll L2y + 2j||Hj||L§(L2)
< My, euj, By, Hy)(0)|| 2 + ||A](u -Vn, G(n)divu,eu - Vu,eu X H,eF(n)u, ®(n))| 2.
Multiplying (3.23) by 2 2(2-1J and summing it over j < 0, we get
[(n, eu, E, H)||% + (n,eu, B, H)||*

LOO(B——I Ll(Bd+1
G2y B, g L,
< ||(no,U0’E0,H0)HB%,1 +||(w- Vn,G(n)divu,eu - Vu,eu X H,eF(n)u, ®(n ))||ZLI(B§71).

Let us now turn to the analysis of the nonlinear terms. Using Bernstien inequality and the product law
Bi~! < B% x B&~!in (A.2), we have

(3.25) e V0l sy S eVl g Sl g Il
Similarly, as ¢ < 1, we get
(3.26) el Ve % Bl sy S ol o I Dl

By (A.2) and the composition estimate (A.4), it also holds that

(3.27) POl g1, S Il Nl g
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From the quadratic term, it follows from (??), (3.8), Lemma A.6 and the embedding B2 < L that

¢ < ¢ m h
(3.98) 1R, g, S Dol gt Ol g+ 1012, g+ Tl )
Combining the above nonlinear estimates (3.25)-(3.28) with (3.24) leads to
¢ ¢ ¢
(e B DI g s+ B g+ 0w, B, g+ IHIG, g
(3.29) ’
S [l(no, wo, Eo, Ho)l, g -, + X (¢ )%
Furthermore, taking advantage of (2.2) and (3.24), one also has
¢ ¢ < ¢ ¢
. 00 B g+ VI g S I IS, g+ AT,
5 ||(no7uo7Eo,H0)||2g71 + X (1)
Since u satisfies the damped equation
. 20 +u=-Vn—FE —cux B — (u-Vu) —e(u x
(3.31) 20, Vn-—FE B — (u-Vu) —e(ux H),
we conclude from Lemma A.8 for (3.31) and the estimate (3.29) that
iy Mt S g B g el T D
3.32 ¢
< ¢ ¢ ¢
S eluoll g, + e B g el Vs DI, g
By (3.29), (3.30) and (3.32), we derive (3.10) and complete the proof of Lemma 3.3. O

3.2.2. Medium-frequency analysis. Next, we establish the desired medium-frequency estimates.

Lemma 3.4. Let (n,u, E, H) fort € (0,T) be a classical solution to the Cauchy problem (3.2) satisfying
(3.8). Then it holds that

m m m
. e B H)Z_ g 0 BDIT, g 0l
: m m < ¢ 2

Proof. Before proving (3.33), we need the following localized Lyapunov inequality for —1 < j < J.:

(3.34) aﬁf( )+ L) + 2% I 12 + [1(ng,wg, By, Hy)[ 2 S G0/ L7(2),

with L7(t) ~ ||(ng, eu;, Ej, Hj)|[2.,
G7(t) = | Aj(u- Vi, eu- VU,EF(”)U cux H,W(n))|rz + |0l ooelluj]| 2 + IR 5] 22
and the commutator term R4 ; := [G(n), A;]divu. We now provide the proof of (3.34). To avoid using
the product law for the high-order term G(n)divu at B%-level, we rewrite (3.12), as
(3.35) dmj + (P'(p) + G(n))divu; = Ri; — Aj(u- Vn).
Taking the inner product of (3.35) with n;, we obtain

1d|
2dt

In order to cancel the second term on the left-hand side of (3.36), we multiply (3.12), by (P’(p)+G(n))u;
and integrate over R? such that

(3.36) ;17 + /(P'(ﬁ) +G(n)divuyn; de < (|Rujllzz + [14;(u- Va)l|z2)lngllzz.

%% (P'(p) + G(n))|uy|? da — /(ﬁ-i- G(n))divujn; dx
(3.37) + / ((P'(p) + G(n))|uj|* + (P'(p) + G(n))E; - u;) da

E

5 10:G ()l llwsl[Z2 + VG|l 2 [Im ] 2
+ (04 1G() | =) 1A (eu - Vu,u x H)||z2e]ugl 2.
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By (3.15), (3.36) and (3.37), we have
_ 1 1
S (s 4 (P15) + GOl + B+ | P) da

4 / ((P'(3) + G(n))lus|? + G(n)E; - ;) da
535) < (IRl + 1A (- V)2l 2
I
+ 10 132 + VG0 o s 1 2
+ (4 1G] 1A (eu - Vuuyu x )| aelfus | 2
1 .
el (P () 21 1

Again, dissipation for n; can be obtained from (3.12), and (3.35) as follows

52% uj - Vn; dx + / (IVn;]* + K|n;|* — (P'(p + G(n))e?|divu;|* + u; - Vny) dz
(3:39) < ||Aj(eu - Vu,u x H)|z2el|Vnyllze + e VA, (u - Vn)l|paellu; oz
+el| VRl 2ellujl pe + [|A;@(n)|| 22 ||n]| 2,

for some constant 73 € (0,1) to be determined later. In view of (3.18)-(3.19) and (3.38)-(3.39), we
introduce the medium-frequency functionals

1 ) 1 1
Lis(®) =5 [ (nsl?+ (P0) + Gy + LIES + HP) da
2 K K
+77252/uj -Vn; dx+n252/uj -Ej dx —n§52_2j/Ej -V x Hj dx,
and
Donst): = [ (P9 + Glnlusf + Gl ;) do
+ 12 / (IVn,? + K|nj|* — (P'(p) + G(n))e*|divu;|* + uj - Vn;) d
1 _
+772/(\Ej|2 + ?|diij|2 +uj - Ej+e(uj x B) - Ej —euy - (V x Hj) — eplu|?) da
T /(\V x H|? — epu; -V x Hj — |V x Ej|?) da.

From (3.8) and composition estimates, one has

(3.40)

[\l e
SIES

<p+Gn) <

Since 271 < 27 < 1/, as in the low-frequency setting, applying Bernstein’s inequality and choosing the
constant 72 small enough, we have
Lonj(t) ~ [[(n, ey, By, Hy)|Ze,
Din,j(t) 2 2% [nll72 + (g, uj, By Hi)ll72 2 Lnj(8),  —1<j < Je.

~

(3.41)

For brevity, we omit the details. By virtue of (3.8), (3.18)-(3.19), (3.38)-(3.39) and (3.41), we get
L7(t) ~ ||(nj,euy, Ej, Hy)||7» and (3.34).
Then, for —1 < j < J., we obtain from Lemma A.7 applied to (3.34) that

1(nj, euj, By, Hy) || oo (p2y + 1(ng, €, By Hy)ll i o2y + 27l 22y + 1 (ug, By, Hy)l 222
S (ny,euy, By, Hy)(0)[ 22 + |G [ L1 (22),
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which implies

(v, eu, B, DI g + 1002w BV DI g +lInlZ, g0 +110e B H)IZ, )
(3.42) S &+ (w-Vn,eu- Vu,u x H,eF(n)u, ®(n ))HZ(B 7)

.
+ 5||8thL2(L°°)||u”L2(Bd + Z 227 || Ry ; Li(L2)-
iz

2)

Let us now turn to the analysis of the nonlinear terms. It follows from the product law (A.2) that

(3.43) I Vmeu V)l gy S Tl gt (0l gen) + el g
Similarly, one has
(3.44) o x HlL, ) S Vel
Using (A.2) and (A.4), we also get
(3.45) 1)l ) S Tl g 10l
Employing (??), (3.8) and the composition law in Lemma A.6, we deduce that
m < 2
(3.46) 2T, g, S Il

According to (2.2), (3.2) and the embedding B% < L, there holds that

I e G LU L
3.47

Sl g, + Ml gy on

In addition, due to (??), we know that G(n) is a C121+3 function and satisfies G(0) = 0. It thus follow
from the bound (3.8), the commutator estimate (A.3) and the composition estimate (A.4) imply that

0.

(3.48) S 2 HRusllagn NGl g 99l 1) S Wl ol
VIS

Substituting the above estimates (3.43)-(3.48) into (3.42), we have
1, e, B, HDIZ gy + (2w BLEDIT g+ Il

L (B2 LI(B2 L2 Bd+1
(349) o | + [l(u E( 0|z S &+ X()?
sy Iy Z?(B%) ~ “0 .
Moreover, we capture some additional dissipation estimates as follows. By (2.2) and (3.49) one gets
(350 Il g+ B EDIZ, g el B DI, g 6+ X0

Using (2.2), (3.49) and that u verifies the damped equation (3.31), we get

m < 2 m m 2. m
7, ey S Mol g+ (T DI, g+ (P Vs D7
< m m m
(351) Sellwollgy + I cw BT, g+ Vuux M7 o

SE+X()
Combining (3.49), (3.50) and (3.51) together, we have (3.33). This completes the proof of Lemma ?7. O
3.2.3. High-frequency analysis. We now derive the desired high-frequency a priori estimates.

Lemma 3.5. Let (n,u, E, H) fort e (0,T) be a classical solution to the Cauchy problem (3.2) satisfying
(3.8). It holds that

ell(n, eu, B, H)||% + [l (u, B, H)|%

?(B%“) 2(Bd+1 LE(B%)
§5||(n0,u0,E0,H0)||’;% + X1+ X(t).

+[|(n, eu) || %
(3.52)
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Proof. We claim that for all j < J. — 1, there exists a functional E?(t) ~ ||(nj,u;, E;, Hj)||32 such that

— LMt + S L) + = ||nyl2 (|2 o2 |(E.. H.)|2
(3.53) dt J()+52 J()+€2||nJ||L2+HUJHL2+€2 II( s j)||L2
S GL L) + Gl (0w 22,

where

GhLi(6) : = [|A;(eF (n)u, ¥(n))l| 2 + (| divul| L + [|0n )| (ny, £u;)]| 2

+ (L +ellVnllpe)llulloe lujllzz + [R5, Ra,j,eRa5)l L2,

Gl (1) = Ay(u x By

with the commutator terms Ry ; := [G(n), Aj]divu, Ra; = [u, A;]Va and Rsj := [u, A;]Vn.
To show (3.53) in the high-frequency region, we shall use commutator estimates and rewrite (3.54) as

onj+u-Vn;+ (P'(p)+ G(n))divu; = R1,; + Raj,
e20puj + e*u - Vu; + Vg + Ej +uj +euj x B = —eAj(ux H) — 2Ry 5,

(3.54) €, Ej —V x Hj — peuj = eAj(F(n)u),
€6tHj + V x Ej = 0,
divE; = — — Kn; — A;j®(n),  divH; = 0.

Similarly to (3.37)-(3.38), by a direct computation on (3.54) we are able to get
1d
2dt

[ (@) + Gl + 6B, - uy + Gy x B) ) d

1 1
[ (s +(P0) + G)lus P+ LB + I HP) do

- , 1 .
(3:55) < (p+ [G(n)ll)el| A (u x H)l|2 us 2 + el A (F(nyw)]| 2| Bl 2

1, . 1, .
+ S ldivaull e lInglIZe + 5 (74 1G)[[oe)l1divull Lo [ugl|Z2 + VG () o [ull Loe 51172

2
5 _
+ S 10:G)[e=llwsl[Zz + (2 + G2 [(Ra,js Ra,js eRa.5) 2l (s euj)l -
From (3.54);-(3.54), we modify the dissipation for n; and perform the following cross estimate
d
52£/uj -Vn; dz + / (IVn;]? + K|nj|* — (P'(p + G(n))e?|divu;|* + u; - Vn,) dz
< 26%||ul| £ | Vg l| 2 | Vg 22 + el A (w x H)[ 221Vl 2 + 1(Ra,j Raygs eRayg) 221l V (€ mg) | -

According to (3.18), (3.19), (3.55) and the previous inequality, we define

1 _ 1 1
Ly;t):=5 / (In;* + (P'(p) + Gn))usl* + - |E;* + - |H; ) da
2 K K
L o-2 1 —2j s 1y
+ 5—27732 u; - Vn; dr + 8—27732 u; - By dx —n3 8—22 E; -V x H; dz,
and
Dy, ;(t) : = / ((P'(p) + G(n))|uj|> + G(n)E; - uj +eG(n)(u; x B) - u;) dx
1 .
2 [ (90 + Kl = (P + G ldivaf? +u; - ) do
1 4 1 _
+ ’73?22_2] / (|E;)* + ?|diij|2 +uj- Ej+e(uj x B) - E; —euy - (V x Hj) — eplu;|?) da

51 .
+ 5722—‘” /(|v x Hi|* —epu; -V x Hj — |V x E;|?) dx.
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For all j > J. — 1, with the help of (3.40) and that 277 < &, one can verify that
Lnj(8) ~ |[(ng, euj, By, Hy)| 72,
1 1 5 1 o
Dug(0) 2 Splinsliis + sl + 52 2B, Hy)ls 2 527 Las(0).
The details are omitted. These inequalities together with (3.18), (3.19), (3.40) and (3.55), yields (3.53).
Based on (3.52), we are able to get the high-frequency estimates (3.52). Indeed, it follows from Lemma
A.7-(2) applied to (3.53) that
1 »
1(ng, g, By, Hy)llnen2) + Zlngllez ez + llugllcz ey + 2277 1(ES Hy)llez e

(3.56) . A
S (g, ug, By Hy)(0)]| 2 + 1GY | ze) + 1G24

|Lf(L2)7

for j > J. — 1. It should be noted that in order to handle G’ij, we have to perform L2-type dissipation
estimate rather than L!-type due to the loss of regularity in high frequencies. Multiplying (3.56) by
2i(5+1) and summing over j > J. — 1, we get

ellnzu By HIE gy + 100 g el g + 1B DI, Lo
§5||(n0,u0,E0,Ho)Hh.¢+l +ell(F(n)u, ¥(n ))||}LLl(B 441,
(3.57) +e((ldivul|p2(peey + 10em| L2 (L)) (72, “)HLz(Bd+1)
+ (L+elVnl L ne)) lull Lz (z-) 6”“”22(32 1
+te Y 2(%+1)j”(Rl,jaR27j7R3,j)“LtI(L2 +5||U><HH}£2(32 .

jZJE_l
For the nonlinear terms, it follows from the product law (A.1) and the composition estimate (A.4) that

h < ~ ~ ~ -
NF@l, o) S 10l s Nl gy + 12l s 0l 7 )

As ®(n) € Cl21+* when )|z, (z) < 1, employing (A.7) with (s,0) = (4 + 1, %) yields

m < " 4 m h
EH(P( )”Ll(Bngl ||n||L%(% (” ||L2(B§71 || HL2(B %) || ||L2(Bd+l)>
Moreover, it is easy to verify that
ooy < £ m h o <
el ey S Il pgosy +IRIZ g Helnll g Tz S Tl s

Furthermore, in view of the commutator estimate (A.3) and the composition estimate (A.4) for the Clz]+3
function G(n), it follows that

d .
e 20 [(Ryj. Raj Ry ee) < ll(nse )%, g0y
JEL ¢

For the term u x H with L%-in-time estimates, the product law (A.2) gives

h < ~ -
ellu x HIE, gy S Nl s, 2 ||H||LN(BQ+1) ellulza g0 1 e 4

h

The combination of the above estimates and ||u\|%2( gives rise to (3.52). O
t

3.2.4. Additional reqularity estimates: the effective velocity. As mentioned before, the effective velocity
z:=u+Vn+E+cuxB

plays a key role in justifying the strong relaxation limit. Inserting
u=z2—Vn—FE—cuxB

into (3.2); and using the facts that

1 1
divE = -Kn—¥(n) and Ou=-u-Vu— —z—-uxH,
€ €
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we obtain the following (partially) diagonalized system

oy — P'(p)An + pn = —P'(p)divz — eP'(p)div (u x B) + Fy,

1 _
(358) €8t2 + Z = 6V8tn + 68,5 —z2X B+ Fg,

58tE+5pE:5ﬁz+6ﬁVn—e2ﬁ(z—Vn—E) x B+V x H+ F;,
(n, 2)|t=0 = (no, 20),
with 2§ : 7u0 + Vng + Ey + up x B and
Fy = —u-Vn—G(n)divu — P'(p)div¥(n),
Fy:=—cu-Vu—e?(u-Vu) x B—ux H—e(ux B) x B,
F5 :=cF(n)u.

Such reformulation (3.58) of (3.2),-(3.2), reveals that damping effect exists for both n, z and E if the
linear higher order terms of (n, z, F) on the right-hand side can be absorbed, and the linear term associated
with H will be treated as a given source satisfying the uniform bounds in (2.7). This can be done in low
and medium frequencies and we establish additional estimates in the next proposition.

Proposition 3.6. Under the assumption of Theorem 2.1, there holds that

4 m h < € 2
(3.50) 20y g, 127 sy 121, ) S (85 + X(02),
and
4 m 2
(3.60) I, g, + I g, < 65+ X0

where E§ and X (t) are defined by (2.5) and (3.7), respectively.

Proof. To prove (3.59)-(3.60), we consider the estimates in the three regimes separately.
e Low-frequencies.

Employing Lemma A.8 concerning maximal regularity estimates for (3.58),, we have

4 14 < €€ : y4 Y4 Y4
Gory Il g+ 10mI, g S gl + N2,y el g + IR,
The low-frequency cut-off property in (2.2) guarantees that
¢ oL
(3.62) vz, g, S ECING, )
Similarly, from (3.58),-(3.58)4 one gets
Z11211¢ < ¢ [ L 0
(3:63)  ZIell ) S elafllyg + (IR, g )+ el0ml, g +ElOBIL, g +IFIS,
and
¢
EIEI 4 +e||atE||L1(Bg)
< €€ - 4 2 4 14
(3.64) SelEB g + (& + ) IRl g )+ Dl g + I, g
‘
I HIL, g+ IR,

Inserting (3.64) into (3.63), combining the resulting equation with (3.61)-(3.63) and letting € < g with
€0 small enough, we arrive at

Il g, + 2N
(3.65) Ll(B ) € Ll(B )

SN0 EDI, g +ellzsll, g + 11w, B + | (P, Fo, F)|°

Li(BETY Li(BE)
Now we are in a position to handle the right-hand side of (3.65). Using (2.2), we obtain

ell=gll’, g < M1, ug, B, g < &5
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Recalling Lemma 3.3, we know that
I, g, S €+ X0

Concerning the nonlinear terms, one deduces from (3.25)-(3.28) that

4 < < 2
||(F17F27F3)||L1(Bz) ||(F17F27F)HL1(BT S &)
Therefore, we obtain
1
£ - )4 < e€ X 2
(3.66) I, g, + 210, g, S &5 + X
o Medium-frequencies.
Applying Lemma A.8 to (3.58), we have
m m 1 m
07, o, 107, g+ 27, g
1
3.67 < €||m m Je - m Je m m
(3.67) < lIngll"y ., +ellzgllTg_, + (27 +e) -zl 1pt-ny T 2T 10l 1581 +ello BT, P
Je 4 m
b2l g IR, g
and
BN, s, +IOENT, g
1
< €||m m Je m 2 m
(368) Sl + 4 I, ygo) + O+ T, g+ SIBIT, Ly
FIHIT, g BT, g

Let € < g and €27= < 27%0 with ¢y and 27*° sufficiently small. It follows from (3.67) and (3.68) that

m 1 m
I, e, + 2120 g

< m m m m m
S 3l + Bl 4 Nl g+ I g + N FEDIT,

Using the medium-frequency cut-off property in (2.2), we have

elzll’yg -1 S l(nosuo, Eo)ll24 S &6

Note that Lemma 7?7 ensures that

m m <
Il g + I, ) S 65 + 2%
As in (3.43)-(3.46), one also gets
||(F17F2a F3)||’ZE(B%71 S X(t)g
Thus, it follows that

3.60 ™ o+ S
(3.69) " prpdty sy~

SE+ X(t)2
e High-frequency case.
In this case, we are able to obtain the expected estimate directly from Lemma 3.5 and the faster decay

property of the high-frequency norm. Indeed, one concludes from directly (2.2), (3.52) and 2=7¢ < ¢ that

h < h h h
2l gon, S0 I g+ Il gl g
h h h
(370 nnHL%Bd+5—+<e+fe>nunzﬂ3%,l—+euEH ot

Se(& + X0,

Combining (3.66), (3.69) and (3.70) together, we get (3.59)-(3.60) which concludes the proof of Propo-
sition 3.6. O
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Furthermore, we establish a stronger estimate for the effective velocity in every frequency regime.

Proposition 3.7. Under the assumptions of Theorem 2.1, it holds that
(3.71) ol gs1) S (&5 + 160 g4 0 + X))

1
with z defined by (3.59) and z§ = guﬁ + Vh(p§) + ES.

Proof. Recall that z satisfies the damped equation (3.58),. Thus, according to Lemma A.9 concerning
L?-in-time estimates on the whole frequencies, we have

el sy + <1 s,

S8l 1 + NOTHAB iz, 1, + el g1y + 1ol

It follows from the equation (3.2), that
ell0, V|- g1y Fellu-Vnll;

ellul; - 32)+s||G< n)div |

el g0y Fellully

L2(BT1) L2(B%

(1 4[]l

<
~ L2(BQ)
<

< Lm(BZ)) el shlnlz pa0y
< eX(1)2

)

Here we used (2.7), (A.2), (A.4) and the estimates obtained in Lemmas 3.3, 2?7 and 3.5. Similarly, one
has

OB 2y -1 S Wz g+l gy (L I g) S X0,
For the nonlinear term, one deduces that
1Fall gy S - Vol gy + X Hly g

S Ml g (Nl gy + 1 g ) S X2,

Gathering the above estimates, we end up with (3.71).
(]

3.2.5. Global existence. Here, we construct a local Friedrichs approximation (see, e.g., [1, Page 440])
and extend it to a global one by the a priori estimates established in Section 3.2. Then, we show the
convergence of the approximate sequence to the expected global solution to the Cauchy problem for the
system (1.6).
Define the Friedrichs projector
Bf = F '(1e, Ff), Vf €L,

where L? is the set of L? functions spectrally supported in the annulus Cy, := {£ € R : 1/k < |¢] < k}
endowed with the standard L? topology, and 1¢, is the characteristic function on the annulus Cy.

Let (p§,us, E§, Bf) satisfying (2.6) with n§ = h(p§) and Hs = B§ — B. For every k > 1, we solve the
following approximate problem of (3.2):

O + Ei (u” - VnF + (P'(p) + G(nF))divu®) = 0,

e2(0pu” + By (uF - Vub) + Vi + BF 4 0¥ + euf x B+ eu® x HY) =0,
e E* — By (V x H* + epuf + eF(n*)u*) = 0,

O H* + £,V x EF = 0,

divEyEF = —KEpn® —E,@(n),  divE,H* =0,

(3.72)

: 1
(n*,u*, B, H*)(0,2) = (ng, ug, By, Hy)(2) := Er(ng, 2o, 5, H)-

It is classical to show that (nk, uf, EE, HY) satisfies (2.6) uniformly with respect to k > 1 and converges
to (ng, éu&ES,HS) strongly in the sense (2.6). Since the Sobolev norms of any quantities localized
with the project Fy are equivalent (thanks to Bernstein inequality), we have that (3.72) is a system of
ordinary differential equations in Li . By virtue of the Cauchy-Lipschitz theorem in [1, Page 124], there
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exists a maximal time T} > 0 such that the problem (3.72) admits a unique solution (n*,u*, E¥, H*) €
C([0,T¢); L}) on [0,T5).
Now we define the maximal time

(3.73) Ty :==sup{t >0 : X*(t) < Cu&s}

where X*(t) denotes the same norm X (t) given by (3.7) but for (n*, u¥, E¥ H¥). Thus, T, is well-defined
and fulfills 0 < T}, < T7.

We first claim T}, = T};. To prove it, we assume that T}, < T} and use a contradiction argument. Since
(nk,ub EF HF) = Ep(nk, u*, EF, H*), the orthogonal projector E; has no effect on the energy estimates
established in Lemmas 3.3, 3.4 and 3.5. By virtue of (3.10), (3.33), (3.52) and (3.73), as long as &
satisfies (2.6) such that (3.8) holds, we have

(3.74) XF(t) < Co(E5 + XF(t)* + XF(1)%), 0<t<Ty

By (3.74) and a standard bootstrap argument, one can choose a generic constant ag in (2.6) such that

(3.75) XF(t) < ZCo&S, 0<t<Ty,

~— N =

so T, is not the maximal time such that X% (t) < Co&§ holds. This contradicts the definition of Tj. Let
us now show that T*k = +o0. If T} < oo, by (3.75) and T}, = Ty, we can take (n*, u*, E¥, H*)(t) for t
sufficiently close to 7} as the new initial data and obtain the existence from ¢ to some t +n* > T} with a
suitably small constant n* > 0 by the Cauchy-Lipschitz theorem, which contradicts the definition of T7};.
Therefore, we have T} = oo and (n*,u*, E¥, H*) is a global solution to (3.2).

From the uniform estimate X*(t) < Co& and (3.2), one can estimate the time derivatives
(0¢n*, 0yu*, 0, Ey,, 0 Hy) uniformly with respect to k. According to these uniform estimates, the Aubin-
Lions lemma and the Cantor diagonal process, there exists a limit (n,wu, E, H) such that, as k — oo,
it holds, up to a subsequence, that (n* u* E* H¥) converges to (n,u, E, H) strongly in L} (Ry; HI%C).
Thus, it is easy to prove that the limit (n,u, E, H) solves the system (3.2) in the sense of distributions.
Thanks to Fatou’s property X (t) < likH_li.I.}f X*(t), we know that X (t) < Co&§ for all t > 0. Denote p and

B by
p:=p+ Kn+ ®(n), B:=H + B,

with ®(n) given by (3.3). Then, one can show that (p,u, F, B) is a classical solution to the original
system (1.6)-(1.7) subject to the initial datum (pg,uo, Fo, By). By standard product laws, composition
estimates and Propositions 3.6-3.7, (p, u, F, B) satisfies the properties (2.7)-(2.9). In addition, following
a similar argument as in [3, Page 196], one has (p — p,u, B, B — B) € C(Ry; BZ~1:2+1). To finish the
proof of Theorem 2.1, we show that the solution constructed in this subsection is unique.

3.2.6. Uniqueness. The proof of the uniqueness does not require the smallness of regularity for initial
data. Let (p1,u1, F1,H1) and (p2,us2, Eo, Ho) be two solutions of system (1.6) with the same initial
datum (pf, %US,ES, H§). For given time T' > 0, let (p;, wi, E;, H;), i = 1,2, satisfy (p; — p, us, By, Bi—B) €
LC’O(O,T;B%’1 N B%) and p_ < p; < py for some constants 0 < p_ < pi < 0o0. Since the relaxation
parameter ¢ does not play a role in the proof of uniqueness, we set € = 1. Let

(5,0, 5u, (SE,(SB) = (p1 — P2,U1 — U2, E1 — E27 Bl — BQ)
The error unknown (dp, ou, dE, §B) solves

0:0p + uy - Vop + prdivéu = 6F*,

Oou + ug - Vou+ M(p1)Vip + du+ 0E + du x B =4§F?,
(3.76) OOE —V x 6B — péu = 6F>,

00B+V X dE =0,

divdE = —dp, divéB =0,
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with M (s) = P'(s)/s and
SF' = —6u - Vpy — dpdivug,
6F? = —6u-Vuy — (M(p1) — M(p2))Vp2 — uy x 6By — 6u x (By — B),
SF3 = dpuy + (p2 — p)ou.
Applying A; to (3.76) leads to
0cdpj +u1 - Vip; + prdivou; = 5Fjl +0Ry; +0R2 j,
dpduj +uy - Vou; + M(p1)Vp; + u; + 6E; + du; x B =6F; + 0Rs j + 0Ry j,
(3.77) O0E; —V x 6B; — pdu; = 0F,
00B; +V x0E; =0,
divoE; = —6pj, divdB; = 0,
where commutator terms are defined as dRy ; := [u1, A;]Vdp, dRa j := [p1, A,;]V0u, R ; == [u1, A;]Viu

and Ry ; == [M(p1), A;]Vp.
After a direct computation on (3.77) one has

1d i 12 ; 12 o 1 12 /; 12

1
(Ilatpflllmc + ||v7||L°°)||6pJ||L2 +3 (Ilf“)t

( )”L +Hv (p )||L°°)||6uj||L2

1

+ || M(pl) - M(—) |‘L°°||uj||L2||Ej||L2 + HTHLOO||(5Fj175R1,ja5R2,j)||L2||5pj||L2
1 9 5

- ||M(p1)||L°°||(5F ,OR3 ;,0Ra ;)| L2 ||6uj| L2 + e )||5F 22 10| 2.

This yields
(3.78)

T
1(dp, 6u, 0E, 6B)| 4 S/O (14 1@ep1, Vo1, V)l L) ([[(p, 6u)l 4 dt
T
+/ (IOF1,6F2, 6F,)|| g + D 2%7||(6R1 5, 6 R . 6 R, j, 6 Ra )| 2) dr
0 jez

Using the product law (A.2) and the composition estimates (A.4) and (A.5), we have the following
estimates of the nonlinear terms

(3.79) 1(OF1, 6F2,0F)|| ya < (IV(p2,u2)ll 44 + (o2 = pyur, Ba = B)| ;)1 (8p, 0w)ll 4 -
In view of the composition estimate (A.3), one arrives at
(3.50) S 28 (3R 5, 0Ro.5, R 3,6 ) 1 S IV (on, )], 41160, 60) g

JEZ

Putting (3.79) and (3.80) into (3.78) and taking advantage of Gronwall’s inequality, we have
(p1,u1, B1, H1) = (p2,u2, B2, Hy) for all (z,t) € R? x [0,T]. This concludes the proof of the unique-
ness and of Theorem 2.1.

4. STRONG RELAXATION LIMIT

4.1. Proof of Theorem 2.3. In this subsection, we establish the error estimates between the solutions
of (1.6) and (1.8) for ill-prepared initial data. Before this, we first provide a global well-posedness result
for the drift-diffusion system (1.9). Since the proof can be done similarly as in [26], we omitted the details
for brevity.

Theorem 4.1. There exists a generic constant oy such that if

(4'1) ||P3 - ﬁHB%—l,% < o,
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then the Cauchy problem (1.9) has a unique global solution p* fulfilling p* — p € C(RT; Bgfl’%) and

lo* — ll- 4+ 10 =Pl o

L<><>(BT1 )

(4.2) .
+p* - pllzf(m_l,fﬂ) Sleo—oll 5919

Denote the error unknowns
(4.3) (6p,0u,8E,dB) := (p° — p*,u® —u*, E* — E*, B* — B").
Recall that the effective velocity z. is given by (1.16). Substituting u® = 2° — Vh(p®) — E° —cu® x B
into (1.6), we obtain
Oup® — P'(p)Ap® + pp° = div (= p°2° +ep™u® x B+ (P'(p°) — P'(p))Vp" + (p° — p)E°),
u® = 2° — Vh(p®) — E° — eu® x B,
(4.4) e E° —V x B + ep°E° = ¢(p°2° — eu® x B — VP(p%)),
€8, B° +V x E =0,
div E® = p — p°, div B* = 0.

where h(p) is the enthalpy defined in (1.11). From (1.8) and (4.4), the equations of (dp, ju) read
(4.5) 8:p — P'(p)Adp + pop = div (—p°2° + ep™u® x B + 6F),
' du = 2" = V(h(p®) — h(p")) — OE,

where
OF : = (P'(p°) = P'(p"))Vp© + (P'(p") = P'(p))Vop + 0pE" + (p* — p)OE.
Due to E* = V(—=A)~!(p* — p), Darcy’s law (1.10) and the fact that Vdiv = V x V x +A, one has
OE* = =V (—A)"div (p*u*)
(4.6) =p*u* +V x B*
= —p*E* —VP(p*) + V x B,
with the term
BY* = —(=A)7V x (p*u*).

In order to handle the last term on the right-hand side of (4.6), we introduce the modified error of the
magnetic induction

6B := 6B +eB"*.
Then, by (4.4), (4.6) and B* = B, we obtain the equations of (§E, 6B) as follows

1 _
0 0F — gV X 0B+ poE = p°2° —ep*u® x B — P'(p)Vép — 0F,

1
(4.7) 08B + =V x §F = c0,B"",

divéE = —dp, divéB = 0.
e Step 1: Estimates in high frequencies.

Recall that J. is given by (2.1). According to the property of high-frequency norms in (2.2) and the
fact that E* = V(—A)~1(p* — p), the uniform bounds (2.7) and (4.2) give directly

< €5 o0 —p)t ~ <
I pHLm(BTl)mLz(BZ elo® = 20" = Pz 4y g2 o) S (20 Fa1)e,
h < Ee E* h <
(4.8) IOEIZ . 581 ngz g1 S €Il W 58107254, S (@0 +a1)e,
loB]% Sel B - Bl S e

~ . d ~, . d
L( B%- YnL2Bz =t "~ L( Bz)mLf(Bé)

Hence, it suffices to estimate (dp,dE,0B) in low and medium frequencies as follows.

e Step 2: Estimates of jp in low frequencies.
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In the low-frequency region, one needs to perform B%~1order estimate of dp so as to concide with the
regularity of z°. Making use of Lemma A.9 applied to (4.5); with fi = —div (p°2%), fo = ediv (p°u® x B)
and f3 = div (§F), we have

¢ ¢
1901 _ s, + 19015, 404,
¢ ¢ : ¢ : ¢
@) S5 = pallyg o, + IV (N, g+l (U X BYIL, L+ IVORE,
< e 4 e e|£ e, € nI|¢ 14
SR P I ||L%(B%)+e||pu % B, s, ORI, g

We recall that z¢ has the decay estimate (2.8). Using (2.2), (2.7), (2.8) and (A.2), we obtain

1021, g, < 16271, g + G607 = )1
t

Ly(B2) Li(B%)
< _ 4 _ eym ||
S e + (0" = p)(z )IILl(Bd)HI(P p)(z%) HLI(BTI)
0" =P, -
(4.10) (B2
)4 m
S a0+ 10 = Al gt 1210 g, +10° = Bl ot 17,
E
10 = Bl 11 5
< age.
By virtue of (2.7) and (A.2), it also holds that
“uf x B|L <elp £ £
. cllou? x BIL, g ) < el x B, g+l = p)u x Bl g
S e+~ 7l 32))”“6”2?(3%_1) < age.
Then, we estimate the term 6F. Using (2.7), (A.2) and (A.5) yields
/(€N DI % e (1L < /(€
(P 6) = PONVHIL, g S IP ) = PO DT
SIPGF) = Py o 10 e o) S 0l
Similarly, it follows that
/(%N _ pl(= £ < 1%\ _ pl(= _
(P 67) = POV, g S I 67) = PO Tply g
SIP () = Pyt 19901 5 s, S 0llO0l 4
and
10BN, ) S 19BN, g1, S 100) 5 -1 1B ) S 0lOplzy g o
Considering the term 1nv01v1ng 0F in 6F, we have
* = £
16" = PSENE, .
— \SEIIL _ m)|e BRI
S = POEIL, g, + 16 = DOE™ IS, g o+ 1007 = OB, g
£ m h
S0 = Pl USENE, g + 1B, g+ IOENS, oy )
SanllaBIL, 5 +||6E||gg( P

where we used (4.2) and (4.8). Therefore, we arrive at

||5FII%% g, SIE(7) = PoNVAFLE, g +||(P/(P*)_P/(ﬁ))V5P||ZL%(g

B4 L2l Bt
(4.12) TI0PE"IZ, 4, + 16" = PSEIIZ, 4.
S (o + )19y oy + IOEIL, g +ISBIZ, Ly, +2)
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Inserting (4.10), (4.11) and (4.12) into (4.9) leads to

¢ ¢
13 ||6p”f§°(3%*1) + ”(Sp”'if(B%*l*%
(4.13) Z -~

O L2l
;(B2)

L2(BEY +e).

)
<16 = il g1 + (a0 + a0) (19l g, + 19

e Step 3: Estimates of §p in medium frequencies.

According to the regularity of z¢ in (2.8), we perform B%~2order estimate of dp in medium frequencies.
Similarly, applying Lemma A.8 to (4.5); we have

op||Z T m
19017 2y 19012, ot o) 10PIT, g )
< e _x||m €€ £,,€ RI|m m
< o5 = o3l 107N, gy el x BIT, g HIOFIT, g

(4.14)

m d
LBz~ "

Using (2.7), (2.8) and (A.2), we have

e E||m
al

E||m
Li(BE!

<llp e _ S\ (LE\|m

Io P, g, 16F = NI, g,
€ _ S\ (LE\m|m e _ =\ (.E\h|m
0 = DI, gy + 10 = DE I g
d_y

. < e _ Sl el e _ Sl e||m
(4.15) S @0s + 110" = Pllgee s 1271 g 107 = Pl 5412517, 4

L(B?) LI(B%) L (BY) )

€ _ Sl ellh
< e.
And it also holds that

ellpfu® x B||™, <elpus = B|™ , el = pjut x B|

4 .d_ d
LY(Bz™h LBzt

151
(416) < e|m (5 = € A <)
Sl g+l = Pl g 17 s, S 0
We now estimate the norm of §F. From (4.2), (A.2) and (A.5) one has
[P 67) = PNV, gy S I = P gt 7t
/S O‘()H(sp”i’f(B%—l)a

" 10BN, g2 S 1000t B ) S 0000l
In addition, using (2.2), (4.2), (4.8), (A.2), (A.4), we get
P = PNl
SIP W)~ PO, o+ P — P DTom 17
I = P @IV, g
SIP00) = POy 1,900, )+ 1P 600) = P )y (1501

(B 2(Bs!
N Oéo(||5p||32(,3%_1) +e€).
t

)

h
8, )

A similar computation yields

* = m < 14 m
16 = DOEIT, s, S aa(IBEIS, g + OB, o + )
It thus holds that
m < 0 m 14 m
@1r) IOFIT, ey S (ot @n)(I3pl, g, + 19012, s, + OB, g + IS, gy +2)

The combination of (2.8) and (4.14)-(4.17) gives rise to

: < A _ Ax||m " L m
S 1105 = g s + (00 -+ €)1l g0y + IOEIG, g + IEIZ, Ly, +0).
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e Step 4: Estimates of (0F,B) in low frequencies.

We now perform a hycoercive argument to estimate (0F, 6B) in the low-frequency B%—regulari‘uy level.
From (4.7), we have the basic localized energy inequality

1d
5 77 I0E;, 3B, 7 + pll5 By o2
(4.19) < ||A;(p°2* — epPuf x B — P'(p)Vp — 6F)| 12101 | 2
+el|0: B} || L2 16B; | 2

and the cross inequality

d
dt/aSE V x 0B dx+|\V><B||L2+p/5E V x 0B, do — |V x Ej||%
(4.20) < el|Aj(p°2% — ep*us x B — P'(5)Vop — 6F)||12||V x 6B;]| 2

+&%)10:B) || 2|V x GBI 2.
Define the functional
1
5ﬁg7j(t) = §||(5E375B])“2L2 + 7]*@/8(5Ej -V x 5BJ dx.
Then for all j < 0 and some sufficiently small constant 7., one deduces from (4.19) and (4.20) that
0Le;(t) ~ (0}, 6B;)||7 and

d .
0L (1) + 0B |72 + 27108517

< C(1A;(p°2%) |2 + €l 0B} ™ || 2)\/6 Lo
+ (el Aj(pu® x B)||L2 + IVop; L2 + 16F; 1| 2) (16 E; | 2 + 27 [1B; | =)
Applying Lemma A.7 (2) to the above inequality leads to
(0}, 6B))l Lze(r2) + 0B 212y + 2j||5Bj||Lf(L2)
(4.21) < 116 F;, 6B;) )2 + 11007 2 L3 2y + ell A (o7 x B)llzaquey + 1605 22 ey
+I0F |l 222y + €l0B; " (|12 (22)-

Here one has used ||Vép;lz2(z2) S 1005 2(2) due to j < 0. Multiplying (4.21) by 27% and summing it
over j < 0, we get the low-frequency estimate

4 V4 4
(OB B) g, + 10BN, g + 1B, g
€ * e R 1,% P4 e el €, € 4
(22)  SIE — By B5 = BoeBY O g + 101, g +elloful x BIG, g+ 10011,
4 1,% 14
+H5F”Z§(B%)+€HatB ”L%(B%)'

Before estimating (4.22), we need to give some necessary bounds of B*.

Lemma 4.2. Let BY* = —(=A)7'V x (p*u*). Then it holds that
1B**(0)ll 4 < lles — plI% 4

~Y
SJ ||p0 ﬁHQB%—l ~%a

1,%
1847 .

(4.23) L (BHNL2(BE)

10:B 1 s 59y S 05 = PI%0g 1 e
Proof. Tt follows from E* = V(—A)~!p* that
B = (—A)IV x (VP(p") + 9" E*) = (—A) 1V x (5" — p)V(—A)1p").
Hence, for the initial datum B'*(0) of BL*, by employing the product law (A.2) we arrive at
1B O] g S 105 — HV=A) 5l g

<105 = 2l s I9(-2) "5 4 < Nl — 1P,
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Concerning the estimates of B1*, a similar computation gives
” 1,%

— 7l1? < 2
P75 st e sty S PO = Pl 54

~ ~ <
L?Q(B%)mLf(B%)Nllp u ||LOO(B§71)0L2(B2)N|| 9
where we have used (4.2). Finally, using (1.9); and (4.2), one gets the estimate of the time deterivative

*

8tp :

10" s 4158y SO =Pl Ly g1 pgeny SHPS =Pl gy g
Hence, one also has
081, ) S 100"V (2) 0, gy + 167 = VD)0, s
S U007l s g IV D) T 0 e gy 107 = Pl g V=BT 007y g
S 16" = Pl 1 1007 gy, S 5= P
The proof of Lemma 4.2 is finished.
O
Then, we estimate the right-hand side of (4.22). Using (4.23), we have
(4.24) ellBY (0,4 < con,
and
(4.25) el B"* LI(B | SelloBY I, ) S e
Putting (4.10)-(4.13), (4.24) and (4.25) into (4 22) yields
¢ ¢ ¢
IGE B, g, + B, ) + 1B, o
(4.26) S II(Es — Eg, B — B B + (a0 + ar)e
£ m
+ (0 + ) (100l g1 1)+ IEIL, g + 1B, )

e Step 5: Estimates of (0F,08) in medium frequencies.

For —1 < j < J., we define the functional
1 )
6£m7j(t) = §|‘(5EJ,(SB])”2L2 + 77*m272J /€5Ej -V x 68] dx.

By (4.19) and (4.20), there is a suitable small constant 1., such that 6L, ;(t) ~ ||(0E;,6B;)[%. and

d
0L (1) + [|(0E;, 65;)I72

< COIA; ()12 + 21y (0Fu* x Bz + 2|8 2 + IVp; 12 + |6F 12)y/5Es,
which together with Lemma A.7 leads to
IOE;, 0B) |70 12y + I(0E;, 0B;)l Ly L2y + (6 E;, 0B5) L2 (22
(4.27) S NGB}, 6B;) (02 + 145 (0°2%) |2y 22y + €l A5 (70" x B2y + 1 V0p;llLi(z2)
+ 16Fll 2 2y + €ll0eB; L1 12)-

Therefore, we derive

||(5E,5B)IIZ?O(Bg_1 +[(0F, 0B)|1Z T2t ++(0E, 0B)|, ST Es
< e _ * _ * 1,% m e E||m £, m
(4.28) < (B — B, B — BT, eBY (0|7, + llo°= ”mw o < BIT g
m m Lxm
18P, g FIOFIT, gy DB, oy

Due to (4.23), there holds that
(4.29) 1B ()74, S IBY (04 < o,
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and
(4.30) Hatle-’*”Z(Bg_l) S HatBl’*HL%(Bg) S a1
We thence deduce from (4.15)-(4.18) and (4.28)-(4.30) that
IOF,0B)I%, 41, + IOE B, g ) + 1OFOBIIT, oy s
(4.31) S (56 —EmBo =By T+ (040+041)
+ 0+ @) (100l g1, + 10BN, g + 19BN, g ).

e Step 6: Strong convergence
Recalling that §B = 6B + eBY*, we recover the estimate of §B as follows

||5BH£ By S H5B||%x 54 +el| B

e (B%)
15 H;(.,H S8, g, + 1B, g
I9BIZ_ ygs) SIOBIZ gy +IBYIZ g
I8BIZ, g1, S WOBIZ, gy +EIBIZ, g

Hence, combining (4.8), (4.18), (4.23), (4.26) and (4.28) together, we have

166l 182, + 190N 8,

10BN g1, + 10BNz g1, + 108l g 1) + 1B g,
S 15— Pl s g + 155 = Byl ig.gms + 185 — Bl s g + (00 e
+ (@0 + @)1l st o) + 100l 1) + II6EHL2(B§ 4or)

which is uniform with respect to all € < ¢g and t € R;. Using the smallness of ag,a; and (2.15), we
conclude

1801 g4+ 10l
(4.32) + H(SE”Z;X’(B%'%*I) + ||5E|| 2(35 41 + H(SB||~

SIEG — EGll 544 1 +11B5 — B[l 2.2 +e
B2'2 B2°2

d d
2°2

(B -1 + ”53”’53(3%4@,%71)

Therefore, under the condition (2.10), (4.32) implies the estimate (2.11). This completes the proof of
Theorem 2.3. We will handle the well-prepared case in Section 4.2 below.

4.2. Proof of Theorem 2.4. Finally, under the stronger conditions (2.12) and (2.13), one deduces from
(2.9) that

(4.33) Se.

15N s, S
Therefore, we are able to establish the enhanced error estimate (2.14). Applying Lemma A.9 to (4.5),,
we obtain

1900 s, + 190, 44,

< 66— il g+ 15 (572 g, + v (070 x B)|
From (2.7), (4.33) and (A.2), we have

16 (52 ) S 1672 oy S L 167 = Bl I ) S (20 D,

4.34
(4.34) + ||divd F|

~ . d ~ . d .
L2(B27?) L2(B27?)

and

(4.35) elldiv(p™u® X B)liz, g 2) S (L4 110" = Pl 54 Mullzy 1) S 0e
It also follows from (2.7), (4.2), (A.2) and (A.4) that

(436) 19l gy sy S (@0 + @) (1601 s, + 190l 7y 414, + 19F Iz, )
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Thus, by (4.1), (2.15) and (4.34)-(4.36) we arrive at

. 190l 1, + 1605, 14,
| S e+ (oo + ) (18l vy + 15015, vy + 19Bl )
Next, from (4.5),, (4.33) and (A.5) we have the estimate of du:
1800741y 1N g or, + 10G67) = o™V o, + 19BN s,
(4.38) < 5 SE
e+ 190l 7, 58, + 19z, 1,

Finally, we recall that §E and 0B satisfy (4.7). For some suitable small constant 7., define the
functional

1 )
&Cj(t) = §||(5EJ,5BJ)H%2 + M min{1,272j}/€5Ej -V x 5B] dx ~ ||(5EJ,6BJ)H%2

Here min{1,272/} = 1 for j < 0 and min{1,27%} = 272 for j > 1. The inequalities (4.19) and (4.20)
ensure that

d , ,
Z70L5(t) + 9B, + min{1, 22731085 |7

S ell0eB) || n2/0Le,;

+277 (|8 (072 |2 + el A (p7u” x B)llr2 + 16p;] 22 + 16F; | 22) (16 B[l > + min{1,27}|[65;]| 2)-
Therefore, a use of Lemma A.7 gives

I(6E, B)[+ +0E] +110Bllzs 5441, d)

L ( B2 L2(Bz

S (B — Eg, B5 — B*,eB*(0)l 4 +€||3t TSI

(4.39) +lp7u® x B~ +l10pll5 + 10F

L2(BEY) L2(B%) 2(BEY
S et 160lz 44,
S e+ (a0 + ar)([l9pll; 100l pg-1.4, + 10

L°°(B§_1 L?(Ba))

where we have employed (4.23) and (4.34)-(4.37). Furthermore, in view of (4.23) one can recover the
estimate of § B as follows

6Bl 58, + 108l 0.4,
1,%
(4.40) S10Bllz ) + 1Bl gt ) + 1B 4, s at)
< [10B|l>

Loo B2 +H(SB|| 'd+1,%)+€'
Combining (2.12) and (4.37)-(4.40) together with the smallness of ag and oy concludes the proof of
Theorem 2.4.
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APPENDIX A. TECHNICAL LEMMAS

We recall some basic properties of Besov spaces and product estimates which are repeatedly used
in this manuscript. The reader can refer to [1, Chapters 2-3] for more details. Remark that all the
properties remain true for the Chemin-Lerner type spaces, up to the modification of the regularity
exponent according to Holder’s inequality for the time variable.

The first lemma pertains to the so-called Bernstein inequalities.

Lemma A.1. Let 0<r < R, 1 <p<g<ooand k € N. For any function uw € LP and X\ > 0, it holds
Supp F(u) C {§ € R : |¢] < AR} = [|DFulle S MG Ju 1o,
{Supp F(u) C {£ € R? : A< €] < AR} = ||Dku|\Lp ~ /\kHuHLp.
Next, we state some properties related to homogeneous Besov spaces.

Lemma A.2. The following properties hold:

e For any s € R and q > 2, we have the following continuous embeddings:
B® < H*, B4 < 14,

o B% s continuously embedded in the set of continuous functions decaying to 0 at infinity.

e For any o € R, the operator A is an isomorphism from B* to B57.

o Let s;1 € R and sy < %. Then the space B5* N B2 is a Banach space and satisfies weak compact
and Fatou properties: If uy, is a uniformly bounded sequence of B51 N B2, then an element u of
B5' N B%2 and a subsequence Up, exist such that

lim u,, =u in 8 and ||ullge,qpee S Uminf ||un, || goqpee-
k—o0 oo

The following Morse-type product estimates in Besov spaces play a fundamental role in our analysis
of nonlinear terms.

Lemma A.3. The following statements hold:
o Let s >0. Then BS N L* is a algebra and
(A1) [uv]| g S llullzee vl e + llvllzes [l 5.
o Let s1,89 satisfy s1,82 < % and s1 + so > 0. Then there holds
(A.2) [|uv]

gerrea—g S ullpe V]l e

Next, we present a commutator estimate that is used to control some nonlinearities in high and medium
frequencies.

Lemma A.4. Let s € (—% — 1,4 +1]. Then it holds
(A.3) > 2% [u, Aj)0, vl e S IVull ygllvllg,  i=12..d.

jez
We recall the classical estimates about the composition of functions.
Lemma A.5. Let s >0, and F : I — R with I being an open interval of R. Assume that F(0) =0 and

that F' belongs to WsIH1:20(I). Let u,v € BSNL™ have value in I. There exists a constant C = C(s,d, I)
such that

(A4) IE(H)llge < CA+ L) TFHF Nyptanoe (L F 1 g
In addition, if F” belongs to WEIT1L(I), then
IF(f1) = F(f2)ll 5= < F'O) 1 = fall g + CO+ 1(f1, f2)ll o) e 1
x (IIf1 = fol g lICfrs fo)ll e + 11f1 = falloee 1(f1, f2)ll o) -

In order to control the nonlinear term ®(n), we need the following lemma concerning the composition
of quadratic functions. The proof can be found in [10].

(A.5)

Bs
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Lemma A.6. Let s > 0, J be a given integer, and F' : I — R with I being an open interval of R. Assume
that F" belongs to WsIT1.20(I). Then there exists a constant C = C(s,p,r,d,I) such that it holds for
o >0 that

S 20 A(F(f) = F(0) = F'(0)f)] >

i<J
(A6) 7 . .
< CIF" w100 1y (1 + ||f||L°°)[S]+1Hf||L°°(Z 25| A fll g2 + 27657 Z 27\ A fllL2),
J<J j=zJ-1
and for any o € R that
S 2 A (P(f) — F(0) — F'(0) )]z
(A7) j>J—1
< CIF lygen ey (L I )4 e (2767 S 207 A fllge + 3 2% fll2).
J<J j=J-1

Lemma A.7. Let T > 0 be given time, E1(t), Eo(t) and Es3(t) be three nonnegative and absolutely
continuous functions on [0,T). Suppose that there exists a functional L(t) ~ E1(t) + Ea(t) + E5(t) such
that

(A.8) %E(t) +aEi(t) + agEs(t) + azEs(t) < g1(H)V L) + g2(O)VEL(t), 1€ (0,T),

where a1, as,as are positive constants. Then, there exists a constant C > 0 independent of T and a,
asz, az such that
o (1) If g1(t) € LY(0,T) and g2(t) € L*(0,T), then we have

sup (E1(t) + Ex(t) + Es(t))
t€[0,T]

(A.9) +min{ay, az, az}||(E1, B2, E3)(t)| L1 0,1)
+ Va1l Eillzz0,1) + Vazll B2l L2 0.1y + Vasl| Esll L2 0,1)
< E1(0) + E2(0) + E3(0) + [[(91, 92) |2 0,1)-
e (2) If g1(t) € LY(0,T) and g2(t) € L*(0,T), then we have

sup (Ey(t) + Ea(t) + Es(t))
te[0,T]

(A.10) + vaillErllr2 1) + Vazl| Bzl r20,m) + Vasl| Esll L2 0,r)

1
< E1(0) + E2(0) + E3(0) + llg1ll Lo,y + TE”gQHLQ(O’T)'
We consider the following Cauchy problem for the damped heat equation:
du—ciAu+cou=f, zeR? ¢>0,
) it — 1A+ cou = f d
u(0, z) = ug(x), x € RY

We have the following L!-in-time maximal regularity estimates for (A.11).

Lemma A.8. Let s € R, T > 0 be given time, and ¢; > 0 (i = 1,2) be positive constants. Assume
ug € B* and f € LY(0,T; B%). If u is the solution to the Cauchy problem (A.11) for t € (0,T), then u
satisfies

Pl e ey + rllallzy vy + ealltlagey + 100l 2 ey + Valulzs goss, + Ve luliza s

(A.12)
< Cllluollgs + [1f11 L (53+))5

where C > 0 is a constant independent of ¢; (i =1,2) and T.

Proof. Taking the L? inner product of (A.11) with u;, we have

d
(A.13) allﬂjlliz +eal Vo |? + eallusllZe < llugllze 15 e
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Dividing the two sides of (A.13) by (|ju;||3. + 1)?, integrating the resulting equation over [0,¢], and then
taking the limit as n — 0, we have

t t t
il an + a2 [ uslzedr+er [ lullidr Sl + [ 150
0 0 0

which yields

(A.14) HU”LOO(Bs) + aallullprgesoy + c2llull L(Be) S Sluollgs + (1122 L(Be)
According to (A.14) and the equation (A.11),, one also has

10cull Ly ey S eallullnygeray + callwllnn ey + 1Ly pey S llwollge + [1F 12y c5e)-

Furthermore, integrating (A.16) over [0, ], taking the square root and summing it over j € Z, we get

\/a||u||23(33+1) + \/a”uHZ%(Bs) S ||U0||Bs + flu Hzoc(B

S lluollgs + 112y (4

s

where we used (A.14). Combining the above estimates yields (A.12). O

Additionally, we have L2-in-time estimates for the solutions of (A.11).

Lemma A.9. Let s € R, T > 0 be given time, and ¢; > 0 (i = 1,2) be positive constants. Assume
uy € B, and f = f1 + fo + f3 with f; (i = 1,2,3) satisfying f1 € L*(0,T;B%), fo € L2(0,T; B51),
f3 € EQ(O,T; B?®) and fi = 0 when ¢; = 0 (i = 2,3). If u is the solution to the Cauchy problem (A.11),
then u satisfies

”uHZf"(B‘) + \/‘Tl||u||2?(3e+1) + \/5||U||23(B<)

(A.15) -c 1 1 T
< Cllluollgs + [ f1ll L1y + ﬁ”fQHZ?(Bs—l) + ﬁ||f3‘|Z?(Bs))v € (0,7),
where C > 0 is a constant independent of ¢; (1 =1,2) and T.
Proof. Tt follows by (A.13) and Young’s inequality that
2=
(A.16) ||UJ||L2 + e 2wy |1 + exlluslZe < llugllee 1A fillee + =— ||A Pollze + — ||A fallze-

Integrating (A.16) over [0,¢], we have

t t
il ey + 12 [ luglPdr 4o [ uglPar
(A.17) 0 0

t 1 [t .
< Jlu;(0)]22 + / s [Bedr + - / 1A, fl2adr.

By (A.17) and Young’s inequality again, there holds
gl oo L2y + vVer2 ujll 22y + Vealluillz 2

—J . .
1A fallzzcrey + —=I1A; fall2 22

27 b
Vel Ve
which gives (A.15). O

S Mg )22 + 15l ez +
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APPENDIX B. PROOF OF PROPOSITION 3.1: THE POINTWISE ESTIMATES

Finally, we prove Proposition 3.1 concerning the pointwise estimates (3.5) and (3.6). Applying the
Fourier transform to (3.4), we have

A + P'(p)icu = 0,

20 +ih+E+U+etix B=0,
(B.1) e E — it x H—epti =0,
Eatﬁ—l—zf X E:O7

i€E = —Kn, i€H=0,

where we recall that K = P/p( 5 Taking the Hermitian scalar product of (B.1) with 1, P'(p)u, E and
%f[ , adding the resulting equalities together and then taking the real part, we obtain

1d
2dt
To capture dissipatlon for n, we do the following computation

~ 1~ 1 5 s
(B2) (R + P'(@)al + Bl + I HP) + P'()al* =

B3) —€ %Re <a,ién >+ 0> + K|n|? = Re < U+ e x B,ién > +P'(p)?|¢ - ul?
< SIEPAP + 0+ Pl
Then, multiplying (B.3) by ﬁ, we obtain
d £?Re < u,ifn > €2 2
A=A =T
By the Hermitian scalar product of (B.1), with E (associated with the skew-symmetric part of the

(B.4) < Clal?.

~12
T ezep

relaxation matrix), we capture dissipation for E as follows:
d ~ ~ 1 ~
2 ~ 2 2
—Re<u,EF > +|FE —|¢-F
2 Re <0 B> +|BP + e B
(B.5) = -Re<tU+eux B, E>+eRe < i¢ x H,u > +*plul?
O+ o, Cvalel?
— "+ — 5
v 1+ [¢]

for some small constant n € (0,1) to be chosen later. In order to be consistent with the dissipation
obtained for u in (B.2), we multiply (B.5) by W and obtain

1 o~
< SIEP+ |H?

gEQRe < Q,E > n 1 |E|2 | |2 C\/ﬁ|§|2 |A‘2
dt 1+ e2|¢? 2(1 + e2[€?) NG (1+e2[¢2) (1 + [¢?)
To derive, d1$Slpat10n for H, using |£|2|H|? = |¢ x H|? due to £ - H = 0 yields

(B.6)

el Re < B,—iex I > +EP|H? = |¢ x E|* — peRe < U, i¢ x H >
(B.7) dt

IN

1 = = ~
SIEPIH + ClEP B + Claf.
In view of the dissipation of E in (B.6), we have

(B.8) d eRe < E,—i¢ x H > €%

dt (1+e2[f]2)(1+¢2) — 2(1+e*|g?) (1 +[€]?)

Then, we define the Lyapunov functional

1/ ENPTR 1 -~ 1~
Le(t) =5 (2 + P'(p) il + | B + —|A?)

2 ~

712 ~12
™ < Ol + T ey v ep)

(B.9)

e2Re < G,ién >  e2Re<u,E > %eRe<E,—i§xfI>
T+ T axeE T U+ Ep)
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It follows from (B.2), (B.4), (B.6) and (B.8) that

(B.10)

d . _ P+1)
G0+ (P(7) ~ Cn = Cymfal + T D
TR S UMM SNy LI 11U S A <0
2 I e TN e e S

Choosing a suitable small constant 1, we get L¢(t) ~ |(7, e, E,H)|?> and (3.5). In particular, it holds
that

(B.11) 4 £et) + cors(1elt) <.

Applying Gronwall’s inequality to (B.11), we conclude (3.6).
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