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Abstract. We investigate the three-dimensional compressible Euler-Maxwell system, a model for sim-
ulating the transport of electrons interacting with propagating electromagnetic waves in semiconductor
devices. First, we show the global well-posedness of classical solutions being a sharp small perturbation
of constant equilibrium in a critical regularity setting, uniformly with respect to the relaxation param-
eter ε > 0. Then, for all times t > 0, we derive quantitative error estimates at the rate O(ε) between
the rescaled Euler-Maxwell system and the limit drift-diffusion model. To the best of our knowledge,
this work provides the first global-in-time strong convergence for the relaxation procedure in the case of
ill-prepared data.

In order to prove our results, we develop a new characterization of the dissipation structure for the
linearized Euler-Maxwell system with respect to the relaxation parameter ε. This is done by partitioning
the frequency space into three distinct regimes: low, medium and high frequencies, each associated with
a different behaviour of the solution. Then, in each regime, the use of efficient unknowns and Lyapunov
functionals based on the hypocoercivity theory leads to uniform a priori estimates.

1. Introduction

The Euler-Maxwell system for plasma physics is widely used to simulate phenomena such as photocon-
ductive switches, electro-optics, semiconductor lasers, high-speed computers, etc. In these applications,
the transported electrons interact with electromagnetic waves and the model takes the form of Euler
equations for the conservation laws of mass density, current density and energy density for electrons,
coupled to Maxwell’s equations for self-consistent electromagnetic fields (see [5, 6, 48] for more explana-
tions). In this paper, we shed new light on such interactions between classical fluid mechanics laws and
electrical and magnetic forces to establish long-time existence and relaxation limit results. To achieve
this, we propose a new approach based on the natural hypocoercive properties of the system arising from
these interactions.

We consider the isentropic Euler-Maxwell system in R3 which, for (t, x) ∈ [0, +∞) × R3, reads

(1.1)


∂tρ + div (ρu) = 0,

∂t(ρu) + div (ρu ⊗ u) + ∇P (ρ) = −ρ(E + u × B) − 1
ε

ρu,

∂tE − ∇ × B = ρu,

∂tB + ∇ × E = 0,

with the constraints
(1.2) div E = ρ̄ − ρ and div B = 0.

Here ρ = ρ(t, x) > 0 and u = u(t, x) ∈ R3 are, respectively, the density and the velocity of electrons,
E = E(t, x) ∈ R3 denotes the electric field, and B = B(t, x) ∈ R3 is the magnetic field. In the momentum
equation in (1.1)2, the term ρ(E + u × B) stands for the Lorentz force, ρu is a damping term associated
with friction forces and ε > 0 is a relaxation parameter. The pressure P (ρ) is assumed to be a smooth
function of the density fulfilling P ′(ρ̄) > 0 for ρ̄ > 0 a constant density of charged background ions. We
are concerned with (1.1)-(1.2) for the initial data

(ρ, u, E, B)(0, x) = (ρ0, u0, E0, B0)(x), x ∈ R3,(1.3)
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and focus on solutions that are close to some constant state (ρ̄, 0, 0, B̄) at infinity, where B̄ ∈ R3 is a
constant vector. Note that the constraint condition (1.2) remains true for every t > 0 if it holds at time
t = 0:

div E0 = ρ̄ − ρ0, div B0 = 0.(1.4)

One of the main interests of the present paper is to justify the relaxation limit of solutions to (1.1) as
ε → 0 in a diffusive scaling. To this end, we perform the O(1/ε) change of time scale:

(1.5) (ρε, uε, Eε, Bε)(t, x) := (ρ,
1
ε

u, E, B)( t

ε
, x).

The new variables satisfy

(1.6)



∂tρ
ε + div (ρεuε) = 0,

ε2∂t(ρεuε) + ε2div (ρεuε ⊗ uε) + ∇P (ρε) = −ρε(Eε + εuε × Bε) − ρεuε,

ε∂tE
ε − ∇ × Bε = ερεuε,

ε∂tB
ε + ∇ × Eε = 0,

div Eε = ρ̄ − ρε,

div Bε = 0,

with the initial data

(ρε, uε, Eε, Bε)(0, x) = (ρ0,
1
ε

u0, E0, B0)(x), x ∈ R3.(1.7)

Formally, as ε → 0, (ρε, uε, Eε, Bε) converges to (ρ∗, u∗, E∗, B∗) solving

(1.8)



∂tρ
∗ + div (ρ∗u∗) = 0,

ρ∗u∗ = −∇P (ρ∗) − ρ∗E∗,

∇ × B∗ = 0,

∇ × E∗ = 0,

div E∗ = ρ̄ − ρ∗,

div B∗ = 0.

Clearly, since
∇ × B∗ = 0 and div B∗ = 0,

we may take B∗ = B̄. Moreover, due to ∇ × E∗ = 0, there exists a potential function ϕ∗ such that
E∗ = ∇ϕ∗ = ∇(−∆)−1(ρ∗ − ρ̄). Thus, (1.8) reformulates as the drift-diffusion model for semiconductors:

(1.9)
{

∂tρ
∗ − ∆P (ρ∗) − div (ρ∗∇ϕ∗) = 0,

∆ϕ∗ = ρ̄ − ρ∗.

The velocity field u∗ satisfies the Darcy’s law:
(1.10) u∗ = −∇(h(ρ∗) + ϕ∗),

where the enthalpy h(ρ) is defined by

h(ρ) :=
ˆ ρ

ρ̄

P ′(s)
s

ds.(1.11)

1.1. Existing literature. So far there are several results concerning the global existence, large-time
behaviour and asymptotic limit for the isentropic Euler-Maxwell system (1.1). In one dimension, using
a Godunov scheme with fractional steps and the compensated compactness theory, Chen, Jerome and
Wang [6] constructed global weak solutions to the initial boundary value problem for arbitrarily large
initial data. In the multidimensional case, the question of global weak solutions is quite open and mainly
smooth solutions have been studied. Jerome [25] established the local well-posedness of smooth solutions
to the Cauchy problem (1.1)-(1.3) in the framework of Sobolev spaces Hs(Rd) with s > 5

2 according to
the standard theory for symmetrizable hyperbolic systems. The existence of global smooth solutions near
constant equilibrium states has been obtained independently by Peng, Wang & Gu [45], Duan [16] and
Xu [56]. Xu employed the theory of Besov spaces and established the global existence of classical solutions
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in Bs∗ with the critical regularity index s∗ = 5
2 and analyzed the singular limits, such as the relaxation

limit and the non-relativistic limit. Ueda, Wang and Kawashima [50] pointed out that the system (1.1)
was of regularity-loss type and time-decay estimates were derived in [16, 52]. Concerning the relaxation
from (1.6) to (1.9), Hajjej and Peng [22] carried out an asymptotic expansion and obtained convergence
rates for the relaxation procedure in the case of local-in-time solutions for both well-prepared data and ill-
prepared data. Recently, Li, Peng and Zhao [33] studied the relaxation limit for global smooth solutions
in periodic domains and obtained error estimates of smooth periodic solutions between (1.6) and (1.9) by
stream function techniques and Poincaré inequality. Concerning the stability of steady-states, we refer to
those works [35,42,44]. Let us also mention [17,43,62] pertaining to the global well-posedness of two-fluid
Euler-Maxwell equations near constant states.

In order to investigate the large-time behaviour of solutions to the system (1.1), as observed by
Duan [16], Ueda, Wang and Kawashima [50,52], one must rely on a non-symmetric dissipation mechanism
due to the coupled electric and magnetic fields, which leads to the regularity loss phenomenon. More
precisely, let UL be the solution to the linearized system of (1.1) around (ρ̄, 0, 0, B̄) with ε = 1. As shown
in [52], the Fourier transform ÛL satisfies the following pointwise estimate:

(1.12) |ÛL(t, ξ)|2 ≲ e
− c|ξ|2

(1+|ξ|2)2 t|ÛL(0, ξ)|2,

for all t > 0, ξ ∈ R3 and some constant c > 0. The solution UL decays like the heat kernel at low
frequencies and, for the high-frequency part, it decays at the price of additional regularity assumption
on the initial data. Later, Ueda, Duan and Kawashima [51] formulated a new structural condition to
analyze the weak dissipative mechanism for general hyperbolic systems with non-symmetric relaxation
(including the Euler-Maxwell system (1.1)). Xu, Mori and Kawashima [60] developed a general time-
decay inequality of Lp-Lq-Lr type, which allows to get the minimal regularity for the decay estimate of
L1-L2 type. Recently, Mori [41] presented a kind of S-K mixed criterion that is applicable also to weakly
dissipative models including the Timoshenko–Cattaneo system.

In the absence of damping term in (1.1), using the “space-time resonance method”, Germain-Masmoudi
[19] proved the global existence and scattering at the rate t−1/2. Subsequently, nontrivial global solutions
being small irrotational perturbations of constant solutions of the full two-fluid system were constructed
by Guo-Ionescu-Pausader [21]. In the 2D case, there is one critical new difficulty, namely the slow decay
of solutions. Deng-Ionescu-Pausader [15] proved the global stability of a constant neutral background
by using a combination of improved energy estimates in the Fourier space and an L2 bound on the
oscillatory integral operator. The global regularity results described above are restricted to the case of
solution with trivial vorticity. Ionescu and Lie [24] initiated the study of long-term regularity of solutions
with nontrivial vorticity and proved that sufficiently small solutions extended smoothly on a time of
existence that depends only on the size of the vorticity.

In the manuscript, we are interested in the dissipative mechanism arising from the non-symmetric
relaxation and their interactions with respect to the relaxation parameter ε for the Euler-Maxwell system
(1.1). Before stating the paper’s findings, we recall recent efforts devoted to studying partially dissipative
hyperbolic systems with symmetric relaxation of the type:

(1.13) ∂V

∂t
+

d∑
j=1

Aj(V ) ∂V

∂xj
= H(V )

ε
,

where the unknown V = V (t, x) is a N -vector valued function depending on the time variable t ∈ R+
and on the space variable x ∈ Rd(d ≥ 1). The Aj(V ) (j = 1, .., d) and H are given smooth functions on
OV ∈ RN (the state space).

Note that in the absence of source term H(V ), (1.13) reduces to a system of conservation laws.
In that case, it is well-known that classical solutions may develop singularities (e.g., shock waves) in
finite time, even if initial data are sufficiently smooth and small (see Dafermos [13] and Lax [30]). The
system (1.13) with relaxation effect is of interest in numerous physical situations, including gas flow near
thermo-equilibrium, kinetic theory with small mean free path and viscoelasticity with vanishing memory
(cf. [4,53,55]). It also arises in the numerical simulation of conservation laws (see [26]). A typical example
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is the following isentropic compressible Euler equations with damping:

(1.14)


∂tρ + div (ρu) = 0,

∂t(ρu) + div (ρu ⊗ u) + ∇P (ρ) + 1
ε

ρu = 0.

In the case ε = 1, a natural question arises: what conditions can be imposed on H(V ) so it prevents the
finite-time blowup of classical solutions? Chen, Levermore and Liu [7] first formulated a notion of the
entropy for (1.13), which was a natural extension of the classical one due to Godunov [20], Friedrichs
and Lax [18] for conservation laws. However, their dissipative entropy condition is not sufficient to
develop a global existence theory for (1.13). Later, imposing a technical requirement on the entropy,
Yong [63] proved the global existence of classical solutions in a neighbourhood of constant equilibrium
V̄ ∈ RN satisfying H(V̄ ) = 0 under the Shizuta–Kawashima condition [49]. We also mention that
Hanouzet and Natalini [23] obtained a similar global existence result for the one-dimensional problem
before the work [63]. Subsequently, Kawashima and Yong [29] removed the technical requirement on the
dissipative entropy used in [23, 63] and gave a perfect definition of the entropy notion, which leads to
the global existence in regular Sobolev spaces. Then, Bianchini, Hanouzet and Natalini [3] showed that
smooth solutions approach the constant equilibrium state V̄ in the Lp-norm at the rate O(t− d

2 (1− 1
p )),

as t → ∞, for p ∈ [min{d, 2}, ∞], by using the Duhamel principle and a detailed analysis of the Green
kernel estimates for the linearized problem.

Recently, Beauchard and Zuazua [2] framed the global-in-time existence theory in the spirit of Villani’s
hypocoercivity [54] and established the equivalence of the Shizuta-Kawashima condition and the Kalman
rank condition from control theory. Then, Kawashima and the fourth author in [57–59] extended the prior
works to the larger setting of critical non-homogeneous Besov spaces Bs∗ . Note that the mathematical
theory of Kato [28] and Majda [37] for quasilinear hyperbolic systems is invalid in Hs∗ . In recent works,
the first author and Danchin [9–11] employed hybrid Besov norms with different regularity exponents
in low and high frequencies, which allows to pinpoint optimal smallness conditions for the global well-
posedness of the Cauchy problem of (1.13) and to get more accurate information on the qualitative and
quantitative properties of the constructed solutions. Regarding the relaxation limit as ε → 0 in systems of
the type (1.13), the first justification is due to Marcati, Milani and Secchi [39] in a one-dimensional setting.
The limiting procedure was carried out by using the theory of compensated compactness. Then, Liu [36]
proved, using the approach based on the theory of nonlinear waves, the relaxation to parabolic equations
for genuinely nonlinear hyperbolic systems. Marcati and Milani [38] considered the time rescaling (1.5)
for the one-dimensional compressible Euler flow (1.14) and derived Darcy’s law in the limit ε → 0,
which is analogous to the one derived in [39]. Later, Marcati and Rubino [40] developed a complete
hyperbolic to parabolic relaxation theory for 2 × 2 genuinely nonlinear hyperbolic balance laws. Junca
and Rascle [27] established the relaxation convergence from the isothermal equation (1.14) to the heat
equation for arbitrarily large initial data in BV (R) that are bounded away from vacuum.

As for (1.13) in several dimensions, Coulombel, Goudon and Lin [8, 34] employed the classical energy
approach and constructed uniform-in-ε smooth solutions to the isothermal Euler equations (1.14) and
then they justified the weak relaxation limit in the Sobolev spaces Hs(Rd)(s > 1+d/2, s ∈ Z). The fourth
author and Wang [61] improved their works to the setting of critical Besov space B

d
2 +1. More precisely,

it is shown that the density converges towards the solution of the porous medium equation, as ε → 0.
Peng and Wasiolek [46] proposed structural stability conditions and constructed an approximate solution
using a formal asymptotic expansion with initial layer corrections. It allowed to establish the uniform
local existence with respect to ε and the convergence of (1.13) to parabolic-type equations as ε → 0.
Subsequently, under the Shizuta–Kawashima stability condition, they [47] established the uniform global
existence and the global-in-time convergence from (1.13) to second-order nonlinear parabolic systems by
using Aubin-Lions compactness arguments. In the spirit of the stream function approach of [27], Li, Peng
and Zhao [32] obtained explicit convergence rates for this relaxation process for d = 1. Recently, the
first author and Danchin [11, 14] observed that the partially dissipative hyperbolic system (1.13) can be
decomposed into a parabolic part and a damped part in the frequency region |ξ| ≲ ε−1 and justified the
strong relaxation limit of diffusively rescaled solutions of (1.13) globally in time in homogeneous critical
Besov spaces with the explicit convergence rate.
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However, the parabolic relaxation theory developed in [11, 14] is only applicable to (1.13) with sym-
metric relaxation matrices, where the Shizuta-Kawashima condition is well satisfied. In the present
manuscript, we analyze the compressible Euler-Maxwell system (1.6) and develop the corresponding
theory for hyperbolic systems with non-symmetric relaxation.

1.2. A first look at our strategy. First, we characterize the dissipation structures of the system (1.6)
with respect to ε. We denote by UL,ε = (ρ − ρ̄, εu, E, B − B̄) the solution to the linearization (3.4) of
(1.6). In Proposition 3.1, it is shown that

(1.15) |UL,ε(t, ξ)|2 ≲ eλε(|ξ|)t|UL,ε(0, ξ)|2 where λε(|ξ|) := − c0|ξ|2

(1 + ε2|ξ|2)(1 + |ξ|2) .

Compared to (1.12), the pointwise estimate (1.15) allows us to keep track of the parameter ε. Conse-
quently, the spectral behaviour of the solutions depending on the frequency-regions can be depicted as
follows:

• λε(|ξ|) ∼ −c0|ξ|2, for |ξ| ≲ 1 (the low-frequency region);
• λε(|ξ|) ∼ −c0, for 1 ≲ |ξ| ≲ 1/ε (the medium-frequency region);
• λε(|ξ|) ∼ − c0

ε2|ξ|2 , for |ξ| ≳ 1/ε (the high-frequency region).
That is, the solutions behave like the heat kernel in low frequencies, undergo a damping effect in the
medium frequencies and, in high frequencies, a loss of regularity occurs. The precise behaviour of each
component is drawn in Table 1, see also (3.5).

|ξ| ≤ 1 1 ≤ |ξ| ≤ C
ε |ξ| ≥ C

ε

ρε − ρ̄ Damped Heat Damped
uε Damped Damped Damped
Eε Damped Damped Regularity-loss

Bε − B̄ Heat Damped Regularity-loss

Table 1. Behaviours of each component of the Euler-Maxwell system (3.4).

The above spectral analysis suggests us to split the frequency space into three regimes: low, medium
and high frequencies. This contrasts with [11,14], where only two frequency regimes employed. Moreover,
due to the different behaviour observed in each regime, one must develop different hypocoercivity methods
in each regime to recover the expected dissipation properties stated in Table 1. We design a functional
framework allowing us to obtain uniform estimates with respect to ε. The framework we employ is
depicted in Figure 1.

|ξ|C
ε

10
|||

High
frequencies

Ḃ
5
2

Medium
frequencies

Ḃ
3
2

Low
frequencies

Ḃ
1
2

Figure 1. Frequency splitting for the Euler-Maxwell system (3.2).

As ε → 0, we observe that the high-frequency regime disappears and the medium-frequency regime
becomes the new high-frequency regime, see Figure 2. This is coherent as the density ρε in the low and
medium frequencies behaves like the solution ρ∗ of the limit drift-diffusion system (1.9) (cf. Figure 2).

|ξ|10
||

High
frequencies

Ḃ
3
2

Low
frequencies

Ḃ
1
2

Figure 2. Frequency splitting for the drift-diffusion model (1.9).



6 T. CRIN-BARAT, Y.-J. PENG, L.-Y. SHOU, AND J. XU

Moreover, such a functional setting allows us to derive quantitative error estimates of solutions between
(1.6) and (1.9). A key ingredient is the introduction of a new unknown: the effective velocity

zε := uε + ∇h(ρε) + Eε + εuε × B̄,(1.16)

which is associated with Darcy’s law (1.10). The unknown zε satisfies stronger dissipative properties
compared to the other components and exhibits a O(ε)-bound. This is crucial to establish a global-in-
time strong relaxation result in the whole space and derive the sharp convergence rate ε.

2. Preliminaries and main results

2.1. Notations. Before stating our main results, we explain the notations and definitions employed
throughout the paper. C > 0 denotes a constant independent of ε and time, f ≲ g (resp. f ≳ g)
means f ≤ Cg (resp. f ≥ Cg), and f ∼ g stands for f ≲ g and f ≳ g. For any Banach space X
and functions f, g ∈ X, ∥(f, g)∥X := ∥f∥X + ∥g∥X . For any T > 0 and 1 ≤ ϱ ≤ ∞, we denote by
Lϱ(0, T ; X) the set of measurable functions g : [0, T ] → X such that t 7→ ∥g(t)∥X is in Lϱ(0, T ) and write
∥ · ∥Lϱ(0,T ;X) := ∥ · ∥Lϱ

T
(X). F and F−1 stand for the Fourier transform and its inverse, respectively. In

addition, we define Λσf := F−1(|ξ|σFf) for σ ∈ R.
Following the pre-analysis in Subsection 1.2, we introduce the threshold Jε between medium and high

frequencies as
Jε := −[log2 ε] + 1,(2.1)

such that 2Jε ∼ 1/ε. The Littlewood-Paley decomposition and homogeneous Besov spaces emerge as nat-
ural tools for decomposing the analysis of our system in each frequency regime. We define the frequency-
restricted Besov semi-norms corresponding to the three-regime decomposition:

∥u∥ℓ
Ḃs :=

∑
j≤0

2js∥uj∥L2 , ∥u∥m
Ḃs :=

∑
−1≤j≤Jε

2js∥uj∥L2 and ∥u∥h
Ḃs :=

∑
j≥Jε−1

2js∥uj∥L2 ,

where uj := ∆̇ju and ∆̇j is the classical homogeneous Littlewood-Paley frequency-localization operator,
see [1, Chapter 2]. Analogously, we decompose u = uℓ + um + uh as

uℓ :=
∑

j≤−1
uj , um :=

∑
0≤j≤Jε−1

uj and uh :=
∑
j≥Jε

uj .

Note that using Young’s and Bernstein’s inequalities, we have
∥uℓ∥Ḃs ≲ ∥u∥ℓ

Ḃs , ∥um∥Ḃs ≲ ∥u∥m
Ḃs , ∥uh∥Ḃs ≲ ∥uh∥Ḃs ,

and for any s′ > 0, the following inequalities hold true

(2.2)
{

∥u∥ℓ
Ḃs ≲ ∥u∥ℓ

Ḃs−s′ , ∥u∥m
Ḃs ≲ ∥u∥m

Ḃs+s′ ,

∥u∥m
Ḃs ≲ ε−s′

∥u∥m
Ḃs−s′ , ∥u∥h

Ḃs ≲ εs′
∥u∥h

Ḃs+s′ .

To justify the relaxation limit and analyse the drift-diffusion model (1.9), we also introduce the (inde-
pendent of ε) hybrid Besov spaces

Ḃs1,s2 := {u ∈ S ′
h : ∥u∥Ḃs1,s2 :=

∑
j≤0

2js1∥uj∥L2 +
∑

j≥−1
2js2∥uj∥L2 < ∞},

which verify the following properties:
Ḃs1,s2 = Ḃs1 if s1 = s2,

Ḃs1,s2 = Ḃs1 ∩ Ḃs2 if s1 < s2,

Ḃs1,s2 = Ḃs1 + Ḃs2 if s1 > s2.

Furthermore, we denote the Chemin-Lerner spaces L̃ϱ(0, T ; Ḃs
p,r) by the function set in Lϱ(0, T ; S ′

h)
endowed with the norm

∥u∥
L̃ϱ

T
(Ḃs) :=


∑
j∈Z

2js∥uj∥Lϱ
T

(Lp) < ∞, if 1 ≤ ϱ < ∞,∑
j∈Z

2js sup
t∈[0,T ]

∥uj∥Lp < ∞, if ϱ = ∞.
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Using Minkowski’s inequality, we have
∥u∥

L̃1
T

(Ḃs) = ∥u∥L1
T

(Ḃs) and ∥u∥
L̃ϱ

T
(Ḃs) ≥ ∥u∥Lϱ

T
(Ḃs) for ϱ > 1.

2.2. Main results. To state our results, it is convenient to define the energy functional

(2.3) E(a, u, E, H) := ∥(a, εu, E, H)∥ℓ

L̃∞
t (Ḃ

1
2 )

+ ∥(a, εu, E, H)∥m

L̃∞
t (Ḃ

3
2 )

+ ε∥(a, εu, E, H)∥h

L̃∞
t (Ḃ

5
2 )

,

and the corresponding dissipation functional

(2.4)

D(a, u, E, H) = ∥a∥ℓ

L̃2
t (Ḃ

1
2 )

+ ∥u∥ℓ

L̃2
t (Ḃ

1
2 )

+ ∥E∥ℓ

L̃2
t (Ḃ

1
2 )

+ ∥H∥ℓ

L̃2
t (Ḃ

3
2 )

+ ∥a∥m

L̃2
t (Ḃ

5
2 )

+ ∥u∥m

L̃2
t (Ḃ

3
2 )

+ ∥E∥m

L̃2
t (Ḃ

3
2 )

+ ∥H∥m

L̃2
t (Ḃ

3
2 )

+ ∥a∥h

L̃2
t (Ḃ

5
2 )

+ ε∥u∥h

L̃2
t (Ḃ

5
2 )

+ ∥E∥h

L̃2
t (Ḃ

3
2 )

+ ∥H∥h

L̃2
t (Ḃ

3
2 )

for t > 0. The initial energy is denoted as follows:

(2.5)
Eε

0 : = ∥(ρ0 − ρ̄, u0, E0, B0 − B̄)∥ℓ

Ḃ
1
2

+ ∥(ρ0 − ρ̄, u0, E0, B0 − B̄)∥m

Ḃ
3
2

+ ε∥(ρ0 − ρ̄, u0, E0, B0 − B̄)∥h

Ḃ
5
2

.

Our first result provides the global existence and uniqueness of classical solutions to (1.6)-(1.7), uni-
formly with respect to the relaxation parameter ε.

Theorem 2.1. Let 0 < ε ≤ 1. There exists a constant α0 independent of ε such that if

(2.6) Eε
0 ≤ α0,

then the Cauchy problem (1.6)-(1.7) admits a unique global-in-time classical solution (ρε, uε, Eε, Bε)
fulfilling (ρε − ρ̄, uε, Eε, Bε − B̄) ∈ C(R+; Ḃ

1
2 , 5

2 ). Moreover, the following uniform estimate holds:

(2.7) E(ρε − ρ̄, uε, Eε, Bε − B̄) + D(ρε − ρ̄, uε, Eε, Bε − B̄) ≤ CEε
0 ,

for all t ∈ R+, where C > 0 is a uniform constant independent of ε and t.

Remark 2.1. As observed in Table 1, the non-symmetric relaxation term induces a one-regularity loss
phenomenon in the high-frequency regime. To deal with this difficulty, we partition the frequency space
into three distinct regimes associated with the different behaviour of the solution. In addition, Theorem
2.1 provides a larger regularity framework for the well-posedness of classical solutions of (1.6)-(1.7). This
can be observed in the following chain of Sobolev embeddings

Hs(s >
5
2) ↪→ B

5
2 ↪→ Ḃ

1
2 , 5

2 ↪→ C1 ∩ W 1,∞.

The left space corresponds to the classical Sobolev theory, see for instance [16, 45, 50, 52]. Compared to
the result in the inhomogeneous Besov space B

5
2 , see [56, 62], the result of the present paper – Ḃ

1
2 , 5

2 –
allows to assume less regularity on the low frequencies of the initial data, i.e. Ḃ1/2 rather than L2.

Remark 2.2. Theorem 2.1 provides a sharp smallness condition (2.6) for the global existence of the Euler-
Maxwell system. Notice that we only assume the low and medium-frequency norms of initial data to be
small, the high-frequency norm, actually, can be arbitrarily large when ε is suitably small. This comes
from the fact that as ε → 0, the high-frequency regime disappears and the medium-frequency regime
becomes the new high-frequency one. See Figure 2.

Next, we establish quantitative error estimates for ill-prepared initial data, which leads to the strong
relaxation limit from (1.6)-(1.7) to (1.9).

Theorem 2.2. Let 0 < ε ≤ 1 and (ρε, uε, Eε, Bε) be the solution of (1.6)-(1.7) from Theorem 2.1. Let
ρ∗ be the solution of (1.9) associated to the initial datum ρ∗

0 given by Theorem 4.1. Define the effective
velocity

zε := uε + ∇h(ρε) + Eε + εuε × B̄

and its initial datum
zε

0 := 1
ε

u0 + ∇h(ρ0) + E0 + u0 × B̄.
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Then, it holds that

(2.8) ∥zε − zε
L∥

L̃2
t (Ḃ

1
2 )

≤ Cε, t ∈ R+,

where C > 0 is a constant independent of ε and time, and zε
L := e− t

ε2 zε
0 is the initial layer correction of

zε.
Let E∗ = ∇(−∆)−1(ρ∗ − ρ̄) associated with its initial datum E∗

0 = ∇(−∆)−1(ρ∗
0 − ρ̄) and set B∗ = B̄.

If we assume ρ∗
0 − ρ̄ ∈ Ḃ

1
2 and

∥(ρ0 − ρ∗
0, E0 − E∗

0 , B0 − B̄)∥
Ḃ

1
2

≤ ε,(2.9)

then, for all t ∈ R+,

(2.10)
∥ρε − ρ∗∥

L̃∞
t (Ḃ

1
2 )∩L̃2

t (Ḃ
1
2 , 3

2 )
+ ∥uε − u∗ − uε

L∥
L̃2

t (Ḃ
1
2 )

+ ∥Eε − E∗∥
L̃∞

t (Ḃ
1
2 )∩L̃2

t (Ḃ
1
2 )

+ ∥Bε − B∗∥
L̃∞

t (Ḃ
1
2 )∩L̃2

t (Ḃ
3
2 , 1

2 )
≤ Cε,

where uε
L := e− t

ε2 1
ε u0 is the initial layer correction of uε.

Remark 2.3. Theorem 2.2 is, to the best of our knowledge, the first result providing global-in-time
convergence rates of the compressible Euler-Maxwell system towards the drift-diffusion system in R3.
Thanks to the initial layer corrections zε

L and uε
L in (2.8) and (2.10), the strong convergence can hold for

general ill-prepared initial data.
2.3. Strategy to derive error estimates. We now explain the strategies for establishing error es-
timates of the relaxation limit from (1.6) to (1.9). Our first step is the introduction of the effec-
tive velocity zε which reveals the convergence of uε + ∇h(ρε) + Eε towards Darcy’s law (1.10). Let
(δρ, δu, δE, δB) := (ρε − ρ∗, uε − u∗, Eε − E∗, Bε − B∗) be the error unknowns. We observe that δρ
satisfies
(2.11) ∂tδρ − P ′(ρ̄)∆δρ + ρ̄δρ = −ρ̄div zε + ερ̄div (uε × B̄) + nonlinear terms,
where the left-hand side of (2.11) presents a priori estimates of the linearized drift-diffusion system, and
the term ερ̄div (uε × B̄) give an O(ε)-bound due to (2.7). Hence, one has to establish the decay-in-ε of
the remainder term −ρ̄div zε. On the one hand, we find that zε satisfies

∂tz
ε + 1

ε2 zε − 1
ε

zε × B̄ = higher-order linear and nonlinear terms.

The above damping structure enables us to derive O(ε)-bounds for zε (see Proposition 4.1) and thus to
control −ρ̄div zε. On the other hand, we reformulate the system of (δE, δB) in terms of the effective
velocity zε:

(2.12)


∂tδE − 1

ε
∇ × δB + ρ̄δE − P ′(ρ̄)∇div δE = ∇ × B1,∗ + ρ̄zε − ερ̄uε × B̄ + nonlinear terms,

∂tδB + 1
ε

∇ × δE = 0,

div δE = −δρ, div δB = 0,

with B1,∗ = −(−∆)−1∇ × (ρ∗u∗). One can see that the dissipative structure of (2.12) share similarities
with that of the compressible Euler system with damping. Consequently, we derive qualitative estimates
for (δE, δB) by employing a hypocoercivity argument as in [2, 11]. Nevertheless, there is an additional
difficulty arising from the term B1,∗, which lacks the O(ε)-bound in (2.12) in fact. To overcome it, we
employ the auxiliary unknown

δB := δB + εB1,∗

which allows us to rewrite (2.12) in terms of (δB, δE) without the term ∇ × B1,∗ and establish desired
convergence estimates. See Subsection 4.2 for more details.

2.4. Outline of the paper. The rest of the paper unfolds as follows. In Section 3, we derive uniform a
priori estimates for (3.2) and prove the global well-posedness of the Cauchy problem (1.6)-(1.7) (Theorem
2.1). Section 4 is dedicated to the justification of the strong relaxation limit from (1.6)-(1.7) to (1.9)
(Theorem 2.2). Finally, technical lemmas that are used throughout the manuscript are presented in
Appendix A.
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3. Global well-posedness for the Euler-Maxwell system

In this section, we focus on the proof of Theorem 2.1. We simplify the notations of unknowns by
omitting the superscript ε. Define

n := h(ρ) − h(ρ̄), H := B − B̄,(3.1)

where h(ρ) is the enthalpy satisfying h′(ρ) = P ′(ρ)/ρ. The system (1.6) for (t, x) ∈ [0, ∞) × R3 can be
rewritten as

(3.2)



∂tn + P ′(ρ̄)div u = −u · ∇n − G(n)div u,

ε2(∂tu + u · ∇u) + ∇n + E + u + εu × B̄ = −εu × H,

ε∂tE − ∇ × H − ερ̄u = εF (n)u,

ε∂tH + ∇ × E = 0,

div E = −Kn − Φ(n),
div H = 0,

(n, u, E, H)(0, x) = (n0,
1
ε

u0, E0, H0)(x),

with

(3.3)


n0 := h(ρ0) − h(ρ̄), H0 := B0 − B̄,

K := ρ′(0) = ρ̄

P ′(ρ̄) ,

G(n) := P ′(ρ) − P ′(ρ̄), F (n) := ρ(n) − ρ̄, Φ(n) := ρ(n) − ρ̄ − Kn.

Note that Φ(n) = O(|n|2) if n is uniformly bounded. For clarity, we split the proof into several subsections.

3.1. Pointwise estimates for the linearized Euler-Maxwell system. In order to get a priori es-
timates with optimal regularity, we first derive pointwise estimates for the following linearized Euler-
Maxwell system

(3.4)



∂tn + P ′(ρ̄)div u = 0,

ε2∂tu + ∇n + E + u + εu × B̄ = 0,

ε∂tE − ∇ × H − ερ̄u = 0,

ε∂tH + ∇ × E = 0,

div E = −Kn, div H = 0.

In what follows, we employ a hypocoercivity argument and deduce uniform-in-ε pointwise estimates for
(3.4), which provide us an insight into the evolution of the dissipation rates with respect to ε.

Proposition 3.1. For 0 < ε ≤ 1, let (n, u, E, H) be the solution to the system (3.4). Then there exists
a functional Lξ(t) ∼ |(n̂, εû, Ê, Ĥ)(t, ξ)|2 and a constant c0 = c0(ρ̄, B̄, P ′(ρ̄)) > 0 such that

(3.5)

d

dt
Lξ(t) + c0|û|2 + c0(1 + |ξ|2)

1 + ε2|ξ|2
|n̂|2

+ c0

1 + ε2|ξ|2
|Ê|2 + c0|ξ|2

(1 + ε2|ξ|2)(1 + |ξ|2) |Ĥ|2 ≤ 0.

Furthermore, we have

(3.6) |(n̂, εû, Ê, Ĥ)(t, ξ)|2 ≲ eλε(|ξ|)t(n̂, εû, Ê, Ĥ)(0, ξ)|2, t > 0, ξ ∈ Rd,

where λε(|ξ|) is given by

λε(|ξ|) = − c0|ξ|2

(1 + ε2|ξ|2)(1 + |ξ|2) .
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Proof. Applying the Fourier transform to (3.4) gives

(3.7)



∂tn̂ + P ′(ρ̄)iξû = 0,

ε2∂tû + iξn̂ + Ê + û + εû × B̄ = 0,

ε∂tÊ − iξ × Ĥ − ερ̄û = 0,

ε∂tĤ + iξ × Ê = 0,

iξÊ = −Kn̂, iξĤ = 0,

where we recall that K = ρ̄

P ′(ρ̄) . Performing the inner product of (3.7) with (n̂, P ′(ρ̄)û, 1
K Ê, 1

K Ĥ)T and

taking the real part, we obtain

(3.8) 1
2

d

dt

(
|n̂|2 + P ′(ρ̄)ε2|û|2 + 1

K
|Ê|2 + 1

K
|Ĥ|2

)
+ P ′(ρ̄)|û|2 = 0.

To capture dissipation for n, we have

(3.9)
−ε2 d

dt
Re < û, iξn̂ > +|ξ|2|n̂|2 + K|n̂|2 = Re < û + εû × B̄, iξn̂ > +P ′(ρ̄)ε2|ξ · û|2

≤ 1
2 |ξ|2|n̂|2 + C(1 + ε2|ξ|2)|û|2.

Then, multiplying (3.9) by 1
1+ε2|ξ|2 , we obtain

(3.10) − d

dt

ε2Re < û, iξn̂ >

1 + ε2|ξ|2
+ |ξ|2

2(1 + ε2|ξ|2) |n̂|2 + K

1 + ε2|ξ|2
|n̂|2 ≤ C|û|2.

Performing the inner scalar product of the second equation in (3.7) with Ê (associated with the skew-
symmetric part of the relaxation matrix), and then using the third equation in (3.7) implies that

(3.11)

ε2 d

dt
Re < û, Ê > +|Ê|2 + 1

K
|ξ · Ê|2

= −Re < û + εû × B̄, Ê > +εRe < iξ × Ĥ, û > +ε2ρ̄|û|2

≤ 1
2 |Ê|2 + C(1 + ε2|ξ|2)

√
η

|û|2 +
C

√
η|ξ|2

1 + |ξ|2
|Ĥ|2

for η ∈ (0, 1) to be chosen later. In order to be consistent with the dissipation of u in (3.8), we multiply
both sides of (3.11) by 1

1+ε2|ξ|2 and obtain

(3.12) d

dt

ε2Re < û, Ê >

1 + ε2|ξ|2
+ 1

2(1 + ε2|ξ|2) |Ê|2 ≤ C
√

η
|û|2 +

C
√

η|ξ|2

(1 + ε2|ξ|2)(1 + |ξ|2) |Ĥ|2.

To derive the dissipation of Ĥ, using |ξ|2|Ĥ|2 = |ξ × Ĥ|2 due to ξ · Ĥ = 0, it follows that

(3.13)
ε

d

dt
Re < Ê, −iξ × Ĥ > +|ξ|2|Ĥ|2 = |ξ × Ê|2 − ρ̄εRe < û, iξ × Ĥ >

≤ 1
2 |ξ|2|Ĥ|2 + C|ξ|2|Ê|2 + C|û|2.

In view of the dissipation of Ê in (3.12), we have

(3.14)

d

dt

εRe < Ê, −iξ × Ĥ >

(1 + ε2|ξ|2)(1 + |ξ|2) + |ξ|2

2(1 + ε2|ξ|2)(1 + |ξ|2) |Ĥ|2

≤ C|û|2 + |ξ|2

(1 + ε2|ξ|2)(1 + |ξ|2) |Ê|2.

Then, we define the Lyapunov functional

(3.15)
Lξ(t) ≜1

2

(
|n̂|2 + P ′(ρ̄)ε2|û|2 + 1

K
|Ê|2 + 1

K
|Ĥ|2

)
− η

ε2Re < û, iξn̂ >

1 + ε2|ξ|2
+ η

ε2Re < û, Ê >

1 + ε2|ξ|2
+ η

5
4

εRe < Ê, −iξ × Ĥ >

(1 + ε2|ξ|2)(1 + |ξ|2) .
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It follows from (3.8), (3.10), (3.12) and (3.14) that

(3.16)

d

dt
Lξ(t) + (P ′(ρ̄) − Cη − C

√
η)|û|2 + η(1 + |ξ|2)

1 + ε2|ξ|2
|n̂|2

+ (1
2 − η

1
4 )η 1

1 + ε2|ξ|2
|Ê|2 + η

5
4 (1

2 − η
1
4 )( |ξ|2

(1 + ε2|ξ|2)(1 + |ξ|2) |Ĥ|2 ≤ 0.

Choosing a suitable small constant η, we have Lξ(t) ∼ |(n̂, εû, Ê, Ĥ)|2 and the inequality (3.5) is proved.
In particular, it holds that

(3.17) d

dt
Lξ(t) + λε(ξ)Lξ(t) ≤ 0,

which leads to (3.6) by Grönwall’s inequality. □

3.2. Uniform a priori estimates and global well-posedness. In this section, our central task is
to derive uniform a priori estimates in the spirit of Proposition 3.1 and the work of Beauchard and
Zuazua [2]. This enables us to achieve the global existence of classical solutions to the Cauchy problem
(3.2). Denote

X (t) := E(n, u, E, H) + D(n, u, E, H)(3.18)
for t > 0 and 0 < ε ≤ 1, where E and D are defined by (2.3) and (2.4).

Proposition 3.2. Assume that (n, u, E, H) is a classical solution to (3.2) on the time interval [0, T ].
There exist positive constants δ0 and C0 independent of ε such that for t ∈ [0, T ], if

(3.19) ∥n∥L∞
t (L∞) ≤ δ0,

then it holds that

(3.20) X (t) ≤ C0
(
Eε

0 + X (t)2 + X (t)3)
,

where the initial energy norm Eε
0 is given by (2.5).

The proof of the proposition 3.2 is a direct consequence of Lemmas 3.3-3.5, which are closely linked
with the dissipation analysis (on three distinct regimes) addressed in Section 1.2.

Lemma 3.3 (Low-frequency estimates). If (n, u, E, H) is a classical solution to (3.2) on the time interval
[0, T ], then the following estimate holds:

(3.21) ∥(n, εu, E, H)∥ℓ

L̃∞
t (Ḃ

1
2 )

+ ∥(n, u, E)∥ℓ

L̃2
t (Ḃ

1
2 )

+ ∥H∥ℓ

L̃2
t (Ḃ

3
2 )

≲ ∥(n0, u0, E0, H0)∥ℓ

Ḃ
1
2

+ X (t)2

for t ∈ [0, T ] and 0 < ε ≤ 1.

Proof. Applying the frequency-localization operator ∆̇j to (3.2), we obtain

(3.22)



∂tnj + P ′(ρ̄)div uj = −∆̇j(u · ∇n) − ∆̇j(G(n)div u),

ε2∂tuj + ∇nj + Ej + uj + εuj × B̄ = −∆̇j(ε2u · ∇u) − ∆̇j(εu × H),

ε∂tEj − ∇ × Hj − ερ̄uj = ∆̇j(εF (n)u),
ε∂tHj + ∇ × Ej = 0,

div Ej = −Knj − ∆̇jΦ(n), div Hj = 0.

Taking the L2-inner product of (3.22)1 with nj , we have

(3.23) 1
2

d

dt

ˆ
|nj |2 dx + P ′(ρ̄)

ˆ
div ujnj dx ≤ (∥∆̇j(u · ∇n)∥L2 + ∥∆̇j(G(n)div u)∥L2)∥nj∥L2 .

To cancel the second term on the left-hand side of (3.23), we take the L2-inner product of (3.22)2 with
P ′(ρ̄)uj to get

(3.24)
P ′(ρ̄)ε2

2
d

dt

ˆ
|uj |2 dx + P ′(ρ̄)

ˆ
∇nj · uj dx + P ′(ρ̄)

ˆ
|uj |2 dx + P ′(ρ̄)

ˆ
Ej · uj dx

≤ P ′(ρ̄)∥∆̇j(εu · ∇u, u × H)∥L2ε∥uj∥L2 ,
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where the fact that (uj × B̄) · uj = (uj × uj) · B̄ = 0 was used. In addition, it follows from (3.22)3-(3.22)4
that

(3.25) P ′(ρ̄)
2ρ̄

d

dt
∥(Ej , Hj)∥2

L2 − P ′(ρ̄)
ˆ

uj · Ej dx ≤ 1
K

∥∆̇j(F (n)u)∥L2∥Ej∥L2 ,

where we have usedˆ
(∇ × f) · g − (∇ × g) · f dx =

ˆ
div (f × g) dx = 0, ∀f, g ∈ S ′(R3).

Combining (3.23)-(3.25) together, we have

(3.26)

1
2

d

dt

ˆ (
|nj |2 + P ′(ρ̄)ε2|uj |2 + 1

K
|Ej |2 + 1

K
|Hj |2

)
dx + P ′(ρ̄)

ˆ
|uj |2 dx

≤ (∥∆̇j(u · ∇n)∥L2 + ∥∆̇j(G(n)div u)∥L2)∥nj∥L2

+ P ′(ρ̄)∥∆̇j(εu · ∇u, u × H)∥L2ε∥uj∥L2 + 1
K

∥∆̇j(F (n)u)∥L2∥Ej∥L2 .

In order to obtain some dissipation rate for nj , we multiply (3.22)2 by ∇nj and integrate the resulting
equality over Rd. Since div Ej = −Knj − ∆̇jΦ(n), we see that nj satisfies

ˆ
Ej · ∇nj dx = −

ˆ
div Ejnj dx = K∥nj∥2

L2 +
ˆ

∆̇jΦ(n)nj dx.

Furthermore, with the help of the Cauchy-Schwarz inequality, we get

(3.27)

ε2 d

dt

ˆ
uj · ∇nj dx +

ˆ (
|∇nj |2 + K|nj |2 − P ′(ρ̄)ε2|div uj |2 + uj · ∇nj

)
dx

≤ ε∥∆̇j(εu · ∇u, u × H)∥L2∥∇nj∥L2 + ε∥∇∆̇j(u · ∇n, G(n)div u)∥L2ε∥uj∥L2

+ ∥∆̇jΦ(n)∥L2∥nj∥L2 .

The nice “div-curl” construction of Maxwell’s equation in (3.2) enables us to get dissipation for (E, H).
Concerning E, it comes from the interaction between the symmetric and skew-symmetric part of the
zero-order dissipation matrix. Indeed, taking the inner product of (3.22)2 with Ej , using (3.22)3, (3.22)5
and that nj = − 1

K div Ej − 1
K ∆̇jΦ(n), we arrive at

(3.28)

ε2 d

dt

ˆ
uj · Ej dx +

ˆ
(|Ej |2 + 1

K
|div Ej |2) dx

+
ˆ (

uj · Ej + ε(uj × B̄) · Ej − εuj · (∇ × Hj) − ε2ρ̄|uj |2
)

dx

≤ ε∥∆̇j(εu · ∇u, u × H)∥L2∥Ej∥L2 + ε∥∆̇j(F (n)u)∥L2ε∥uj∥L2

+ 1
K

∥∆̇jΦ(n)∥L2∥div Ej∥L2 .

On the other hand, taking the inner product of (3.22)3 with −∇ × Hj and using (3.22)4, we get the
dissipation for H:

(3.29)
− ε

d

dt

ˆ
Ej · ∇ × Hj dx +

ˆ
(|∇ × Hj |2 + ερ̄uj · ∇ × Hj) dx

≤
ˆ

|∇ × Ej |2dx + ε∥∆̇j(F (n)u)∥L2∥∇ × Hj∥L2 .

Let η1 ∈ (0, 1). We denote by Lℓ,j and Dℓ,j the low-frequency energy functional and dissipation functional:

Lℓ,j(t) : = 1
2

ˆ (
|nj |2 + P ′(ρ̄)ε2|uj |2 + 1

K
|Ej |2 + 1

K
|Hj |2

)
dx

+ ε2η1

ˆ
uj · ∇nj dx + ε2η1

ˆ
uj · Ej dx − η

5
4
1 ε

ˆ
Ej · ∇ × Hj dx
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and

Dℓ,j(t) : = P ′(ρ̄)
ˆ

|uj |2 + η1

ˆ (
|∇nj |2 + K|nj |2 − P ′(ρ̄)|div uj |2 + uj · ∇nj

)
dx

+ η1

ˆ (
|Ej |2 + 1

K
|div Ej |2 + uj · Ej + ε(uj × B̄) · Ej − εuj · (∇ × Hj) − ε2ρ̄|uj |2

)
dx

+ η
5
4
1

ˆ
(|∇ × Hj |2 − ερ̄uj · ∇ × Hj − |∇ × Ej |2) dx.

Combining (3.19) with (3.26)-(3.29), Bernstein’s inequality and j ≤ J0 leads to

(3.30) d

dt
Lℓ,j(t) + Dℓ,j(t) ≲ ∥Gℓ

j(t)∥L2∥(nj , εuj , Ej , Hj)∥L2 ,

with
Gℓ

j(t) := ∥∆̇j(u · ∇n, G(n)div u, εu · ∇u, u × H, εF (n)u, Φ(n))∥L2 .

Hence, we claim that for ε ∈ (0, 1], there exists a suitable small constant η1 > 0 independent of ε such
that

(3.31)
{

Lℓ,j(t) ∼ ∥(nj , εuj , Ej , Hj)∥2
L2 ,

Dℓ,j(t) ≳ ∥(nj , uj , Ej)∥2
L2 + 22j∥Hj∥2

L2 .

Indeed, it follows from supp (∆̂j ·) ⊂ { 3
4 2j ≤ |ξ| ≤ 8

3 2j} and 2j ≤ 1 that

Lℓ,j(t) ≤ 1
2

ˆ (
(1 + 8

3η1)|nj |2 + (P ′(ρ̄) + 11
3 η1)ε2|uj |2 + ( 1

K
+ 11

3 η1)|Ej |2 + ( 1
K

+ 8
3η

3
2
1 )|Hj |2

)
dx,

Lℓ,j(t) ≥ 1
2

ˆ (
(1 − 8

3η1)|nj |2 + (P ′(ρ̄) − 11
3 η1)ε2|uj |2 + ( 1

K
− 11

3 η1)|Ej |2 + ( 1
K

− 8
3η

3
2
1 )|Hj |2

)
dx.

Since div Hj = 0, the div-curl lemma implies that

(3.32) ∥∇ × Hj∥2
L2 = ∥∇Hj∥2

L2 ≥ 9
1622j∥Hj∥2

L2 .

Furthermore, we have

Dℓ,j(t) ≥ P ′(ρ̄)
ˆ

|uj |2 dx + η1

ˆ (1
2 |∇nj |2 dx + K|nj |2 − P ′(ρ̄)|div uj |2 − 1

2 |uj |2
)

dx

+ η1

ˆ (1
2 |Ej |2 − (1 + B̄2 + 1

2η
1
4
1

+ ρ̄)|uj |2 − 1
2η

1
4
1 |∇ × Hj |2

)
dx

+ η
5
4
1

ˆ
(1
2 |∇ × Hj |2 − ρ̄2

2 |uj |2 − |∇ × Ej |2) dx

≥
ˆ (

(P ′(ρ̄) − 64P ′(ρ̄)
9 η1 − ρ̄η1 − ρ̄2

2 η
3
4
1 )|uj |2 + η1K|nj |2)

)
dx

+
ˆ (1

2η1ε(1 − 32
9 η

1
4
1 )|Ej |2 + 9

32η
5
4
1 22j |Hj |2) dx.

Taking η1 sufficiently small yields (3.31) immediately. Together, (3.30) and (3.31) yield

(3.33) d

dt
Lℓ

j(t) + ∥(nj , uj , Ej)∥2
L2 + 22j∥Hj∥2

L2 ≲ Gℓ
j(t)

√
Lℓ

j(t).

Applying Lemma A.7 to (3.33) and (3.31) leads to

(3.34)
∥(nj , εuj , Ej , Hj)∥L∞

t (L2) + ∥(nj , uj , Ej)∥L2
t (L2) + 2j∥Hj∥L2

t (L2)

≲ ∥(nj , εuj , Ej , Hj)(0)∥L2 + ∥Gℓ
j∥L1

t (L2).

Multiplying (3.34) by the factor 2( d
2 −1)j and summing over j ≤ 0, we get

(3.35)
∥(n, εu, E, H)∥ℓ

L̃∞
t (Ḃ

1
2 )

+ ∥(n, u, E)∥ℓ

L̃2(Ḃ
1
2 )

+ ∥H∥ℓ

L̃2
t (Ḃ

3
2 )

≲ ∥(n0, u0, E0, H0)∥ℓ

Ḃ
1
2

+ ∥(u · ∇n, G(n)div u, εu · ∇u, εu × H, εF (n)u, Φ(n))∥ℓ

L1
t (Ḃ

1
2 )

.
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Before bounding the nonlinear terms on the right-hand side of (3.35), we claim that the standard Besov
norms of (n, u, E, B) can be bounded by X (t). Indeed, owing to (2.1) and (2.2), one has

(3.36)



∥u∥
L̃2

t (Ḃ
1
2 ∩Ḃ

3
2 )

≲ ∥u∥ℓ

L̃2
t (Ḃ

1
2 )

+ ∥u∥m

L̃2
t (Ḃ

3
2 )

+ ε∥u∥h

L̃2
t (Ḃ

5
2 )

,

∥n∥
L̃2

t (Ḃ
1
2 ∩Ḃ

5
2 )

≲ ∥n∥ℓ

L̃2
t (Ḃ

1
2 )

+ ∥n∥m

L̃2
t (Ḃ

5
2 )

+ ∥n∥h

L̃2
t (Ḃ

5
2 )

,

∥E∥
L̃2

t (Ḃ
1
2 ∩Ḃ

3
2 )

≲ ∥E∥ℓ

L̃2
t (Ḃ

1
2 )

+ ∥E∥m

L̃2
t (Ḃ

3
2 )

+ ∥E∥h

L̃2
t (Ḃ

3
2 )

,

∥B∥
L̃2

t (Ḃ
3
2 )

≲ ∥B∥ℓ

L̃2
t (Ḃ

3
2 )

+ ∥B∥m

L̃2
t (Ḃ

3
2 )

+ ∥B∥h

L̃2
t (Ḃ

3
2 )

.

Then, it follows from (3.36) and the product law Ḃ
1
2 ↪→ Ḃ

3
2 × Ḃ

1
2 in (A.2) that

(3.37) ∥u · ∇n∥
L1

t (Ḃ
1
2 )

≲ ∥u∥
L̃2

t (Ḃ
3
2 )

∥∇n∥
L̃2

t (Ḃ
1
2 )

≲ ∥u∥
L̃2

t (Ḃ
3
2 )

∥n∥
L̃2

t (Ḃ
3
2 )

≲ X (t)2.

Similarly, as 0 < ε ≤ 1, we get

(3.38) ε∥u · ∇u∥
L1

t (Ḃ
1
2 )

+ ∥u × H∥
L1

t (Ḃ
1
2 )

≲ ∥u∥
L̃2

t (Ḃ
1
2 )

∥(u, H)∥
L̃2

t (Ḃ
3
2 )

≲ X (t)2.

In accordance with the bound (3.19), the product law (A.2) and the composition estimate (A.4), it also
holds that

(3.39) ε∥F (n)u∥
L1

t (Ḃ
1
2 )

≲ ∥F (n)∥
L̃2

t (Ḃ
3
2 )

∥u∥
L̃2

t (Ḃ
1
2 )

≲ ∥n∥
L̃2

t (Ḃ
3
2 )

∥u∥
L̃2

t (Ḃ
1
2 )

≲ X (t)2.

Recall that Φ(n) is quadratic with respect to n, so it follows from (3.19), Lemma A.6 and the embedding
Ḃ

3
2 ↪→ L∞ that

(3.40) ∥Φ(n)∥ℓ

L1
t (Ḃ

1
2 )

≲ ∥n∥
L̃2

t (Ḃ
3
2 )

(∥n∥ℓ

L̃2
t (Ḃ

1
2 )

+ ∥n∥m

L̃2
t (Ḃ

3
2 )

+ ε2∥n∥h

L̃2
t (Ḃ

5
2 )

) ≲ X (t)2.

Inserting the above estimates (3.37)-(3.40) into (3.35), we obtain (3.21). Hence, the proof of Lemma 3.3
is complete. □

Lemma 3.4 (Medium-frequency estimates). If (n, u, E, H) is a classical solution to (3.2) on the time
interval [0, T ], then the following estimate holds:

(3.41) ∥(n, εu, E, H)∥m

L̃∞
t (Ḃ

3
2 )

+ ∥n∥m

L̃2
t (Ḃ

5
2 )

+ ∥(u, E, H)∥m

L̃2
t (Ḃ

3
2 )

≲ ∥(n0, u0, E0, H0)∥m

Ḃ
3
2

+ X (t)2

for t ∈ [0, T ] and 0 < ε ≤ 1.

Proof. As in the proof of Lemma 3.3, we construct a Lyapunov functional to capture the dissipation
effects for (n, u, E, H) in medium frequencies. Here, n behaves like heat kernel and the other components
are damped. In that case, one cannot treat ∆̇j(G(n)div u) as a source term, since it will cause a loss of
one derivative with respect to u. To overcome the difficulty, we rewrite (3.22)1 as

(3.42) ∂tnj + (P ′(ρ̄) + G(n))div uj = R1,j − ∆̇j(u · ∇n),

where the commutator is given by R1,j := [G(n), ∆̇j ]div u. Taking the inner product of (3.42) with nj ,
we obtain

(3.43) 1
2

d

dt
∥nj∥2

L2 +
ˆ

(P ′(ρ̄) + G(n))div ujnj dx ≤ (∥R1,j∥L2 + ∥∆̇j(u · ∇n)∥L2)∥nj∥L2 .

In order to cancel the second term on the left-hand side of (3.43), we multiply (3.22)2 by (P ′(ρ̄)+G(n))uj

and integrate the resulting equality over R3. Performing an integration by parts and using Cauchy-
Schwarz inequality implies that

(3.44)

ε2

2
d

dt

ˆ
(P ′(ρ̄) + G(n))|uj |2 dx −

ˆ
(P ′(ρ̄ + G(n))div ujnj dx

+
ˆ (

(P ′(ρ̄) + G(n))|uj |2 + (P ′(ρ̄) + G(n))Ej · uj

)
dx

≤ ε2

2 ∥∂tG(n)∥L∞∥uj∥2
L2 + ∥∇G(n)∥L∞∥uj∥L2∥nj∥L2

+ (P ′(ρ̄) + ∥G(n)∥L∞)∥∆̇j(εu · ∇u, u × H)∥L2ε∥uj∥L2 .
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Combining (3.43)-(3.44) and (3.25), we arrive at

(3.45)

1
2

d

dt

ˆ (
|nj |2 + (P ′(ρ̄) + G(n))ε2|uj |2 + 1

K
|Ej |2 + 1

K
|Hj |2

)
dx

+
ˆ (

(P ′(ρ̄) + G(n))|uj |2 + G(n)Ej · uj

)
dx

≤ (∥R1,j∥L2 + ∥∆̇j(u · ∇n)∥L2)∥nj∥L2 + ε2

2 ∥∂tG(n)∥L∞∥uj∥2
L2 + ∥∇G(n)∥L∞∥uj∥L2∥nj∥L2

+ (P ′(ρ̄ + ∥G(n)∥L∞)∥∆̇j(εu · ∇u, u × h)∥L2ε∥uj∥L2 + ε

K
∥∆̇j(F (n)u)∥L2∥Ej∥L2 .

As (3.27), it follows from (3.22)2 and (3.42) that, for η2 ∈ (0, 1),

(3.46)

ε2 d

dt

ˆ
uj · ∇nj dx +

ˆ (
|∇nj |2 + K|nj |2 − (P ′(ρ̄ + G(n))ε2|div uj |2 + uj · ∇nj

)
dx

≤ ∥∆̇j(εu · ∇u, u × H)∥L2ε∥∇nj∥L2 + ε∥∇∆̇j(u · ∇n)∥L2ε∥uj∥L2 + ε∥∇R1,j∥L2ε∥uj∥L2

+ ∥∆̇jΦ(n)∥L2∥nj∥L2 .

In view of (3.28)-(3.29) and (3.45)-(3.46), we denote

Lm,j(t) : = 1
2

ˆ (
|nj |2 + (P ′(ρ̄) + G(n))ε2|uj |2 + 1

K
|Ej |2 + 1

K
|Hj |2

)
dx

+ η2ε2
ˆ

uj · ∇nj dx + η2ε2
ˆ

uj · Ej dx − η
5
4
2 ε2−2j

ˆ
Ej · ∇ × Hj dx

and

Dm,j(t) : =
ˆ (

(P ′(ρ̄) + G(n))|uj |2 + G(n)Ej · uj

)
dx

+ η2

ˆ (
|∇nj |2 + K|nj |2 − (P ′(ρ̄) + G(n))ε2|div uj |2 + uj · ∇nj

)
dx

+ η2

ˆ (
|Ej |2 + 1

K
|div Ej |2 + uj · Ej + ε(uj × B̄) · Ej − εuj · (∇ × Hj) − ε2ρ̄|uj |2

)
dx

+ η
5
4
2 2−2j

ˆ
(|∇ × Hj |2 − ερ̄uj · ∇ × Hj − |∇ × Ej |2) dx.

Let δ0 ≤ P ′(ρ̄)
2(1+∥P ′′∥L∞ ) . It follows from (3.19) that

1
2P ′(ρ̄) ≤ P ′(ρ̄) + G(n) ≤ 3

2P ′(ρ̄).(3.47)

Furthermore, as (3.31), it is not difficult to check that

(3.48)
{

Lm,j(t) ∼ ∥(nj , εuj , Ej , Hj)∥2
L2 ,

Dm,j(t) ≳ 22j∥nj∥2
L2 + ∥(uj , Ej , Hj)∥2

L2

for −1 ≤ j ≤ Jε, provided that we take the constant η2 (independent of ε) small enough. Therefore,
together with (3.19), (3.28)-(3.29), (3.45)-(3.46) and (3.48), one can get the following localized Lyapunov
inequality:

(3.49) d

dt
Lm

j (t) + 22j∥nj∥2
L2 + ∥(uj , Ej , Hj)∥2

L2 ≲ Gm
j (t)

√
Lm

j (t),

with

Gm
j (t) := ∥∆̇j(u · ∇n, εu · ∇u, εF (n)u, εu × H, Ψ(n))∥L2 + ∥∂tn∥L∞ε∥uj∥L2 + ∥R1,j∥L2 .

Then it follows from Lemma A.7 that
∥(nj , εuj , Ej , Hj)∥L∞

t (L2) + 2j∥nj∥L2
t (L2) + ∥(uj , Ej , Hj)∥L2

t (L2)

≲ ∥(nj , εuj , Ej , Hj)(0)∥L2 + ∥Gm
j ∥L1

t (L2)
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for −1 ≤ j ≤ Jε, which implies that

(3.50)

∥(n, εu, E, H)∥m

L̃∞
t (Ḃ

3
2 )

+ ∥(u, E, H)∥m

L̃2
t (Ḃ

3
2 )

≲ ∥(n0, u0, E0, H0)∥m

Ḃ
3
2

+ ∥(u · ∇n, εu · ∇u, u × H, εF (n)u, Φ(n))∥m

L1
t (Ḃ

3
2 )

+ ε∥∂tn∥L2
t (L∞)∥u∥m

L̃2
t (Ḃ

3
2 )

+
∑
j∈Z

2 d
2 j∥R1,j∥L1

t (L2).

In what follows, we estimate the nonlinear terms on the right-hand side of (3.50). Similarly to (3.36), it
follows from (2.2) that

ε∥u∥
L̃2

t (Ḃ
5
2 )

≲ ∥u∥ℓ

L̃2
t (Ḃ

1
2 )

+ ∥u∥m

L̃2
t (Ḃ

3
2 )

+ ε∥u∥h

L̃2
t (Ḃ

5
2 )

.(3.51)

Hence, by (3.36), (3.51) and (A.2), we have

(3.52) ∥(u · ∇n, εu · ∇u)∥
L1

t (Ḃ
3
2 )

≲ ∥u∥
L̃2

t (Ḃ
3
2 )

(∥n∥
L̃2

t (Ḃ
5
2 )

+ ε∥u∥
L̃2

t (Ḃ
5
2 )

) ≲ X (t)2.

Similarly,

(3.53) ∥u × H∥
L1

t (Ḃ
3
2 )

≲ ∥u∥
L̃2

t (Ḃ
3
2 )

∥H∥
L̃2

t (Ḃ
3
2 )

≲ X (t)2.

By using (3.19), (3.36), (A.2) and (A.4), we get

(3.54) ∥F (n)u∥
L1

t (Ḃ
3
2 )

≲ ∥u∥
L̃2

t (Ḃ
3
2 )

∥n∥
L̃2

t (Ḃ
3
2 )

≲ X (t)2.

In addition, employing the composition law in Lemma A.6 once again leads to

(3.55) ∥Φ(n)∥m

L1
t (Ḃ

3
2 )

≲ ∥n∥2
L̃2

t (Ḃ
3
2 )

≲ X (t)2.

According to (3.2), (3.36), (3.51) and Ḃ
3
2 ↪→ L∞, it holds that

(3.56)
ε∥∂tn∥L2

t (L∞) ≲ ε∥u∥L∞
t (L∞)∥∇n∥

L̃2
t (L∞) + (ρ̄ + ∥G(n)∥L∞

t (L∞))ε∥div u∥L2
t (L∞)

≲ ∥n∥
L̃2

t (Ḃ
5
2 )

+ ε∥u∥
L̃2

t (Ḃ
5
2 )

≲ X (t).

To bound the commutator term R1,j , using (3.19), (A.3) and (A.4), we have

(3.57)
∑
j∈Z

2 d
2 j∥R1,j∥L1

t (L2) ≲ ∥G(n)∥
L̃2

t (Ḃ
5
2 )

∥div u∥
L̃2

t (Ḃ
1
2 )

≲ ∥n∥
L̃2

t (Ḃ
3
2 )

∥u∥
L̃2

t (Ḃ
3
2 )

≲ X (t)2.

Finally, substituting the above estimates (3.52)-(3.57) into (3.50), we arrive at (3.41). This completes
the proof of Lemma 3.4. □

Lemma 3.5 (High-frequency estimates). If (n, u, E, H) is a classical solution to (3.2) on the time interval
[0, T ], then the following estimate holds:

(3.58)
ε∥(n, εu, E, H)∥h

L̃∞
t (Ḃ

5
2 )

+ ∥(n, εu)∥h

L̃2
t (Ḃ

5
2 )

+ ∥(E, H)∥h

L̃2
t (Ḃ

3
2 )

≲ ε∥(n0, u0, E0, H0)∥h

Ḃ
5
2

+ X (t)2 + X (t)3

for t ∈ [0, T ] and 0 < ε ≤ 1.

Proof. As emphasized before, a regularity-loss phenomenon for E and H occurs in the high-frequency
regime. This is the main difference in comparison with recent efforts [11,14] concerning hyperbolic systems
with symmetric relaxation. To avoid the loss of one derivative arising from the nonlinear terms involving
the components (n, u), we shall introduce some commutators and rewrite (3.22) as

(3.59)



∂tnj + u · ∇nj + (P ′(ρ̄) + G(n))div uj = R1,j + R2,j ,

ε2∂tuj + ε2u · ∇uj + ∇nj + Ej + uj + εuj × B̄ = −ε∆̇j(u × H) − ε2R3,j ,

ε∂tEj − ∇ × Hj − ρ̄εuj = ε∆̇j(F (n)u),
ε∂tHj + ∇ × Ej = 0,

div Ej = −Knj − ∆̇jΦ(n), div Hj = 0
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with
R1,j = [G(n), ∆̇j ]div u, R2,j = [u, ∆̇j ]∇a and R3,j := [u, ∆̇j ]∇n.

Similarly to (3.44)-(3.45), through a direct computation, we are able to get

(3.60)

1
2

d

dt

ˆ (
|nj |2 + (P ′(ρ̄) + G(n))ε2|uj |2 + 1

K
|Ej |2 + 1

K
|Hj |2

)
dx

+
ˆ (

(P ′(ρ̄) + G(n))|uj |2 + G(n)Ej · uj + εG(n)(uj × B̄) · uj

)
dx

≤ (P ′(ρ̄) + ∥G(n)∥L∞)ε∥∆̇j(u × H)∥L2∥uj∥L2 + 1
K

ε∥∆̇j(F (n)u)∥L2∥Ej∥L2

+ 1
2∥div u∥L∞∥nj∥2

L2 + 1
2

(
P ′(ρ̄) + ∥G(n)∥L∞)∥div u∥L∞ε2∥uj∥2

L2

+ ∥∇G(n)∥L∞∥u∥L∞ε2∥uj∥2
L2 + ε2

2 ∥∂tG(n)∥L∞∥uj∥2
L2

+
(
P ′(ρ̄) + ∥G(n)∥L∞)∥(R1,j , R2,j , εR3,j)∥L2∥(nj , εuj)∥L2 .

In order to get the dissipation for nj , we perform the following cross estimate

(3.61)
ε2 d

dt

ˆ
uj · ∇nj dx +

ˆ (
|∇nj |2 + K|nj |2 − (P ′(ρ̄ + G(n))ε2|div uj |2 + uj · ∇nj

)
dx

≤ 2ε2∥u∥L∞∥∇uj∥L2∥∇nj∥L2 + ε∥∆̇j(u × H)∥L2∥∇nj∥L2

+ ∥(R1,j , R2,j , εR3,j)∥L2∥∇(εuj , nj)∥L2 .

Let η3 ∈ (0, 1). With aid of (3.28)-(3.29) and (3.60)-(3.61), we denote

Lh,j(t) : = 1
2

ˆ (
|nj |2 + (P ′(ρ̄) + G(n))|uj |2 + 1

K
|Ej |2 + 1

K
|Hj |2

)
dx

+ η32−2j

ˆ
uj · ∇nj dx + η32−2j

ˆ
uj · Ej dx − η

5
4
3

1
ε

2−4j

ˆ
Ej · ∇ × Hj dx,

and

Dh,j(t) : =
ˆ (

(P ′(ρ̄) + G(n))|uj |2 + G(n)Ej · uj + εG(n)(uj × B̄) · uj

)
dx

+ η3
1
ε2 2−2j

ˆ (
|∇nj |2 + K|nj |2 − (P ′(ρ̄ + G(n))ε2|div uj |2 + uj · ∇nj

)
dx

+ η3
1
ε2 2−2j

ˆ (
|Ej |2 + 1

K
|div Ej |2 + uj · Ej + ε(uj × B̄) · Ej − εuj · (∇ × Hj) − ε2ρ̄|uj |2

)
dx

+ η
5
4
3

1
ε2 2−4j

ˆ
(|∇ × Hj |2 − ερ̄uj · ∇ × Hj − |∇ × Ej |2) dx

for j ≥ Jε − 1. Recalling (3.47) and the fact that 2−j ≲ ε, one can verify that

(3.62)


Lh,j(t) ∼ ∥(nj , εuj , Ej , Hj)∥2

L2 ,

Dh,j(t) ≳ 1
ε2 ∥nj∥2

L2 + ∥uj∥2
L2 + 1

ε2 2−2j∥(Ej , Hj)∥2
L2 ,

if η3 is chosen to be small enough. With the help of (3.28)-(3.29), (3.47), (3.60)-(3.62), we obtain for
j ≤ Jε − 1,

(3.63)

d

dt
Lh

j (t) + 1
ε2 ∥nj∥2

L2 + ∥uj∥2
L2 + 1

ε2 2−2j∥(Ej , Hj)∥2
L2

≲ Gh
1,j(t)

√
Lh

j (t) + Gh
1,j(t)(∥uj∥L2 + 1

ε
∥nj∥2

L2),

where
Gh

1,j(t) : = ∥∆̇j(εF (n)u, Φ(n))∥L2 + (∥div u∥L∞ + ∥∂tn∥L∞)∥(nj , εuj)∥L2

+ (1 + ε∥∇n∥L∞)∥u∥L∞∥uj∥L2 + ∥(R1,j , R2,j , εR3,j)∥L2 ,

Gh
2,j(t) : = ε∥∆̇j(u × B)∥L2 .
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Furthermore, it follows from Lemma A.7 and (3.63) that

(3.64)
ε∥(nj , εuj , Ej , Hj)∥L∞

t (L2) + ∥nj∥L2
t (L2) + ε∥uj∥L2

t (L2) + 2−j∥(Ej , Hj)∥L2
t (L2)

≲ ε∥(nj , uj , Ej , Hj)(0)∥L2 + ε∥Gh
1,j∥L1

t (L2) + ε∥Gh
2,j∥L2

t (L2).

Multiplying (3.64) by 2j( d
2 +1) and summing the resulting inequality over j ≥ Jε − 1, we get

(3.65)

ε∥(n, εu, E, H)∥h

L̃∞
t (Ḃ

5
2 )

+ ∥n∥h

L̃2
t (Ḃ

5
2 )

+ ε∥u∥h

L̃2
t (Ḃ

5
2 )

+ ∥(E, H)∥h

L̃2
t (Ḃ

3
2 )

≲ ε∥(n0, u0, E0, H0)∥h

Ḃ
5
2

+ ε∥(F (n)u, Φ(n))∥h

L1
t (Ḃ

5
2 )

+ ε(∥div u∥L2
t (L∞) + ∥∂tn∥L2

t (L∞))∥(n, εu)∥h

L̃2
t (Ḃ

5
2 )

+ (1 + ε∥∇n∥L∞
t (L∞))∥u∥L2

t (L∞)ε∥u∥h

L̃2
t (Ḃ

5
2 )

+ ε
∑

j≥Jε−1
2( d

2 +1)j∥(R1,j , R2,j , R3,j)∥L1
t (L2) + ε2∥u × H∥h

L̃2
t (Ḃ

5
2 )

.

It follows from (A.1) and (A.4) that

ε∥F (n)u∥h

L1
t (Ḃ

5
2 )

≲ ε∥F (n)∥L2
t (L∞)∥u∥

L̃2
t (Ḃ

5
2 )

+ ε∥F (n)∥
L̃2

t (Ḃ
5
2 )

∥u∥L2
t (L∞)

≲ ∥n∥L2
t (L∞)ε∥u∥

L̃2
t (Ḃ

5
2 )

+ ∥n∥
L̃2

t (Ḃ
5
2 )

∥u∥
L̃2

t (Ḃ
3
2 )

.

Noting that (3.36) and (3.51), we get

ε∥F (n)u∥h

L1
t (Ḃ

5
2 )

≲ X (t)2.

As Φ(0) = Φ′(0) = 0, employing (A.7) with (s, σ) = ( 5
2 , 3

2 ) yields

ε∥Φ(n)∥m

L1
t (Ḃ

5
2 )

≲ ∥n∥
L̃2

t (Ḃ
3
2 )

(∥n∥ℓ

L̃2
t (Ḃ

1
2 )

+ ∥n∥m

L̃2
t (Ḃ

3
2 )

+ ε∥n∥h

L̃2
t (Ḃ

5
2 )

) ≲ X (t)2.

In addition, by (2.2), it is easy to see that

ε∥∇n∥L∞
t (L∞) ≲ ∥n∥ℓ

L̃∞
t (Ḃ

1
2 )

+ ∥n∥m

L̃∞
t (Ḃ

3
2 )

+ ε∥n∥h

L̃∞
t (Ḃ

5
2 )

≲ X (t),

and
∥u∥L2

t (L∞) ≲ ∥u∥
L̃2

t (Ḃ
3
2 )

≲ X (t).

In view of (3.36), (3.51), (A.3) and (A.4), it follows that

ε
∑
j∈Z

2( d
2 +1)j∥(R1,j , R2,j , R3,j)∥L1

t (L2) ≲ ∥(n, εu)∥2
L̃2

t (Ḃ
5
2 )

.

Finally, by employing (A.2) and ε ≤ 1, we have

ε2∥u × H∥h

L̃2
t (Ḃ

5
2 )

≲ ∥u∥
L̃2

t (Ḃ
3
2 )

ε∥H∥
L̃∞

t (Ḃ
5
2 )

+ ε∥u∥
L̃2

t (Ḃ
5
2 )

∥H∥
L̃∞

t (Ḃ
3
2 )

.

Likewise, one can use (2.2) again and deduce that

ε∥H∥
L̃∞

t (Ḃ
5
2 )

+ ∥H∥
L̃∞

t (Ḃ
3
2 )

≲ ∥H∥ℓ

L̃∞
t (Ḃ

1
2 )

+ ∥H∥m

L̃∞
t (Ḃ

3
2 )

+ ε∥n∥h

L̃∞
t (Ḃ

5
2 )

,

which yields
ε2∥u × H∥h

L̃2
t (Ḃ

5
2 )

≲ X (t)2.

Combining (3.65) and the above estimates gives rise to (3.58). Hence, the proof of Lemma 3.5 is finished.
□

Proof of Theorem 2.1. In what follows, we give the proof of Theorem 2.1. First, we recall a local
existence of classical solutions to the Cauchy problem (1.6)-(1.7) in the framework of Besov space, which
has been shown by prior works [56,62].
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Proposition 3.6. Assume that the initial datum (ρ0, u0, E0, B0) satisfies infx∈R3 ρ0(x) > 0 and (ρ0 −
ρ̄, u0, E0, B0 − B̄) ∈ B

5
2 . Then, for any fixed 0 < ε ≤ 1, there exists a maximal time T0 > 0 such that the

Cauchy problem (1.6)-(1.7) has a unique classical solution (ρ, u, E, B) satisfying

(3.66) inf
(t,x)∈[0,T0)×R3

ρ(t, x) > 0, (ρ − ρ̄, u, E, B − B̄) ∈ C([0, T0); B
5
2 ) ∩ C1([0, T0); B

3
2 ),

where the inhomogeneous Besov space Bs(s > 0) is defined by the subset of S ′ endowed with the norm

∥ · ∥Bs := ∥ · ∥L2 + ∥ · ∥Ḃs .

Owing to Proposition 3.6, one can construct a sequence of approximate solutions and show its conver-
gence to the global solution with required regularities. For clarity, we divide the procedure into several
steps.

• Step 1: Construction of the approximate sequence
Set (n0, u0, E0, H0) with n0 = h(ρ0) − h(ρ̄) and H0 = B0 − B̄. Assume that (ρ0 − ρ̄, u0, E0, B0 − B̄)

satisfies (2.6). For any k = 1, 2, ..., we regularize (n0, u0, E0, H0) as follows

(nk
0 , uk

0 , Ek
0 , Hk

0 ) :=
∑

|j′|≤k

∆̇j′(n0, u0, E0, H0).

Then, Bernstein’s lemma implies that (nk
0 , uk

0 , Ek
0 , Hk

0 ) ∈ B
5
2 . Furthermore, for suitable large k,

(nk
0 , uk

0 , Ek
0 , Hk

0 ) has the uniform bound

(3.67) ∥(nk
0 , uk

0 , Ek
0 , Hk

0 )∥ℓ

Ḃ
1
2

+ ∥(nk
0 , uk

0 , Ek
0 , Hk

0 )∥m

Ḃ
3
2

+ ε∥(nk
0 , uk

0 , Ek
0 , Hk

0 )∥h

Ḃ
5
2

≤ C1Eε
0 ,

where C1 is a constant independent of ε and k, and Eε
0 is given by (2.5). It suffices to show the above

estimate for nk
0 . Indeed, choosing k large enough such k ≥ Jε + 1, it follows from Lemma A.3 and (2.2)

that
ε∥nk

0∥h

Ḃ
5
2
≲ ε∥n0∥h

Ḃ
5
2
≲ ε∥ρ0 − ρ̄∥

Ḃ
5
2
≲ ∥ρ0 − ρ̄∥ℓ

Ḃ
1
2

+ ∥ρ0 − ρ̄∥m

Ḃ
3
2

+ ε∥ρ0 − ρ̄∥h

Ḃ
5
2

.

Similarly,
∥nk

0∥ℓ

Ḃ
1
2

+ ∥nk
0∥m

Ḃ
3
2
≲ ∥n0∥

Ḃ
1
2 ∩Ḃ

3
2
≲ ∥ρ0 − ρ̄∥

Ḃ
1
2 ∩Ḃ

3
2
≲ ∥ρ0 − ρ̄∥ℓ

Ḃ
1
2

+ ∥ρ0 − ρ̄∥m

Ḃ
3
2

+ ε∥ρ0 − ρ̄∥h

Ḃ
5
2

.

On the other hand, we see that (nk
0 , uk

0 , Ek
0 , Hk

0 ) converges to (n0, u0, E0, H0) strongly as k → ∞ in the
topology associated with Eε

0 . Actually, (2.6) implies that ∥n0∥ℓ

Ḃ
1
2

+ ε∥n0∥h

Ḃ
5
2

< ∞, so it is not difficult
to check that, for k ≥ Jε + 1,

∥nk
0 − n0∥ℓ

Ḃ
1
2

+ ∥nk
0 − n0∥m

Ḃ
3
2

+ ε∥nk
0 − n0∥h

Ḃ
5
2

≲
∑

j<−k

2 1
2 j∥∆̇jn0∥L2 + ε

∑
j≥k

2 5
2 j∥∆̇jn0∥L2 → 0.

Therefore, according to Proposition 3.6, there exists a maximal time Tk > 0 such that the problem (3.2)
supplemented with the initial datum (nk

0 , 1
ε uk

0 , Ek
0 , Hk

0 ), admits a unique classical solution (nk, uk, Ek, Hk)
with ρk = ρ̄ + Knk + Ψ(nk) and Bk = Hk + B̄ satisfying (3.66).

• Step 2: The continuation argument
Define

(3.68) T ∗
k := sup {t ∈ [0, Tk) : X k(t) ≤ 2C0C1Eε

0},

where X k(t) denotes the same functional as X (t) (see (3.18)) for (nk, uk, Ek, Hk). Here T ∗
k is well-defined

and fulfills 0 < T ∗
k ≤ Tk. We claim T ∗

k = Tk. Let δ0 > 0 be given by Proposition 3.2. Due to (3.67),
(3.68) and the embedding Ḃ

3
2 ↪→ L∞, we choose a generic constant C2 such that

∥nk∥L∞ ≤ C2X k(t) ≤ 2C0C1C2Eε
0 ≤ δ0,

provided that
Eε

0 ≤ α∗
0 := δ0

2C0C1C2
.

Therefore, it follows from (3.67) and (3.20) in Proposition 3.2 that

X k(t) ≤ C0
(
C1Eε

0 + X k(t)2 + X k(t)3)
, 0 < t < Tk.
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Furthermore, we take α0 small enough such that

Eε
0 ≤ α0 := min

{
α∗

0,
1

2C0C1
,

1
16C2

0 C1

}
,

which leads to

(3.69) X k(t) ≤ C0
(
C1Eε

0 + 2(2C0C1Eε
0 )2)

≤ 3
2C0C1Eε

0 , 0 < t < Tk.

Thus, the claim follows by using the standard continuity argument.
Next, we show that T ∗

k = +∞. For that end, we use a contradiction argument and assume that
T ∗

k < ∞. Since (ρk, uk, Ek, Bk) is the classical solution to (1.6), we have
ˆ (ε2

2 ρk|uk|2 + ρk

ˆ ρk

ρ̄

P ′(s) − P ′(ρ̄)
s2 ds + 1

2 |Ek|2 + 1
2 |Bk − B̄|2

)
dx +

ˆ t

0

ˆ
ρk|uk|2 dx

=
ˆ (ε2

2 ρk
0 |uk

0 |2 + ρk
0

ˆ ρk
0

ρ̄

P ′(s) − P ′(ρ̄)
s2 ds + 1

2 |Ek
0 |2 + 1

2 |Bk
0 − B̄|2

)
dx.

The above energy equality gives the L2-norm estimate for (nk, uk, Ek, Hk), which is independent of
time but depends on k. Together with (3.69), we deduce that (nk, uk, Ek, Hk) ∈ B

5
2 . Hence, let

(nk, uk, Ek, Hk)(t) be the new initial datum at some t sufficiently close to T ∗
k . Applying Proposition 3.6

once again implies that the existence interval can be extended from [0, t] to [0, t + η∗] with t + η∗ > T ∗
k ,

which contradicts the definition of T ∗
k . Therefore, we conclude that T ∗

k = ∞ and (nk, uk, Ek, Hk) is the
global-in-time solution to (3.2).

• Step 3: Compactness and Convergence
From the uniform estimate X k(t) ≲ Eε

0 and (3.2), one can deduce that (∂tn
k, ∂tu

k, ∂tE
k, ∂tH

k) is
uniformly bounded. Note that Ḃ

1
2 , 5

2 is a Banach space (see Lemma A.2). Thus, by applying the Aubin-
Lions lemma and the Cantor diagonal process, there exists a limit (n, u, E, H) such that (nk, uk, Ek, Hk)
converges to (n, u, E, H) strongly in L2

loc(R+; H2
loc), as k → ∞ (up to a subsequence). Furthermore,

the limit (n, u, E, H) solves (3.2) in the sense of distributions. Thanks to Fatou’s property X (t) ≲
lim inf
k→∞

X k(t), we conclude that X (t) ≲ Eε
0 for all t > 0. Denote ρ and B by

ρ := ρ̄ + Kn + Φ(n), B := H + B̄,

where Φ(n) is given by (3.3). Consequently, one can show that (ρ, u, E, B) is the classical solution to
the original system (1.6)-(1.7) subject to (ρ0, 1

ε u0, E0, B0). By standard product laws and composition
estimates, (ρ, u, E, B) satisfies the energy inequality (2.7). In addition, following a similar argument as
in [3, Page 196], one has (ρ − ρ̄, u, E, B − B̄) ∈ C(R+; Ḃ

1
2 , 5

2 ).
• Step 4: Uniqueness

For any time T > 0, let (ρ1, u1, E1, H1) and (ρ2, u2, E2, H2) be two solutions of the system (1.6) with
the same initial data, such that (ρi − ρ̄, ui, Ei, Bi − B̄) ∈ L∞(0, T ; Ḃ

1
2 ∩ Ḃ

5
2 )(i=1,2) and ρ− ≤ ρi ≤ ρ+

for 0 < ρ− ≤ ρ+. Without loss of generality, we set ε = 1. Let
(δρ, δu, δE, δB) = (ρ1 − ρ2, u1 − u2, E1 − E2, B1 − B2).

The unknown (δρ, δu, δE, δB) solves the error system

(3.70)



∂tδρ + u1 · ∇δρ + ρ1div δu = δF 1,

∂tδu + u1 · ∇δu + M(ρ1)∇δρ + δu + δE + δu × B̄ = δF 2,

∂tδE − ∇ × δB − ρ̄δu = δF 3,

∂tδB + ∇ × δE = 0,

div δE = −δρ, div δB = 0,

with M(s) = P ′(s)/s and
δF 1 = −δu · ∇ρ2 − δρdiv u2,

δF 2 = −δu · ∇u2 − (M(ρ1) − M(ρ2))∇ρ2 − u1 × δB2 − δu × (B2 − B̄),
δF 3 = δρu1 + (ρ2 − ρ̄)δu.
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Applying ∆̇j to (3.70) leads to

(3.71)



∂tδρj + u1 · ∇δρj + ρ1div δuj = δF 1
j + δR1,j + δR2,j ,

∂tδuj + u1 · ∇δuj + M(ρ1)∇δρj + δuj + δEj + δuj × B̄ = δF 2
j + δR3,j + δR4,j ,

∂tδEj − ∇ × δBj − ρ̄δuj = δF 3
j ,

∂tδBj + ∇ × δEj = 0,

div δEj = −δρj , div δBj = 0,

where commutator terms are defined by

δR1,j = [u1, ∆̇j ]∇δρ, δR2,j = [ρ1, ∆̇j ]∇δu, δR3,j = [u1, ∆̇j ]∇δu and δR4,j = [M(ρ1), ∆̇j ]∇δρ.

Direct computations on (3.71) give
1
2

d

dt

ˆ ( 1
ρ1

|δρj |2 + 1
M(ρ1) |δuj |2 + 1

P ′(ρ̄) |Ej |2 + 1
P ′(ρ̄) |Bj |2) dx +

ˆ 1
M(ρ1) |uj |2dx

≤ 1
2

(
∥∂t

1
ρ1

∥L∞ + ∥∇u1

ρ1
∥L∞

)
∥δρj∥2

L2 + 1
2

(
∥∂t

1
M(ρ1)∥L∞ + ∥∇ u1

M(ρ1)∥L∞
)
∥δuj∥2

L2

+ ∥ 1
M(ρ1) − 1

M(ρ̄)∥L∞∥uj∥L2∥Ej∥L2 + ∥ 1
ρ1

∥L∞∥(δF 1
j , δR1,j , δR2,j)∥L2∥δρj∥L2

+ ∥ 1
M(ρ1)∥L∞∥(δF 2

j , δR3,j , δR4,j)∥L2∥δuj∥L2 + 1
P ′(ρ̄)∥δF 3

j ∥L2∥δEj∥L2 ,

which leads to

(3.72)

∥(δρ, δu, δE, δB)∥
Ḃ

3
2

≲
ˆ T

0
(1 + ∥(∂tρ1, ∇ρ1, ∇u1)∥L∞)(∥(δρ, δu)∥

Ḃ
3
2

dt

+
ˆ T

0

(
∥(δF1, δF2, δF2)∥

Ḃ
3
2

+
∑
j∈Z

2 d
2 j∥(δR1,j , δR2,j , δR3,j , δR4,j)∥L2

)
dτ.

Using the product law (A.2) and the composition estimates (A.4) and (A.5), we arrive at

(3.73) ∥(δF1, δF2, δF2)∥
Ḃ

3
2
≲ (∥∇(ρ2, u2)∥

Ḃ
3
2

+ ∥(ρ2 − ρ̄, u1, B2 − B̄)∥
Ḃ

3
2

)∥(δρ, δu)∥
Ḃ

3
2

.

It follows from the composition estimate (A.3) that

(3.74)
∑
j∈Z

2 d
2 j∥(δR1,j , δR2,j , δR3,j , δR4,j)∥L2 ≲ ∥∇(ρ1, u2)∥

Ḃ
3
2

∥(δρ, δu)∥
Ḃ

3
2

.

Inserting (3.73)-(3.74) into (3.72) and then taking advantage of Grönwall’s inequality leads to
(ρ1, u1, E1, H1) = (ρ2, u2, E2, H2) for (x, t) ∈ Rd × [0, T ]. Hence, the proof of the uniqueness of The-
orem 2.1 is finished.

4. Strong relaxation limit for the compressible Euler-Maxwell system

In this section, we prove Theorem 2.2. As a preliminary result, we would like to give the global
well-posedness for the following drift-diffusion system (1.9) first{

∂tρ
∗ − ∆P (ρ∗) − div (ρ∗∇ϕ∗) = 0,

∆ϕ∗ = ρ̄ − ρ∗.

Theorem 4.1. There exists a generic constant α1 > 0 such that if

(4.1) ∥ρ∗
0 − ρ̄∥

Ḃ
1
2 , 3

2
≤ α1,

then the Cauchy problem (1.9) has a unique global solution ρ∗ fulfilling ρ∗ − ρ̄ ∈ C(R+; Ḃ
1
2 , 3

2 ) and

(4.2) ∥ρ∗ − ρ̄∥
L̃∞

t (Ḃ
1
2 , 3

2 )
+ ∥ρ∗ − ρ̄∥

L̃2
t (Ḃ

1
2 , 5

2 )
≤ C∥ρ∗

0 − ρ̄∥
Ḃ

1
2 , 3

2
.
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The proof of Theorem 4.1 can be given by the maximal regularity estimate and the standard fixed
point argument (see [12, 31]). Here, we feel free to omit the similar details for brevity. Let us mention
that the regularity of ρ∗ in (4.2) is the exactly same as that of ρε in the low-frequency regime j ≤ 0 and
in the medium-frequency regime −1 ≤ j ≤ Jε, respectively. We give a little explanation on the choice of
Ḃ

1
2 , 3

2 for the initial datum ρ∗
0. Indeed, one can rewrite (1.9) as

∂tρ
∗ − P ′(ρ̄)∆ρ∗ + ρ̄ρ∗ = div ((P ′(ρ∗) − P ′(ρ̄))∇ρ∗) + div ((ρ∗ − ρ̄)∇(−∆)−1ρ∗).(4.3)

Clearly, there are two dissipation effects in (4.3): the heat diffusion and damping. In order to handle
the second lower-order term, we need the Ḃ

1
2 -regularity for low frequencies, and to control the composite

function P ′(ρ∗) − P ′(ρ̄), the Ḃ
3
2 -regularity is required for high frequencies owing to the embedding

Ḃ
3
2 ↪→ L∞.

Let (nε, uε, Eε, Bε), with nε = h(ρε) − h(ρ̄) and Hε = Bε − B̄, be the global solution to (1.6)-(1.7) in
Theorem 2.1. As mentioned in Subsection 2.2, it is convenient to introduce the effective velocity

zε := uε + ∇nε + Eε + εuε × B̄,

which plays a key role in justifying the strong relaxation limit from (1.6) to (1.9). Indeed, observe that

∂tu
ε = − 1

ε2 zε − uε · ∇uε − 1
ε

uε × Hε,

in which one can deduce that zε satisfies a damping equation with high-order terms

∂tz
ε + 1

ε2 zε + 1
ε

zε × B̄ = ∇∂tn
ε + ∂tE

ε + F ε,(4.4)

with
F ε = −uε · ∇uε − 1

ε
uε × Hε − ε(uε · ∇uε) × B̄ − (uε × Hε) × B̄.

The equation (4.4) indicates that zε possesses a better property compared with the velocity uε. We
establish the decay estimates of zε as follows.

4.1. Regularity estimates of the effective velocity.

Proposition 4.1. Under the assumptions of Theorem 2.1, it holds that

(4.5) ∥zε
L∥

L1
t (Ḃ

1
2 , 3

2 )
+ ∥zε − zε

L∥
L̃2

t (Ḃ
1
2 )

≤ CεEε
0 ,

where initial layer correction zε
L := e− t

ε2 tzε
0 is the solution to

∂tz
ε
L + 1

ε2 zε
L = 0, zε

L|t=0 = zε
0 := 1

ε
u0 + ∇h(ρ0) + E0 + u0 × B̄,(4.6)

and C > 0 is a constant independent of ε.

Remark 4.2. If we aim to establish the convergence rate of zε in L̃2
t (Ḃ 1

2 ) directly, then one has to require
the well-prepared condition ∥u0∥

Ḃ
1
2

= O(ε). Indeed, we have

∥zε
L∥

L̃2
t (Ḃ

1
2 )

≲ ∥u0∥
Ḃ

1
2

+ ε∥(ρ0 − ρ̄, E0)∥
Ḃ

1
2

.

Proof. We first deal with the initial layer correction zε
L = e− t

ε2 zε
0. According to the definition of zε

0, we
have

(4.7)
∥zε

L∥
L1

t (Ḃ
1
2 , 3

2 )
=
ˆ t

0
e− τ

ε2 dτ ∥zε
0∥

Ḃ
1
2 , 3

2

≤ ε2(∥∥1
ε

uε
0
∥∥

Ḃ
1
2 , 3

2
+ ∥∇h(ρε)∥

Ḃ
1
2 , 3

2
+ ∥E0∥

Ḃ
1
2 , 3

2
+ ∥uε

0 × B̄∥
Ḃ

1
2 , 3

2

)
≲ εEε

0 .

Denote
z̃ε := zε − zε

L,

which solves

∂tz̃
ε + 1

ε2 z̃ε + 1
ε

z̃ε × B̄ = 1
ε

zε
L × B̄ + ∇∂tn

ε + ∂tE
ε + F ε, z̃ε|t=0 = 0.(4.8)
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Applying ∆̇j to (4.8), taking the L2 inner product of the resulting equation with zj and noticing that
(z̃ε

j × B̄) · z̃j = 0, yields
1
2

d

dt
∥z̃ε

j ∥2
L2 + 1

ε2 ∥z̃ε
j ∥2

L2

≤ (ε−1∥(zε
L)j × B̄∥L2 + ∥∇∂tn

ε
j∥L2 + ∥∂tE

ε
j ∥L2 + ∥F ε

j ∥L2)∥zε
j ∥L2

≤ 1
2ε2 ∥zε

j ∥2
L2 + 2ε2(∥∇∂tn

ε
j∥2

L2 + ∥∂tE
ε
j ∥2

L2 + ∥F ε
j ∥2

L2) + ε−1∥(zε
L)j × B̄∥L2∥zε

j ∥L2 ,

from which we infer that

∥z̃ε
j ∥L∞

t (L2) + 1
ε

∥z̃ε
j ∥L1

t (L2)

≲ ε∥∇∂tn
ε
j∥L2

t (L2) + ε∥∂tE
ε
j ∥L2

t (L2) + ε∥F ε
j ∥L2

t (L2) + ε− 1
2 ∥(zε

L)j × B̄∥
1
2
L1

t (L2)∥zε
j ∥

1
2
L∞

t (L2).

Therefore, summing the resulting inequality over j ∈ Z with the factor 2( d
2 −1)j after taking advantage of

Young’s inequality for the last term, we obtain

(4.9)
∥z̃ε∥

L̃∞
t (Ḃ

1
2 )

+ 1
ε

∥z̃ε∥
L̃2(Ḃ

1
2 )

≲ ε∥(∂t∇nε, ∂tE
ε)∥

L̃2(Ḃ
1
2 )

+ ε∥F ε∥
L̃2(Ḃ

1
2 )

+ ε−1∥zε
L∥

L1
t (Ḃ

1
2 )

.

It follows from (3.2)1, (A.2) and (A.4) that
ε∥∂t∇nε∥

L̃2(Ḃ
1
2 )

≲ ε∥u∥
L̃2(Ḃ

5
2 )

+ ε∥u · ∇n∥
L̃2(Ḃ

3
2 )

+ ε∥G(n)div u∥
L̃2(Ḃ

3
2 )

≲ (1 + ∥n∥
L̃∞(Ḃ

3
2 )

)ε∥u∥
L̃2(Ḃ

5
2 )

+ ∥u∥
L̃2(Ḃ

3
2 )

∥n∥
L̃2(Ḃ

5
2 )

.

Together with (2.7), (3.36) and (3.51), we arrive at
ε∥∂t∇nε∥

L̃2(Ḃ
1
2 )

≲ (1 + Eε
0 )Eε

0 .

Hence, it follows from (3.2)3, (2.7), (3.36) and (A.2) that
ε∥∂tE

ε∥
L̃2(Ḃ

1
2 )

≲ ∥Hε∥
L̃2(Ḃ

3
2 )

+ ∥uε∥
L̃2(Ḃ

1
2 )

(1 + ∥Hε∥
L̃∞(Ḃ

3
2 )

) ≲ (1 + Eε
0 )Eε

0 .

Similarly, it holds that
ε∥F ε∥

L̃2(Ḃ
1
2 )

≲ ε∥uε · ∇uε∥
L̃2(Ḃ

1
2 )

+ ∥uε × Hε∥
L̃2(Ḃ

1
2 )

≲ ∥uε∥
L̃2(Ḃ

1
2 )

(∥uε∥
L̃2(Ḃ

3
2 )

+ ∥Hε∥
L̃2(Ḃ

3
2 )

) ≲ (Eε
0 )2.

Substituting the above estimates into (4.9) and using (4.7), we end up with

∥z̃ε∥
L̃2(Ḃ

1
2 )

≤ CεEε
0 .

This completes the proof of Proposition 4.1. □

4.2. Proof of Theorem 2.2. Let (ρε, uε, Eε, Bε) and ρ∗ be the solutions to (1.6)-(1.7) and (1.9) from
Theorems 2.1 and 4.1 associated with the initial data (ρε

0, uε
0, Eε

0 , Bε
0) and ρ∗

0, respectively. Denote
E∗ = ∇(−∆)−1(ρ∗ − ρ̄) and B∗ = B̄. Now we begin with the proof of Theorem 2.2. To that matter, we
define the error unknowns as

(δρ, δu, δE, δB) := (ρε − ρ∗, uε − u∗, Eε − E∗, Bε − B∗).
We will split the proof into two steps.

• Step 1: Convergence estimates for the Euler part (δρ, δu).
Recall that the effective velocity zε is given by (1.16), and the initial layer correction zε

L is given by
Proposition (4.1). Substituting

uε = zε
L + z̃ε − ∇h(ρε) − Eε − εuε × B̄

into (1.6)2, we have

(4.10)
∂tρ

ε − P ′(ρ̄)∆ρε + ρ̄ρε

= div
(

− ρεzε
L + ρεz̃ε + ερεuε × B̄ + (P ′(ρε) − P ′(ρ̄))∇ρε + (ρε − ρ̄)Eε

)
,
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where h(ρ) is the enthalpy defined by (1.11). According to (1.8) and (4.10), the equation of δρ reads

(4.11) ∂tδρ − P ′(ρ̄)∆δρ + ρ̄δρ = F ε
1 + F ε

2 ,

where
F ε

1 : = −div (ρεzε
L) and F ε

2 := div (−ρεz̃ε + ερεuε × B̄ + δF )
with

δF = (P ′(ρε) − P ′(ρ∗))∇ρε + (P ′(ρ∗) − P ′(ρ̄))∇δρ + δρEε + (ρ∗ − ρ̄)δE.

By applying Lemma A.8 to (4.11)1, we obtain

(4.12)
∥δρ∥

L̃∞
t (Ḃ

1
2 )

+ ∥δρ∥
L̃2

t (Ḃ
1
2 )

+ ∥δρ∥
L̃2

t (Ḃ
3
2 )

≲ ∥ρε
0 − ρ∗

0∥
Ḃ

1
2

+ ∥F ε
1 ∥

L1
t (Ḃ

1
2 )

+ ∥F ε
2 ∥

L̃2
t (Ḃ− 1

2 )
.

Employing the decay estimate of zε
L in (4.5), together with the uniform bound (2.7), (A.2) and (A.5)

leads to

(4.13) ∥F ε
1 ∥

L1
t (Ḃ

1
2 )

≲ ∥ρεzε
L∥

L1
t (Ḃ

3
2 )

≲ (1 + ∥ρε − ρ̄∥
L̃∞

t (Ḃ
3
2 )

)∥zε
L∥

L1
t (Ḃ

3
2 )

≲ (1 + α0)α0ε.

Regarding F ε
2 , we have

(4.14) ∥F ε
2 ∥

L̃2
t (Ḃ− 1

2 )
≲ ∥ρεz̃ε∥

L̃2
t (Ḃ

1
2 )

+ ε∥ρεuε × B̄∥
L̃2

t (Ḃ
1
2 )

+ ∥δF∥
L̃2

t (Ḃ
1
2 )

.

The nonlinear terms on the right-hand side of (4.14) can be estimated as follows. It follows from (2.7)
and (4.5) that

(4.15) ∥ρεz̃ε∥
L̃2

t (Ḃ
1
2 )

≲ (ρ̄ + ∥ρε − ρ̄∥
L̃∞

t (Ḃ
3
2 )

)∥z̃ε∥
L̃2

t (Ḃ
1
2 )

≲ (1 + α0)α0ε,

and

(4.16) ε∥ρεuε × B̄∥
L̃2

t (Ḃ
1
2 )

≲ (1 + ∥ρε − ρ̄∥
L̃∞

t (Ḃ
3
2 )

)∥uε∥
L̃2

t (Ḃ
1
2 )

≲ α0ε.

Moreover, we have
∥δF∥

L̃2
t (Ḃ

1
2 )

≲ ∥(P ′(ρε) − P ′(ρ∗))∇ρε∥
L̃2

t (Ḃ
1
2 )

+ ∥(P ′(ρ∗) − P ′(ρ̄))∇δρ∥
L̃2

t (Ḃ
1
2 )

+ ∥δρEε∥
L̃2

t (Ḃ
1
2 )

+ ∥(ρ∗ − ρ̄)δE∥
L̃2

t (Ḃ
1
2 )

.

It follows from (A.2) and (A.5) that
∥(P ′(ρε) − P ′(ρ∗))∇ρε∥

L̃2
t (Ḃ

1
2 )

≲ ∥P ′(ρε) − P ′(ρ∗)∥
L̃2

t (Ḃ
3
2 )

∥ρε − ρ̄∥
L̃2

t (Ḃ
3
2 )

≲ α0∥δρ∥
L̃2

t (Ḃ
3
2 )

.

Similarly,
∥(P ′(ρ∗) − P ′(ρ̄))∇δρ∥

L̃2
t (Ḃ

1
2 )

≲ ∥P ′(ρ∗) − P ′(ρ̄)∥
L̃2

t (Ḃ
3
2 )

∥δρ∥
L̃2

t (Ḃ
3
2 )

≲ α1∥δρ∥
L̃2

t (Ḃ
3
2 )

and
∥δρEε∥

L̃2
t (Ḃ

1
2 )

+ ∥(ρ∗ − ρ̄)δE∥
L̃2

t (Ḃ
1
2 )

≲ ∥δρ∥
L̃2

t (Ḃ
3
2 )

∥Eε∥
L̃∞

t (Ḃ
1
2 )

+ ∥ρ∗ − ρ̄∥
L̃∞

t (Ḃ
3
2 )

∥δE∥
L̃2

t (Ḃ
1
2 )

.

Gathering (2.7) and (4.2), we get

(4.17) ∥δF∥
L̃2

t (Ḃ
1
2 )

≲ (α0 + α1)(∥δρ∥
L̃2

t (Ḃ
1
2 )

+ ∥δρ∥
L̃2

t (Ḃ
3
2 )

+ ∥δE∥
L̃2

t (Ḃ
1
2 )

).

Putting the above estimates (4.13)-(4.17) and (4.12) together, we arrive at

(4.18)
∥δρ∥

L̃∞
t (Ḃ

1
2 )

+ ∥δρ∥
L̃2

t (Ḃ
1
2 , 3

2 )

≲ ∥ρε
0 − ρ∗

0∥
Ḃ

1
2

+ ε + (α0 + α1)(∥δρ∥
L̃2

t (Ḃ
1
2 , 3

2 )
+ ∥δE∥

L̃2
t (Ḃ

3
2 )

).

Next, we turn to bound δu. Keep in mind that uε
L = e− t

ε2 1
ε u0. The variable δu − uε

L can be written
in the form of

δu − uε
L = zε

L − uε
L + z̃ε − ∇(h(ρε) − h(ρ∗)) − δE(4.19)

which implies that
∥δu − uε

L∥
L̃2

t (Ḃ
1
2 )

≲ ∥zε
L − uε

L∥
L̃2

t (Ḃ
1
2 )

+ ∥z̃ε∥
L̃2

t (Ḃ
1
2 )

+ ∥h(ρε) − h(ρ∗)∥
L̃2

t (Ḃ
3
2 )

+ ∥δE∥
L̃2

t (Ḃ
1
2 )

.
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The first term can be estimated by

∥zε
L − uε

L∥
L̃2

t (Ḃ
1
2 )

≤
(ˆ t

0
e− 2τ

ε2 dτ
) 1

2 (∥n(ρ0)∥
Ḃ

1
2

+ ∥E0∥
Ḃ

1
2

+ ∥u0 × B̄∥
Ḃ

1
2

) ≤ Cα0ε.

In view of (A.5), we get
∥h(ρε) − h(ρ∗)∥

L̃2
t (Ḃ

3
2 )

≲ ∥δρ∥
L̃2

t (Ḃ
3
2 )

.

Thus, together with (4.5), it holds that

(4.20) ∥δu − uε
L∥

L̃2
t (Ḃ

1
2 )

≲ ε + ∥δρ∥
L̃2

t (Ḃ
3
2 )

+ ∥δE∥
L̃2

t (Ḃ
1
2 )

.

• Step 2: Convergence estimates for the Maxwell part (δE, δH).
Note that

uε = zε
L + z̃ε − ∇h(ρε) − Eε − εuε × B̄.

We rewrite (1.6)3-(1.6)4 as follows

(4.21)


∂tE

ε − 1
ε

∇ × Bε + ρεEε = ρε(zε
L + z̃ε) − εuε × B̄ − ∇P (ρε),

∂tB
ε + 1

ε
∇ × Eε = 0,

div Eε = ρ̄ − ρε, div Bε = 0.

Due to E∗ = ∇(−∆)−1(ρ∗ − ρ̄), Darcy’s law (1.10) and the fact that ∇div = ∇ × ∇ × +∆, one has

∂tE
∗ = −∇(−∆)−1div (ρ∗u∗) = ρ∗u∗ + ∇ × B1,∗ = −ρ∗E∗ − ∇P (ρ∗) + ∇ × B1,∗,

with the term
B1,∗ = −(−∆)−1∇ × (ρ∗u∗).

Hence, recalling B∗ = B̄, we have the equations of (E∗, B∗) as follows

(4.22)


∂tE

∗ − 1
ε

∇ × B∗ + ρ∗E∗ = −∇P (ρ∗) + ∇ × B1,∗,

∂tB
∗ + 1

ε
∇ × E∗ = 0,

div E∗ = ρ̄ − ρ∗, div B∗ = 0.

Note that there is no decay property for the last term ∇ × B1,∗ with respect to ε on the right-hand side
of (4.22)2. In order to handle this term, we introduce the modified error of the magnetic induction

δB := δB + εB1,∗.

Then, by (4.10), (4.22), we obtain the equations of (δE, δB) as follows

(4.23)


∂tδE − 1

ε
∇ × δB + ρ̄δE − P ′(ρ̄)∇div δE = ρε(zε

L + z̃ε) − ερεuε × B̄ − δF,

∂tδB + 1
ε

∇ × δE = ε∂tB
1,∗,

div δE = −δρ, div δB = 0,

where the nonlinear term δF is given by (4.2).
Then, we perform a hypocoercivity argument for the partially dissipative system (4.23). From (4.23)

and div ∇× = 0, we have the localized energy estimate

(4.24)

1
2

d

dt
∥(δEj , δBj)∥2

L2 + ρ̄∥δEj∥2
L2 + P ′(ρ̄)∥div δEj∥2

L2

≤ ∥∆̇j(ρεz̃ε − ερεuε × B̄ − P ′(ρ̄)∇δρ − δF )∥L2∥δEj∥L2

+ ∥∆̇j(ρεzε
L)∥L2∥δEj∥L2 + ε∥∂tB

1,∗
j ∥L2∥δBj∥L2 ,



26 T. CRIN-BARAT, Y.-J. PENG, L.-Y. SHOU, AND J. XU

and the cross estimate

(4.25)

− d

dt

ˆ
εδEj · ∇ × δBj dx + ∥∇ × Bj∥2

L2

+ ρ̄ε

ˆ
δEj · ∇ × δBj dx − ∥∇ × Ej∥2

L2

≤ ε∥∆̇j(ρεz̃ε − ερεuε × B̄ − δF )∥L2∥∇ × δBj∥L2

+ ε∥∆̇j(ρεzε
L)∥L2∥∇ × δBj∥L2 + ε2∥∂tB

1,∗
j ∥L2∥∇ × δEj∥L2 .

For a suitable small η∗ > 0, we define the functional

δLj(t) := 1
2∥(δEj , δBj)∥2

L2 + η∗ min{1, 2−2j}
ˆ

εδEj · ∇ × δBj dx ∼ ∥(δEj , δBj)∥2
L2 .

Here, min{1, 2−2j} = 1 for j ≤ 0 and min{1, 2−2j} = 2−2j for j ≥ 1. It follows from (4.24) and (4.25)
that

(4.26)

d

dt
δLj(t) + ∥δEj∥2

L2 + min{1, 22j}∥δBj∥2
L2

≲ (ε∥∂tB
1,∗
j ∥L2 + ∥∆̇j(ρεzε

L)∥L2)
√

δLj(t)

+ (∥∆̇j(ρεz̃ε)∥L2 + ε∥∆̇j(ρεuε × B̄)∥L2 + ∥δρj∥L2 + ∥δFj∥L2)
× (∥δEj∥L2 + min{1, 2j}∥δBj∥L2).

Therefore, applying Lemma A.7 to (4.26), once again implies that

(4.27)

∥(δEj , δBj)∥L∞
t (L2) + ∥δEj∥L2

t (L2) + min{1, 2j}∥δBj∥L2
t (L2)

≲ ∥(δEj , δBj)(0)∥L2 + ε∥∂tB
1,∗
j ∥L1

t (L2) + ∥∆̇j(ρεzε
L)∥L1

t (L2)

+ ∥∆̇j(ρεz̃ε)∥L2
t (L2) + ε∥∆̇j(ρεuε × B̄)∥L2

t (L2) + ∥δFj∥L2
t (L2),

which leads to

(4.28)

∥(δE, δB)∥
L̃∞

t (Ḃ
1
2 )

+ ∥δE∥
L̃2

t (Ḃ
1
2 )

+ ∥δB∥
L̃2

t (Ḃ
3
2 , 1

2 )

≲ ∥(Eε
0 − E∗

0 , Bε
0 − B̄, εB1,∗(0))∥

Ḃ
1
2

+ ε∥∂tB
1,∗
j ∥

L1
t (Ḃ

1
2 )

+ ∥ρεzε
L∥

L1
t (Ḃ

1
2 )

+ ∥ρεz̃ε∥
L̃2

t (Ḃ
1
2 )

+ ε∥ρεuε × B̄∥
L̃2

t (Ḃ
1
2 )

+ ∥δF∥
L̃2

t (Ḃ
1
2 )

.

According to (4.5), we can obtain the decay of ρεzε
L as follows

(4.29) ∥ρεzε
L∥

L1
t (Ḃ

1
2 )

≲ (1 + ∥ρε − ρ̄∥
L̃∞

t (Ḃ
3
2 )

)∥zε
L∥

L1
t (Ḃ

1
2 )

≲ α0ε.

Substituting (4.13)-(4.17) and (4.29) into (4.28), we get

(4.30)

∥(δE, δB)∥
L̃∞

t (Ḃ
1
2 )

+ ∥δE∥
L̃2

t (Ḃ
1
2 )

+ ∥δB∥
L̃2

t (Ḃ
3
2 , 1

2 )

≲ ∥(Eε
0 − E∗

0 , Bε
0 − B̄)∥

Ḃ
1
2

+ (α0 + α1)(∥δρ∥
L̃2

t (Ḃ
1
2 , 3

2 )
+ ∥δE∥

L̃2
t (Ḃ

1
2 )

)

+ ε∥∂tB
1,∗∥

L1
t (Ḃ

1
2 )

+ ε∥B1,∗(0)∥
Ḃ

1
2

,

where we have employed (4.12)-(4.18) which have been obtained in Step 1.

In order to obtain the convergence rate, one needs to establish uniform bounds for B1,∗(0) and ∂tB
1,∗

on the right-hand side of (4.30). Then, we shall use uniform bounds of B1,∗ to recover error estimates
for δB = δB − εB1,∗. Below, we establish some necessary bounds of B1,∗.

Lemma 4.3. Let B1,∗ = −(−∆)−1∇ × (ρ∗u∗). Assume that ρ∗
0 satisfies (4.1) and ρ∗

0 − ρ̄ ∈ Ḃ− 1
2 . Then,

ρ∗ satisfies

(4.31) ∥ρ∗ − ρ̄∥
L̃∞(Ḃ− 1

2 )
+ ∥ρ∗ − ρ̄∥

L̃2(Ḃ− 1
2 )

≲ ∥ρ∗
0 − ρ̄∥

Ḃ− 1
2 ∩Ḃ

3
2

.
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Furthermore, it holds that

(4.32)


∥B1,∗(0)∥

Ḃ
1
2
≲ ∥ρ∗

0 − ρ̄∥2
Ḃ− 1

2 , 3
2

,

∥B1,∗∥
L̃∞

t (Ḃ
1
2 )∩L̃2

t (Ḃ
1
2 )

≲ ∥ρ∗
0 − ρ̄∥2

Ḃ− 1
2 , 3

2
,

∥∂tB
1,∗∥

L1
t (Ḃ

1
2 )

≲ ∥ρ∗
0 − ρ̄∥2

Ḃ− 1
2 , 3

2
.

Proof. We first show (4.31). Applying Lemma A.8 to (4.3) with

f1 = f2 = 0, f3 = div ((P ′(ρ∗) − P ′(ρ̄))∇ρ∗) + div ((ρ∗ − ρ̄)∇(−∆)−1ρ∗),

we obtain
∥ρ∗ − ρ̄∥

L̃∞(Ḃ− 1
2 )

+ ∥ρ∗ − ρ̄∥
L̃2(Ḃ− 1

2 )

≲ ∥ρ∗
0 − ρ̄∥

Ḃ− 1
2

+ ∥(P ′(ρ∗) − P ′(ρ̄))∇ρ∗∥
L̃2(Ḃ

1
2 )

+ ∥(ρ∗ − ρ̄)∇(−∆)−1ρ∗∥
L̃2(Ḃ

1
2 )

.

In accordance with (A.2), (A.4) and (4.2), we obtain

∥(P ′(ρ∗) − P ′(ρ̄))∇ρ∗∥
L̃2(Ḃ

1
2 )

≲ ∥P ′(ρ∗) − P ′(ρ̄∥
L̃∞(Ḃ

3
2 )

∥ρ∗ − ρ̄∥
L̃2(Ḃ

3
2 )

≲ ∥ρ∗
0 − ρ̄∥2

Ḃ
1
2 , 3

2
.

Similarly,
∥(ρ∗ − ρ̄)∇(−∆)−1ρ∗∥

L̃2(Ḃ
1
2 )

≲ ∥ρ∗ − ρ̄∥2
L̃2(Ḃ

1
2 )

≲ ∥ρ∗
0 − ρ̄∥2

Ḃ
1
2 , 3

2
.

Therefore, we have (4.31).
Next, it follows from E∗ = ∇(−∆)−1(ρ∗ − ρ̄) that

B1,∗ = (−∆)−1∇ ×
(
∇P (ρ∗) + ρ∗E∗)

= (−∆)−1∇ ×
(
(ρ∗ − ρ̄)∇(−∆)−1ρ∗).

Hence, for the initial datum B1,∗(0) of B1,∗, employing the product law (A.2)n we arrive at

∥B1,∗(0)∥
Ḃ

1
2
≲ ∥(ρ∗

0 − ρ̄)∇(−∆)−1ρ∗
0∥

Ḃ− 1
2

≲ ∥ρ∗
0 − ρ̄∥

Ḃ− 1
2

∥∇(−∆)−1ρ∗
0∥

Ḃ
3
2
≲ ∥ρ∗

0 − ρ̄∥
Ḃ− 1

2
∥ρ∗

0 − ρ̄∥
Ḃ

1
2

.

Concerning the estimate of B1,∗, a similar computation gives
∥B1,∗∥

L̃∞
t (Ḃ

1
2 )∩L̃2

t (Ḃ
1
2 )

≲ ∥ρ∗u∗∥
L̃∞

t (Ḃ− 1
2 )∩L̃2

t (Ḃ− 1
2 )

≲ ∥ρ∗ − ρ̄∥2
L̃∞

t (Ḃ− 1
2 , 1

2 )∩L̃2
t (Ḃ− 1

2 , 1
2 )

≲ ∥ρ∗
0 − ρ̄∥2

Ḃ− 1
2 , 3

2
,

where we have used (4.2) and (4.31). Finally, using (1.9)1, the estimate of the time derivative ∂tρ
∗ follows

∥∂tρ
∗∥

L̃2
t (Ḃ− 1

2 , 1
2 )

≲ ∥ρ∗ − ρ̄∥
L̃2

t (Ḃ
1
2 ∩Ḃ

5
2 )

≲ ∥ρ∗
0 − ρ̄∥

Ḃ− 1
2 , 3

2
.

Hence, we obtain
∥∂tB

1,∗∥
L1

t (Ḃ
1
2 )

≲ ∥∂tρ
∗∇(−∆)−1ρ∗∥

L1
t (Ḃ− 1

2 )
+ ∥(ρ∗ − ρ̄)∇(−∆)−1∂tρ

∗∥
L1

t (Ḃ− 1
2 )

≲ ∥∂tρ
∗∥

L̃2
t (Ḃ− 1

2 )
∥∇(−∆)−1ρ∗∥

L̃2
t (Ḃ

3
2 )

+ ∥ρ∗ − ρ̄∥
L̃2

t (Ḃ− 1
2 )

∥∇(−∆)−1∂tρ
∗∥

L̃2
t (Ḃ

3
2 )

≲ ∥ρ∗ − ρ̄∥
L̃2

t (Ḃ− 1
2 , 1

2 )
∥∂tρ

∗∥
L̃2

t (Ḃ− 1
2 , 1

2 )
≲ ∥ρ∗

0 − ρ̄∥2
Ḃ− 1

2 , 3
2

,

which concludes the proof of Lemma 4.3. □

It follows from (4.30), (4.32)1 and (4.32)3 that

(4.33)
∥(δE, δB)∥

L̃∞
t (Ḃ

1
2 )

+ ∥δE∥
L̃2

t (Ḃ
1
2 )

+ ∥δB∥
L̃2

t (Ḃ
3
2 , 1

2 )

≲ ∥(Eε
0 − E∗

0 , Bε
0 − B̄)∥

Ḃ
1
2

+ (α0 + α1)(∥δρ∥
L̃2

t (Ḃ
1
2 , 3

2 )
+ ∥δE∥

L̃2
t (Ḃ

1
2 )

) + α0ε.

In view of (4.32)2, we recover the estimate of δB as follows

(4.34)

∥δB∥
L̃∞

t (Ḃ
1
2 )

+ ∥δB∥
L̃2

t (Ḃ
3
2 , 1

2 )

≲ ∥δB∥
L̃∞

t (Ḃ
1
2 )

+ ∥δB∥
L̃2

t (Ḃ
3
2 , 1

2 )
+ ε∥B1,∗∥

L̃∞
t (Ḃ

1
2 )

+ ε∥B1,∗∥
L̃2

t (Ḃ
1
2 )

≲ ∥δB∥
L̃∞

t (Ḃ
1
2 )

+ ∥δB∥
L̃2

t (Ḃ
3
2 , 1

2 )
+ ε.
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Putting (4.18) and (4.33)-(4.34) together and using the smallness of α0 and α1, we have

(4.35)

∥ρε − ρ∗∥
L̃∞

t (Ḃ
1
2 )∩L̃2

t (Ḃ
1
2 , 3

2 )
+ ∥uε − u∗∥

L̃2
t (Ḃ

1
2 )

+ ∥Eε − E∗∥
L̃∞

t (Ḃ
1
2 )∩L̃2

t (Ḃ
1
2 )

+ ∥Bε − B∗∥
L̃∞

t (Ḃ
1
2 )∩L̃2

t (Ḃ
3
2 , 1

2 )

≲ ∥(ρε
0 − ρ∗

0, Eε
0 − E∗

0 , Bε
0 − B̄)∥

Ḃ
1
2

+ ε.

Finally, the inequality (2.10) follows by (4.20) and (4.35). The proof of Theorem 2.2 is complete.

Appendix A. Technical lemmas

We recall some basic properties of Besov spaces and product estimates that are repeatedly used in
the manuscript. We refer to [1, Chapters 2-3] for more details. Remark that all the properties remain
true for the Chemin–Lerner type spaces, up to the modification of the regularity exponent according to
Hölder’s inequality for the time variable.

The first lemma pertains to the so-called Bernstein inequalities.

Lemma A.1. Let 0 < r < R, 1 ≤ p ≤ q ≤ ∞ and k ∈ N. For any function u ∈ Lp and λ > 0, it holds{
Supp F(u) ⊂ {ξ ∈ Rd : |ξ| ≤ λR} ⇒ ∥Dku∥Lq ≲ λk+d( 1

p − 1
q )∥u∥Lp ,

Supp F(u) ⊂ {ξ ∈ Rd : λr ≤ |ξ| ≤ λR} ⇒ ∥Dku∥Lp ∼ λk∥u∥Lp .

Next, we state some properties related to homogeneous Besov spaces.

Lemma A.2. Let d ≥ 1 be the dimension. The following properties hold:
• For any s ∈ R and q ≥ 2, we have the following continuous embeddings:

Ḃs ↪→ Ḣs, Ḃ
d
2 − d

q ↪→ Lq.

• Ḃ
d
2 is continuously embedded in the set of continuous functions decaying to 0 at infinity.

• For any σ ∈ Rd, the operator Λσ is an isomorphism from Ḃs to Ḃs−σ.
• Let s1 ∈ R and s2 ≤ d

2 . Then the space Ḃs1 ∩ Ḃs2 is a Banach space and satisfies weak compact
and Fatou properties: If uk is a uniformly bounded sequence of Ḃs1 ∩ Ḃs2 , then an element u of
Ḃs1 ∩ Ḃs2 and a subsequence unk

exist such that
lim

k→∞
unk

= u in S ′ and ∥u∥Ḃs1 ∩Ḃs2 ≲ lim inf
nk→∞

∥unk
∥Ḃs1 ∩Ḃs2 .

The following Morse-type estimates play a fundamental role in the nonlinear analysis.

Lemma A.3. Let d ≥ 1 be the dimension. The following statements hold:
• Let s > 0. Then Ḃs ∩ L∞ is a algebra and

(A.1) ∥uv∥Ḃs ≲ ∥u∥L∞∥v∥Ḃs + ∥v∥L∞∥u∥Ḃs .

• Let s1, s2 satisfy s1, s2 ≤ d
2 and s1 + s2 > 0. Then there holds

(A.2) ∥uv∥
Ḃs1+s2− d

2
≲ ∥u∥Ḃs1 ∥v∥Ḃs2 .

Next, we present a commutator estimate that is used to control nonlinear terms in medium and high
frequencies.

Lemma A.4. For any d ≥ 1, let s ∈ (− d
2 − 1, d

2 + 1]. Then it holds∑
j∈Z

2js∥[u, ∆̇j ]∂xi
v∥L2 ≲ ∥∇u∥

Ḃ
3
2

∥v∥Ḃs , i = 1, 2, ...d.(A.3)

Also, we recall estimates for the composition of functions.

Lemma A.5. Let s > 0, and F : I → R with I being an open interval of R. Assume that F (0) = 0 and
that F ′ is smooth on I. Let u, v ∈ Ḃs ∩ L∞ have value in I. There exists a constant C = C(F ′, s, d, I)
such that

(A.4) ∥F (f)∥Ḃs ≤ C(1 + ∥f∥L∞)[s]+1∥f∥Ḃs .
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and

(A.5)

∥F (f1) − F (f2)∥Ḃs

≤ F ′(0)∥f1 − f2∥Ḃs

+ C(1 + ∥(f1, f2)∥L∞)[s]+1(
∥f1 − f2∥Ḃs∥(f1, f2)∥L∞ + ∥f1 − f2∥L∞∥(f1, f2)∥Ḃs

)
.

In order to control the nonlinear term Φ(n) in (3.2), we need the following results concerning the
composition of quadratic functions. The proof can be found in [12].

Lemma A.6. Let s > 0, J be a given integer, and F : I → R be smooth with I being an open interval of
R. Then there exists a constant C = C(s, p, r, d, I, F ′′) such that, for σ ≥ 0,

(A.6)

∑
j≤J

2js∥∆̇j(F (f) − F (0) − F ′(0)f)∥L2

≤ C(1 + ∥f∥L∞)[s]+1∥f∥L∞
( ∑

j≤J

2js∥∆̇jf∥L2 + 2J(s−σ)
∑

j≥J−1
2jσ∥∆̇jf∥L2

)
,

and for any σ ∈ R that

(A.7)

∑
j≥J−1

2js∥∆̇j(F (f) − F (0) − F ′(0)f)∥L2

≤ C(1 + ∥f∥L∞)[s]+1∥f∥L∞
(
2J(s−σ)

∑
j≤J

2jσ∥∆̇jf∥L2 +
∑

j≥J−1
2js∥∆̇jf∥L2

)
.

Lemma A.7. Let T > 0 be given time, E1(t), E2(t) and E3(t) be three absolutely continuous nonnegative
functions on [0, T ). Suppose that there exists a functional L(t) ∼ E2

1(t) + E2
2(t) + E2

3(t) such that

(A.8) d

dt
L(t) + a1E2

1(t) + a2E2
2(t) + a3E2

3(t) ≤ Cg1(t)
√

L(t) + Cg2(t)E1(t), t ∈ (0, T ),

where a1, a2, a3 are strictly positive constants. Then, there exists a constant C > 0 independent of T and
a1, a2, a3 such that if g1(t) ∈ L1(0, T ) and g2(t) ∈ L2(0, T ), then we have

(A.9)

sup
t∈[0,T ]

(E1(t) + E2(t) + E3(t))

+
√

a1∥E1∥L2(0,T ) +
√

a2∥E2∥L2(0,T ) +
√

a3∥E3∥L2(0,T )

≤ C(E1(0) + E2(0) + E3(0)) + C∥g1∥L1(0,T ) + C
√

a1
∥g2∥L2(0,T ).

Proof. Integrating (A.8) over [0, T ] yields

sup
t∈[0,T ]

L(t) +
ˆ T

0
(a1E2

1(t) + a2E2
2(τ) + a3E2

3(t)) dt

≤ C

ˆ T

0
g1(t) dt sup

t∈[0,T ]

√
L(t) + C

( ˆ T

0
g2

2(t) dt
) 1

2
( ˆ T

0
E2

1(t) dt
) 1

2

≤ 1
2 sup

t∈[0,T ]
L(t) + a1

2

ˆ T

0
E2

1(t) dt + C2( ˆ T

0
g1(t) dt

)2 + C2

a1

ˆ T

0
E2

1(t) dt.

Therefore, after taking the square root, we obtain (A.9). □

We consider the following Cauchy problem for the damped heat equation in Rd:

(A.10)
{

∂tu − c1∆u + c2u = f,

u(0, x) = u0(x).

Lemma A.8. Let s ∈ R, T > 0 be given time, and ci (i = 1, 2) be strictly positive constants. Assume
u0 ∈ Ḃs, and f = f1 + f2 + f3 with fi (i = 1, 2, 3) satisfying f1 ∈ L1(0, T ; Ḃs), f2 ∈ L̃2(0, T ; Ḃs−1) and
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f3 ∈ L̃2(0, T ; Ḃs). If u is the solution to the Cauchy problem (A.10), then u satisfies

(A.11)
∥u∥

L̃∞
t (Ḃs) +

√
c1∥u∥

L̃2
t (Ḃs+1) +

√
c2∥u∥

L̃2
t (Ḃs)

≤ C(∥u0∥Ḃs + ∥f1∥L1
t (Ḃs) + 1

√
c1

∥f2∥
L̃2

t (Ḃs−1) + 1
√

c2
∥f3∥

L̃2
t (Ḃs)), t ∈ (0, T ),

where C > 0 is a constant independent of ci (i = 1, 2) and T .

Proof. Taking the L2 inner product of (A.10) with uj and using Young’s inequality, we obtain

d

dt
∥uj∥2

L2 + 1
2c122j∥uj∥2 + 1

2c2∥uj∥2
L2 ≤ ∥uj∥L2 ∥∆̇jf1∥L2 + 2−2j

c1
∥∆̇jf2∥2

L2 + 1
c2

∥∆̇jf3∥2
L2 .(A.12)

Integrating (A.12) over [0, t] yields

(A.13)
∥uj∥2

L∞
t (L2) + 1

2c122j

ˆ t

0
∥uj∥2

L2 dτ + 1
2c2

ˆ t

0
∥uj∥2

L2 dτ

≤ ∥uj(0)∥2
L2 +

ˆ t

0
∥∆̇jf1∥L2dτ∥uj∥L∞

t (L2) + 2−2j

c1

ˆ t

0
∥∆̇jf2∥2

L2 dτ + 1
c2

ˆ t

0
∥∆̇jf3∥2

L2 dτ.

Employing (A.13) and Young’s inequality, we arrive at

∥uj∥L∞
t (L2) +

√
c12j∥uj∥L2

t (L2) +
√

c2∥uj∥L2
t (L2)

≲ ∥uj(0)∥L2 + ∥∆̇jf1∥L1
t (L2) + 2−j

√
c1

∥∆̇jf2∥L2
t (L2) + 1

√
c2

∥∆̇jf3∥L2
t (L2),

which leads to (A.11). □
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