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© First part: Stability of partially dissipative hyperbolic systems

@ Second part: Hyperbolisation via partial dissipation
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Hypocoercivity for hyperbolic systems

Stability of hyperbolic systems

We consider n-component hyperbolic systems of the form:

d
BU+ Y A(U)ayU+ BU =0,
j=1
Uo(x, t) = Uo(x),
where
o U(x,t) €R", x € R? or T and t > 0,
o The matrices valued maps A’ are symmetric,

@ The n X n matrix B is positive and symmetric.
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Hypocoercivity for hyperbolic systems

Stability of hyperbolic systems

We consider n-component hyperbolic systems of the form:

d
BU+ Y A(U)ayU+ BU =0,
j=1
Uo(x, t) = Uo(x),
where
o U(x,t) €R", x € R? or T and t > 0,
o The matrices valued maps A’ are symmetric,

@ The n X n matrix B is positive and symmetric.

Three scenarios:

@ When B = 0, small and smooth initial data lead to local-in-time solutions
(Kato, Majda, Serre) that may develop shock waves in finite time
(Dafermos, Lax).

@ When rank(B) = n, existence of global-in-time solutions (Li) that are
exponentially damped.

o Partially dissipative setting: 0 < rank(B) < n.
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Hypocoercivity for hyperbolic systems

Partially dissipative structure

e For simplicity, we look at one-dimensional hyperbolic systems of the form
0:U+ AdxU + BU =0, (1)

where A is symmetric and B is partially dissipative: rank(B) = ny < n,

n + n» = n and
0 0 .
B = (0 D) with D > 0.
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Hypocoercivity for hyperbolic systems
Partially dissipative structure

e For simplicity, we look at one-dimensional hyperbolic systems of the form
0:U + AoxU + BU =0, (1)

where A is symmetric and B is partially dissipative: rank(B) = ny < n,

n + n» = n and
0 O .
B= (0 D) with D > 0.
e Decomposing U = (Ui, U>), with U1 € R™ and U, € R™, we have
{8tU1 + A1,10x U1 + A120,U> =0,

where A = (
O0cUs + A210x U1 + A220,Us = —DUs,

Al A2
A1 Asp)’

The symmetry of B implies that: there exists x > 0 such that

(DX, X) > x| X|]*.
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Hypocoercivity for hyperbolic systems

Applications

Examples of application e The compressible Euler equations with damping:
Oep + Ox(pu) =0,
0e(pu) + O(pu®) + 0P (p) + pu = 0,

For the pressure law P(p) = Ap”, with A > 0 and v > 1, we can rewrite
System (5) into the symmetric form:

-1
Bec + udec + 1 5 cOxu =0,

. @
Oru + udsu +

; 1C8Xc = —u,

9P(p)

oy corresponds to the sound speed.

where ¢ =

e Partial dissipation occurs in many compressible models including dissipation:
Compressible Navier-Stokes equations, Chemotaxis systems, Timoshenko
systems, Discrete BGK, Euler-Maxwell equations, Sugimoto model, damped
wave equation, Cattaneo’s approximation etc.
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Large-time stability for partially dissipative

systems
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Hypocoercivity for hyperbolic systems

Context

Goal: establish time-decay rates for
0:U + AoU+ BU =0.
First difficulty: partial dissipation leads to an obvious lack of coercivity:

1d

5 521U )@l + sl Ua(1) 122 < 0, (3)

— no time-decay information on U;.
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Hypocoercivity for hyperbolic systems

Context

Goal: establish time-decay rates for
0:U + AoU+ BU =0.
First difficulty: partial dissipation leads to an obvious lack of coercivity:

1d
5 521U )@l + sl Ua(1) 122 < 0, 3)
— no time-decay information on U;.

Inspiration to tackle this issue: Theories of hypoellipticity (Hérmander),
control (Kalman), and hypocoercivity (Villani):

“There might be regularizing/stabilizing mechanisms hidden in the interactions
between the hyperbolic part A and the dissipative matrix B."”

— Let’s see what how it looks like in the context of ODEs.
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Hypocoercivity for hyperbolic systems
ODE toy-model

Consider the ODE
U+ AU+ BU=0 (4)
such that A is skew-symmetric and B positive symmetric (rank(B)< n).

The following statement are equivalent.

o The pair (A, B) satisfies the Kalman rank condition:
rank(B, BA,BA*,... BA" ') =n (K)
o The solution of (4) with the initial data Uy € L? satisfies

1U(t)ll2 < Ce™|| U]l 2-
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Hypocoercivity for hyperbolic systems
ODE toy-model

Consider the ODE
U+ AU+ BU=0 (4)
such that A is skew-symmetric and B positive symmetric (rank(B)< n).

Lemma

The following statement are equivalent.

o The pair (A, B) satisfies the Kalman rank condition:
rank(B, BA,BA*,... BA" ') =n (K)
o The solution of (4) with the initial data Uy € L? satisfies

1U(t)ll2 < Ce™|| U]l 2-

Sketch of proof: Since A is skew-symmetric, we have

1d
§EHU(t)Hf2 + &[|Ua(t)[[72 < 0. (5)

Using the interactions between A and B,
n—1 n—1
d _
o <§ < BA*'U, BA*U >> +> IIBA U172 < ClUa()I72 + ..

k=1 k=1
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Hypocoercivity for hyperbolic systems

Under the Kalman rank condition, we have

n—1

D IBA* U132 ~ U(t)IIZ.

k=0

Therefore, the following functional is a Lyapunov functional

n—1
L(t) = U]z +n <Z < BA*'U,BA"U >L2>

k=1

verifying
d
2 L)+ [U2(8)[IZ2 + nll U(D) 12 < nl| Ua(2) |22
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Hypocoercivity for hyperbolic systems

Under the Kalman rank condition, we have

n—1

D IBA* U132 ~ U(t)IIZ.

k=0

Therefore, the following functional is a Lyapunov functional

n—1
L(t) = U]z +n (Z < BA*'U,BA"U >L2>

k=1
verifying
%ﬁ(t) + | Ua(t)lI22 + 0 U122 < nll Ga(t)]]22-
For n small enough, we have
L(t) ~ | U(t)lIL2
and thus J
Eﬂ(t) +nL(t)<0. O

Morale: The conservative part A of the system helped to propagate/rotate the
partial dissipation of B.
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Partially dissipative hyperbolic systems

e In the hyperbolic setting, the idea is essentially the same.
Main difficulty: The operators A0x and B are of a different order.

— Need to find a way to make them communicate as in the ODE setting.
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Partially dissipative hyperbolic systems

e In the hyperbolic setting, the idea is essentially the same.
Main difficulty: The operators A0x and B are of a different order.

— Need to find a way to make them communicate as in the ODE setting.

Two approaches:
@ Fourier-based approach. (Shizuta-Kawashima, Yong, Beauchard-Zuazua,

CB-Danchin)

Roughly, one can proceed as in the ODE setting by adding frequency weights
to the Lyapunov functional.

@ Time-weighted Fourier-free approach. (CB-Shou-Zuazua)

— Not optimal results but a broader range of applications e.g. numerics,
bounded domains, nonlinear dissipation.
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Partially dissipative hyperbolic systems

e In the hyperbolic setting, we follow the same idea.
Main difficulty: The operator A0« and B are of a different order — how to

make them communicate as in the ODE setting.

Two approaches:
@ Fourier-based approach. (Shizuta-Kawashima, Yong, Beauchard-Zuazua,

CB-Danchin)

Essentially, one can proceed as in the ODE setting by adding frequency-weights
to the Lyapunov functional.

o Time-weighted Fourier-free approach. (CB-Shou-Zuazua)

— Not optimal results but a broader range of application (e.g. numerics,
bounded domains, nonlinear dissipation)
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Hypocoercivity for hyperbolic systems
Beauchard and Zuazua's Result

We have the following result for

8:U + Ad,U + BU = 0. (6)

Lemma (Beauchard-Zuazua '11)

The following statements are equivalent.

@ The pair (A, B) satisfies the Kalman rank condition:
rank(B, BA,BA*,... BA" ') =n (K)
o The solution of (6) with the initial data Uy € L* N L? satisfies
Ul < Ce™ ™" Ly 2
and, for U* = U(t,€)1jej<1 and U" = U(t,€)1i¢/>1,

IUA(8)lloe < CE7H2] Vol (7)
IU" ()2 < Ce™™"|[Uoll 2, (8)

In the multi-dimensional setting: The Kalman rank condition leads to similar
decay estimates but is not necessary to justify the stability.
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Toy-model analysis
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Toy-model analysis

Let us look at the damped p-system:

Op+ Oxu =0,
O+ Oxp+ u=0.

Standard H! estimates:

d ,

(2 u, pduu)l|zz + [|(u, Oxu)[72 = 0
Cross estimates:

d .
—/uaxp dx 4 [|0wpl[72 = ||0xul[7 +/u8xp.
dt Jx ®
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Hypocoercivity for hyperbolic systems
Toy-model analysis

Let us look at the damped p-system:

Op+ Oxu =0,
O+ Oxp+ u=0.

Standard H! estimates:
d .
(2 u, pduu)l|zz + [|(u, Oxu)[72 = 0
Cross estimates:
d ,
& [ wopax-+ 10013 = 0wl + [ wo.
dt Jp R
Using Young inequality and gathering the estimates, we get
d
e ORICE Oxu)(t)I72 + [10xp()]172 < O, (9)

where

1
£4(2) = 1(p, 0, 0ep, D) + 5 / wdip dx ~ ||(p, u, Dip, D) 2
R

How to get decay estimates from here?
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Hypocoercivity for hyperbolic systems
Fourier heuristics

We have
d
L) + iy, axu)(t)172 + l|0xp(t)|[72 < 0. (10)
Heuristically, applying the Fourier transform, it reads
d . PO
S L1(8) + [ min(1,€)(@,P) 22 < 0. (11)

From which it is easy to obtain
@ A heat behavior for low frequencies,

o Exponential decay for high frequencies:

(o, ) ()l < CE™2|I(po, wo) |z, (12)
(o, u)"(£)ll2 < Ce™ ™" (po, uo)l.2- (13)

How to obtain (11) rigorously?
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Hypocoercivity for hyperbolic systems

First approach: Beauchard-Zuazua's method

Consider

L)) = (G OF + jmin (glel) <P (1)

Second approach:

Homogeneous Littlewood-Paley decomposition

— Allows to obtain precise decay rates, critical GWP results and to justify the
strong relaxation limit.
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Littlewood-Paley decomposition
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Littlewood-Paley decomposition

o We define Aj as dyadic blocks such that f € Sj(R?)

. — 3 . 8 .
f= ZAjf and supp(A;f) C {€ €R? t.q. 22’ <)l < 52’}.
JEL
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Hypocoercivity for hyperbolic systems
Littlewood-Paley decomposition

o We define Aj as dyadic blocks such that f € Sj(R?)
. — 3 . 8 .
f= jeZZAjf and supp(A;f) C {€ €R? t.q. 22’ <)l < 52’}.

@ The main motivation behind this decomposition is the following Bernstein
inequality: Vk € N, p € [1, o0],

C2ijAjf||Lp S ||DkAijLP S C2ijAijLp.
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Hypocoercivity for hyperbolic systems
Littlewood-Paley decomposition

o We define Aj as dyadic blocks such that f € Sj(R?)

. — 3 . 8 .
f= ZAjf and supp(A;f) C {€ €R? t.q. 22’ <)l < 52’}.
JEL

@ The main motivation behind this decomposition is the following Bernstein
inequality: Vk € N, p € [1, o0]
2| Af|[e < |[D*Ajf[|ie < C2||Ajf |10

@ The homogeneous Besov semi-norms are defined as follows

1Fllss , = D214

JEZ
0 1 1 . d
o We have BP,I — Lp, B271 — H 2

'%*1 1/1,00
Bfy — L* and B} — W"
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Hypocoercivity for hyperbolic systems
Littlewood-Paley decomposition

o We define Aj as dyadic blocks such that f € Sj(R?)
. — 3 . 8 .
f= jeZZAjf and supp(A;f) C {€ €R? t.q. 22’ <)l < 52’}.

@ The main motivation behind this decomposition is the following Bernstein
inequality: Vk € N, p € [1, o0],

C2ijAjf||Lp S ||DkAijLP S C2ijAijLp.

The homogeneous Besov semi-norms are defined as follows:

1Fllss, = S0 214l

JEZ

d d
. : o ed i ,
We have By < LP, By, < H', B}, < L™ and B}, — W

@ For a threshold Jy € Z and s,s’ € R, we define the high and low norms:

Fll3s, 2 S 27NA e and [l 2 5027 Al

jzJo i<dh
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Hypocoercivity for hyperbolic systems
Toy-model analysis

Back to the damped p-system:

0, Oxu =0,
P+ Ol (15)
Otu~+ Okp+ u=0..

Applying the localisation operator A; to (15) and denoting A;f = f;, we have

{@m+@w=Q

(16)
Ortj + Oxpj + uj = 0.
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Hypocoercivity for hyperbolic systems
Toy-model analysis

Back to the damped p-system:

0, Oxu =0,
P+ Ol (15)
Otu~+ Okp+ u=0..

Applying the localisation operator AJ- to (15) and denoting Ajf = f;, we have

Ocpj + Oxuj = 0,
Ortj + Oxpj + uj = 0.

(16)

Differentiating in time L£;(t) = ||(j, uj, Oxpj, Oxt) ()72 + 3 [r uiOxpj dx, we
get

d
() + II(ws, Ox) 22 + [10xpsll 22 < 0. (17

Using Bernstein inequality, we have
d . 2j 2
2 L5(e) + min(1,2%) (s, ) <0, (18)

where 2% ~ |¢].
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Hypocoercivity for hyperbolic systems

We are going to use the following lemma.

Lemma

Let p>1 and X : [0, T] — R" be a continuous function such that X? is a.e.
differentiable. If

%%X" +bX? < AXP™! ae on [0,T].

Then, for all t € [0, T], we have

t t
X(t)+b/ X§X0+/ A.
0 0

Applying this lemma to
d . 2j 2
5 L) + min(L, 27)][ (4, pi)l12 < O, (19)
since £; ~ ||(uj, p)||%2, we obtain
. t
VE(®) +min(1,2%) [, plle <0 (20)
0
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Hypocoercivity for hyperbolic systems

Using that /() ~ [[(uj, pj)l.2, we get

Il (uj p) ()] 22 + min(1722j)/0t [[(uj, pi)lli2 < 0. (21)
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Hypocoercivity for hyperbolic systems

Using that /() ~ [[(uj, pj)l.2, we get

Il (uj p) ()] 22 + min(1722j)/0t [[(uj, pi)lli2 < 0. (21)

o For high frequencies: j > 0 = min(1,2%) = 1.

Multiplying (21) by 2* for s € R and summing on j > 0, we obtain

h h
€ p)(ENIg | + (et )L 5 ) < O-
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Hypocoercivity for hyperbolic systems

Using that /() ~ [[(uj, pj)l.2, we get

Il (uj p) ()] 22 + min(1722j)/0t [[(uj, pi)lli2 < 0. (21)

o For high frequencies: j > 0 = min(1,2%) = 1.

Multiplying (21) by 2* for s € R and summing on j > 0, we obtain

h h
€ p)(ENIg | + (et )L 5 ) < O-

o For low frequencies: j <0 = min(1,2%) = 2% which leads to

£ 4
()0, + s )1 52y < O
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Hypocoercivity for hyperbolic systems

Using that /() ~ [[(uj, pj)l.2, we get

Il (uj p) ()] 22 + min(1722j)/0t [[(uj, pi)lli2 < 0. (21)

o For high frequencies: j > 0 = min(1,2%) = 1.

Multiplying (21) by 2* for s € R and summing on j > 0, we obtain

h h
€ p)(ENIg | + (et )L 5 ) < O-

o For low frequencies: j <0 = min(1,2%) = 2% which leads to

¢ ¢
(e, YO, + 118 Py 52 <O

e Heat effect in low frequencies and exponential decay in high frequencies.

e From here: optimal decay rates using time-weights and interpolations.

e Notice the L#(B;f) norm compared to the usual L%(H*™) norm.

Crin-Barat Timothée Partially dissipative systems



Hypocoercivity for hyperbolic systems
General hyperbolic hypocoercivity

Back to
0:U+ AokU + BU = 0.

Under the Kalman rank condition (or the Shizuta-Kawashima) condition for
(A, B), differentiating in time the following functional

n—1
Li(t) = [|Ui(t) | n +n/ <Z < BA*'U;, BA0.U; >>
R \ k=1

leads to J
Lt min(1,2%)L; <0

and thus similar estimates.
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Hypocoercivity for hyperbolic systems

@ What we have just seen allows us to recover the classical existence results
for nonlinear systems in a slightly better framework:

B B2+1 vs H° fors>g+1.

@ Recalling that

Tl

>

o -
[SIEY
+

d . d .
HS(s>g+1);>B;f1%B;1 B B2 (p>2) o b
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Hypocoercivity for hyperbolic systems

@ What we have just seen allows us to recover the classical existence results
for nonlinear systems in a slightly better framework:

leﬁB2+1 vs H° fors>g+1.

@ Recalling that
d d . d .4 dig
Hi(s> 5 +1) = Bi s BB o B2 (p>2) o Ch
o However, that is not the full story for these systems. The
low-frequency behaviour is more complex than what we just saw.

@ A sharper understanding allow us to establish new results.
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Hypocoercivity for hyperbolic systems

@ What we have just seen allows us to recover the classical existence results
for nonlinear systems in a slightly better framework:

d . d d
BN B22,1+1 vs H° fors> B + 1.

@ Recalling that

d 441 24y 4,941
Hi(s> 5 +1) < B < BANBA < B (p>2) < Ch.
o However, that is not the full story for these systems. The
low-frequency behaviour is more complex than what we just saw.

@ A sharper understanding allow us to establish new results.
Essentially:
@ We have to go beyond "standard hypocoercivity” in the low frequencies.

@ The eigenvalues in low-frequency are purely real — It is possible to
decouple the system, up to linear high-order terms (good in LF).

@ For that matter we introduce a purely damped mode, in contrast with the
heat behavior, in the low-frequency regime,
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Low-frequency analysis.
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Low frequencies in a simple case

Back to the localized damped p-system:

Oruj + 0xv; =0
Otvj + Oxuj +v; =0,
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Hypocoercivity for hyperbolic systems

Low frequencies in a simple case
Back to the localized damped p-system:
Oruj + 0xv; =0
Otvj + Oxuj +v; =0,

Defining the damped mode w; = v; + Oxuj, the system can be rewritten

2
Orltj — Oxxttj = —Oxw;
2 3
atVVj + wj = _8xxvvj - 8)<)<)<pj
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Hypocoercivity for hyperbolic systems

Low frequencies in a simple case
Back to the localized damped p-system:
Oruj + 0xv; =0
Otvj + Oxuj +v; =0,

Defining the damped mode w; = v; + Oxuj, the system can be rewritten
Orlj — aixu,- = —0Okw;
Dew; + wj = — 05w — D

e This diagonalisation exhibits the low-frequency behaviour observed in the
spectral analysis: \1(£) = €2 and Xa2(€) =1 for £ < 1.
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Low frequencies in a simple case

Back to the localized damped p-system:
Oruj + 0xv; =0
{8t\/j +0Oxuj+v; =0,
Defining the damped mode w; = v; 4 Oxu;, the system can be rewritten
Oruj — Oty = —Oww;
{&Wj + W = — 05w — Oep)-
e This diagonalisation exhibits the low-frequency behaviour observed in the

spectral analysis: \1(£) = €2 and Xa2(€) =1 for £ < 1.

e To deal with the linear source terms, we use the Bernstein inequality
¢ ¢ j(s+1 js o ¢
10xFllts, = Il = S 2 Dlifllr < 3 2D fllo< I Fllg .
T i<k i<do

where Jp is the threshold between low and high frequencies that has to be
chosen small enough.
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Low frequencies in a simple case

Back to the localized damped p-system:
Oruj + 0xv; =0
{8t\/j +0Oxuj+v; =0,
Defining the damped mode w; = v; 4 Oxu;, the system can be rewritten
Oruj — Oty = —Oww;
{&Wj + W = — 05w — Oep)-
e This diagonalisation exhibits the low-frequency behaviour observed in the

spectral analysis: \1(£) = €2 and Xa2(€) =1 for £ < 1.

e To deal with the linear source terms, we use the Bernstein inequality
¢ ¢ j(s+1 js o ¢
10xFllts, = Il = S 2 Dlifllr < 3 2D fllo< I Fllg .
i<dh i<h
where Jp is the threshold between low and high frequencies that has to be
chosen small enough.

e A priori estimates in a LP framework for 2 < p < 4 is available in the
low-frequency regime.
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General case
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General case

In the general case, the system can be rewritten as follows:

{ 0:Ur + A110x Ut + A120, U2 =0, (22)

OtUs + A2 10xUr + Az 20« U> + DU, = 0.
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General case

In the general case, the system can be rewritten as follows:

{ O0tUr 4 A1,10x U1 + A1 20, U> = 0, (23)

0tz + A210xUr + A220.U> — DU> = 0.
We define the damped mode
W 2 U+ D A 18, Us + D ' A28, Us = D18 Us.
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Hypocoercivity for hyperbolic systems

General case

In the general case, the system can be rewritten as follows:

OrUr + A110,UL + A1,20xU> = 0, (23)
0tz + A210xUr + A220.U> — DU> = 0.
We define the damped mode
W 2 Uy + D Ap10,Us + D™ Az 28, Up = D18, Us.
The system can be rewritten
0:Ur — ALpD 7 A 10,0, Us = f (24)
oW+ DW =g

where f and g are controllable in the low-frequency regime with Bernstein-type
inequalities.

Question: What can we say about the second order operator A; 2D ! A 10,0,
in the equation of U;?
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General case

To study the equation of U;, we have the following property

For D > 0, the following assertions are equivalent:

o (A,B) satisfy the Kalman rank condition,

o the operator A := A1 2D Ax102, is strongly elliptic.

— We may study the equations of W and U, separately, the former as a
damped equation and the latter as a heat equation.
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e This approach can be applied to general systems of the form:

d
U+ > AU, U+ G(U) =0,

=t

Uo(X, t) = Uo(X)7

(25)

for solutions close to a constant equilibrium U such that G(U) = 0.

Important assumptions:

o A;11(U) = 0 which means that @ = 0 for fluid-type systems (Galilean
transformation).
o We need U >0, e.g. 5> 0.
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e This approach can be applied to general systems of the form:

atU+ZAf )o U+ G(U) =0,

Jj=1

Uo(X, t) = Uo(X)7

(25)

for solutions close to a constant equilibrium U such that G(U) = 0.

Important assumptions:

o A;11(U) = 0 which means that @ = 0 for fluid-type systems (Galilean
transformation).
o We need U >0, e.g. 5> 0.

Tools to deal with the nonlinear terms:

e Embeddings for the type:
> % oo > %Jrl p/1,00 s s
By —=L", By =W and B;; — B,
e Advanced product laws, commutators estimate and composition estimates to
deal with the (L2)" N (LP)* setting:
h h
llabllgs < llall o [Ibl]gs +Hb||  llallds +||aH oo [1bllgg 161 4o llall5y -
’ Bpljl 21

p, pl pl
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Hypocoercivity for hyperbolic systems

Well-posedness result for nonlinear systems.
Weset Z=U— U.

Theorem (Danchin, C-B '22 Math. Ann.)

Let d > 1, p € [2,4]. There exists co = co(p) > 0 and Jo such that if

1]l ¢ + ||20||h.g+1 < o,
BPP,I By

then the system admits a unique solution Z satisfying

Xo(8) SN2l s + 11201 g, forall t>0,
BP B2
p,1 2,1
where
X(6) 221" g0 +1ZI" g + 12l 4
) Lpe Bz%lﬂ) L%(Bﬁlﬂ) L%(Bp'fl)
4 4 L
+1ZI° o +lAl o, 210 oy HIWI - g
Ltoo(Bp;jl) L% ijl L%(Bpp,l ) L}(Bp’jl)

Proof: Previous linear analysis + Perturbation and Bootstrap arguments.
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Hypocoercivity for hyperbolic systems

Decay estimates

Theorem (Danchin, C-B '22)

Assuming additionally that Zy € 82 1 for o1 € }f%, %} then there exists
C > 0 such that

1Z()llgror < CllZollgor, VE2O.

Moreover, if o1 > 1 —d/2,

o1+ 5-—1
OE2VI+E, ;m2—="2-" and G 2|2l -al+\|zou

N
o

then Z satisfies the following decay estimates:

Cai
supH( ==

<CC0 if —o1<o<d/2-1,
>0

oto
sup H(t) £
>0

<CG if —o1<o0<d/2-2,
1

h
and supH(t)Q(”Z(t)Hsgﬂ < CG.
51

t>0

il = = =
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Hypocoercivity for hyperbolic systems

Extensions

@ The hypocoercive-type analysis can be extended to general system of any
order
OV +AD)V + L(D)V =0, where

o A(D) is a skew-symmetric homogeneous Fourier multiplier of order a,
e L(D) is a partially elliptic homogeneous Fourier multiplier of order 3.

o What dictates the decay rates is difference of order between A and L.
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Hypocoercivity for hyperbolic systems

Extensions

@ The hypocoercive-type analysis can be extended to general system of any
order

OV +AD)V + L(D)V =0, where
o A(D) is a skew-symmetric homogeneous Fourier multiplier of order a,
e L(D) is a partially elliptic homogeneous Fourier multiplier of order 3.
o What dictates the decay rates is difference of order between A and L.

@ Anisotropic case (cf. Bianchini-CB-Paicu) concerning stably stratified
solutions of the 2D-Boussinesq system.

o Open question: What kind of nonlinearities can we include depending on
the partial effect occurring? Relation between partial dissipation,
hyperbolicity and anisotropy.
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Hypocoercivity for hyperbolic systems

Extensions

@ The hypocoercive-type analysis can be extended to general system of any
order
OV +AD)V + L(D)V =0, where
o A(D) is a skew-symmetric homogeneous Fourier multiplier of order a,
e L(D) is a partially elliptic homogeneous Fourier multiplier of order 3.
o What dictates the decay rates is difference of order between A and L.

@ Anisotropic case (cf. Bianchini-CB-Paicu) concerning stably stratified
solutions of the 2D-Boussinesq system.

o Open question: What kind of nonlinearities can we include depending on
the partial effect occurring? Relation between partial dissipation,
hyperbolicity and anisotropy.

@ Another interesting case
0:U+ AoU+BU =0

for A symmetric and B non-symmetric e.g. Euler-Maxwell system or
Timoshenko system

@ One must consider Kalman rank condition for (B*, B?) where B® is the
symmetric part of B and B? the skew-symmetric part.
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Hyperbolic relaxation

Second part: Relaxation procedure and
hyperbolisation
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Hyperbolic relaxation

Cattaneo approximation of the heat equation

Let us consider the heat equation on R?
Its hyperbolic Cattaneo approximation reads

81*95 + axue = 07
) (26)
€0t + Oxpe + ue = 0.

When £ — 0, we recover a heat equation for p and a Darcy-type law u = Oxp.
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Hyperbolic relaxation

Cattaneo approximation of the heat equation

Let us consider the heat equation on R?
Its hyperbolic Cattaneo approximation reads

81*95 + axue = 07
) (26)
€0t + Oxpe + ue = 0.

When £ — 0, we recover a heat equation for p and a Darcy-type law u = Oxp.

@ System (26) has a partially dissipative and hyperbolic structure.

o — Dissipative hyperbolisation.
@ How to justify the limit ¢ — 0 rigorously?
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Hyperbolic relaxation

Solution first! Spectral analysis

Cattaneo approximation:

atps + Oxu. =0 5
) — Op—Oup =0
€°0¢le + Oxpe + e =0 €—0

Low High
Frequencies Frequencies
‘ 1 h h
Pe u P u
= c < e—=0 Heat
| | |
0 1 €] 0 4
€
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Hyperbolic relaxation

Solution first! Spectral analysis

Cattaneo approximation:

atps + Oxu. =0 5
—>O Op — Op =10

2 R
€°0tue + Oxpe +ue =0 &>
Low High
Frequencies Frequencies
‘ ¢ h h
Pe u P u
= < c e—=0 Heat
| | |
[ I [
0 1 €] 0 4
€

e The Cattaneo approximation creates a high-frequency regime where the
solution is exponentially damped.

e The high-frequency regime vanishes in the relaxation limit.

e Goal: Justify this process for nonlinear systems.
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Hyperbolic relaxation

@ We work with the following hybrid homogeneous Besov norms:

IFllsg, = S 27 1Al and [l 232"

i>n i<
j> i<z

|Af| o
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Hyperbolic relaxation

@ We work with the following hybrid homogeneous Besov norms:

|\f||’];i > 2% Ajf|l2 and sz

n n
=2 sz

@ For low-frequencies: j < Q,
€

Oepj + Oxuj =0
e20u; + Bupj + uj = 0,

defining the damped mode w = v + Ou, the system can be rewritten as

8tpj - aixpj = _8XW7

wi
j 3 2
edwj + <= —E05xPj — €0 W.
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Hyperbolic relaxation

@ We work with the following hybrid homogeneous Besov norms:

|\f||’];i > 2% Ajf|l2 and sz

n n
=2 sz

@ For low-frequencies: j < Q,
€

Oepj + Oxuj =0
e20u; + Bupj + uj = 0,
defining the damped mode w = v + Ou, the system can be rewritten as
8tpj - aixpj = _8XW7
edwj + % _ —aafxxpj — B w.
€
Due to the different threshold, the Bernstein inequality becomes:

oIl , < ZIIfl5s .

1=
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Hyperbolic relaxation
Details of computations

For s € R, we have

¢ ¢ 1, ¢ ¢
H(quW)(t)HB,;1 + ||P||L1T(B;’+1?) + gHWHL%_(B;,l) <Il(wo, W0)||.‘3,;1 + aHW||L1T(B;57,+12)

£
JFEHPHLlT(B;?)
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Hyperbolic relaxation

Details of computations

For s € R, we have
1
4 ¢ ¢ ¢ ¢
H(“v‘fw)(t)HB;l + ”pHLlr(B,fﬁz) + gHWHL%.(B;,l) <Il(wo, WO)HB;1 + 5|‘W||L1T(B;f12)
¢
JFEHPHLlT(B;?)
With the Berstein inequality, we have
[ [ ¢ n [
SHpHLlT(B;ff) < 77HPHL1T(B;‘+12) and EHW”LlT(B;le) < ?HWHUT(B;‘I)'

Thus, choosing n small enough, these terms can be absorbed by the I.h.s.
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Hyperbolic relaxation

Details of computations

For s € R, we have
1
4 ¢ ¢ ¢ ¢
H(“v‘fw)(t)HB;l + ”pHLlr(B,fﬁz) + gHWHL%.(B;,l) <Il(wo, WO)HB;1 + 5|‘W||L1T(B;f12)
¢
+ €||p||L17(B;ﬁ3)
With the Berstein inequality, we have
[ [ ¢ 772 [

SHpHLlT(B;ff) < 77HPHL1T(B;‘+12) and EHW”LlT(B;le) < ?HWHUT(B;‘I)'

Thus, choosing n small enough, these terms can be absorbed by the I.h.s.

e This estimate provides O(e) bounds on w = u + dxp which is crucial to
justify the relaxation.
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Hyperbolic relaxation

Details of computations

For s € R, we have
1
4 ¢ ¢ ¢ ¢
H(“v‘fw)(t)HB;l + ”pHLlr(B,fﬁz) + gHWHL%.(B;,l) <Il(wo, WO)HB;1 + 5|‘W||L1T(B;f12)
¢
+ €||p||L17(B;ﬁ3)
With the Berstein inequality, we have
[ [ ¢ 772 [

SHpHLlT(B;ff) < 77HPHL1T(B;‘+12) and EHW”LlT(B;le) < ?HWHUT(B;‘I)'

Thus, choosing n small enough, these terms can be absorbed by the I.h.s.

e This estimate provides O(e) bounds on w = u + dxp which is crucial to
justify the relaxation.

e High frequencies j > 1, Hypocoercivity-type approach but there is no
€
damped mode!
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Hyperbolic relaxation

High frequencies trick

To be able to recover O(e) bounds on w in high frequencies, we use the
Bernstein inequality

h € h
185, < 19 ll3s,

1
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Hyperbolic relaxation

High frequencies trick

To be able to recover O(e) bounds on w in high frequencies, we use the
Bernstein inequality

h € h
185, < 19 ll3s,

1

d
Say you want to obtain uniform bounds for w in B}, then you should assume

N . 441
that the initial data are in B, ~ and use that

€
Iwl|" ¢ < =[lwll" g,
2 ’17 2
2,1 By

=—> We must study the low and high frequencies at different regularities.
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Hyperbolic relaxation
General case

In the general case, the system can be rewritten as follows:

d
0z +> (Af,l(V)akz;l + Af2(V)akzz) =0,

k=1
d
, L>Z
0z + Y (Ma(VIOZi+ AoV 2Z) + =22 =0,
k=1 -
We define the damped mode:
d
WEZ+e> L (A5(V)0kZ + Aso(V)0k2e) = — Lo ' 0c 2.

k=1
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Hyperbolic relaxation
General case

In the general case, the system can be rewritten as follows:

d
0:Z1 + Z (A,f,l(v)akzl + Alf,2(\/)5kzz) =0,
k=1

d
0z + > (A51(V)OkZi + A5 a(V)OZ2) +

k=1

L2,

c

=0.

We define the damped mode:

d
WEZ+e> L (A5(V)0kZ + Aso(V)0k2e) = — Lo ' 0c 2.

k=1
The system can be rewritten

LW

8tW =+ c =8
L& Ak g —17¢ (27)
OZi—eY Y Aloly Ay 0k0uZy = f

k=1 ¢=1

where f and g are controllable in the low-frequency regime.
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Hyperbolic relaxation

General case

To study the equation of Zi1, we have the following property

Assume thatV k € {1,--- ,d}, A‘{J = 0. The following assertions are
equivalent:

o the system satisfy the (SK) condition at V;

o the operator A := Zzzl ZZ:1 /Z\’{’sz_lf\ﬁylakE)g is strongly elliptic.
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Hyperbolic relaxation

General case

To study the equation of Zi1, we have the following property

Assume thatV k € {1,--- ,d}, A‘{J = 0. The following assertions are
equivalent:

o the system satisfy the (SK) condition at V;

o the operator A := Zzzl ZZ:1 /Z\’{’sz_lf\ﬁylakE)g is strongly elliptic.

— We may study the equations of W and Z; separately, the former as a
damped equation and the latter as a heat equation.
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Hyperbolic relaxation

Back to the compressible Euler equations
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Hyperbolic relaxation
Back to the compressible Euler equations

The system reads:

Owp + div(pu) =0,

VP(p) (E)
o

(B4 u-Vu) + u=0.

The damped mode associated to the relaxation is w = u + m
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Hyperbolic relaxation
Back to the compressible Euler equations

The system reads:
Owp + div(pu) =0,

VP(p) (E)
o

(B4 u-Vu) + u=0.

P
The damped mode associated to the relaxation is w = u + L(p)

Inserting it in the above equation, we recover

Ortp — AP(p) = divw.
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Hyperbolic relaxation
Back to the compressible Euler equations

The system reads:
Owp + div(pu) =0,

VP(p) (E)
o

(B4 u-Vu) + +u=0.

The damped mode associated to the relaxation is w = u + m

Inserting it in the above equation, we recover
Orp — AP(p) = divw.
e Let A/ be the solution of the porous media equation:
HN — AP(N) = 0.

Then, using that ||W||L1T(Bs 0= O(g), in the error estimates for p = p — N, we
P,
can justify that p converges strongly toward N in B;fll.
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Hyperbolic relaxation
Relaxation result

Theorem (Danchin, C-B, Math. Ann. 2022)

Letd > 1, p€[2,4] and e > 0.

@ Let p be a strictly positive constant and (p° — p, u®) be the solution of the
compressible Euler system with damping (constructed with the previous
arguments)

.d4o
o Let N € Cp(RT; B"l) N LY(RT; Bp"j ) be the unique solution associated to

the Cauchy problem:
{ N — AP(N) =0

N0, x) = No € B}

If we assume that
llp6 — Noll «_, < Ce,
BP

p,1
then
VP(p°
I =N g N +H#+ , <Ce
Lo(Ry;iBP ) L(RiBP, ) P LAR:BF))
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Hyperbolic relaxation

Remarks

Remarks

@ Performing a similar analysis with Sobolev spaces does not allow (to the
best of my knowledge) to exhibit an explicit convergence rate.

o It only leads to ||W||L2T(,_,s) =0(1) vs ”WHLIT(BEJ) = 0(¢)
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Hyperbolic relaxation

Remarks

Remarks

@ Performing a similar analysis with Sobolev spaces does not allow (to the
best of my knowledge) to exhibit an explicit convergence rate.

o It only leads to ||W||L2T(,_,s) =0(1) vs ”WHLIT(BEJ) = 0(¢)
@ First result to establish the strong relaxation limit in the multi-dimensional
setting.

@ It can be employed in many other contexts.
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Hyperbolic relaxation

The Jin-Xin Approximation.
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Hyperbolic relaxation
Jin-Xin Approximation

We justified the strong convergence of the diffusive Jin-Xin approximation

0

—u+ E vi =0,

ot P Ox; (28)
0

2

SEVI_FAIB,UZ_(VI_)‘;(U)), ’_1727 7d7

toward viscous conservation laws:
d d
0 . 1o} o g, .0
T +;a—Xif,(u )_; aXi(A,aXiu ). (29)

o In a L? framework, collaboration with L-Y. Shou (JDE) '23
@ In an hybrid L? — L? framework, collaboration with L-Y Shou and J. Zhang.

@ Applications in numerical analysis.
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Hyperbolic relaxation
The HPC System

In joint work with Q. He and L-Y. Shou, we studied the following
hyperbolic-parabolic system:

Orp + div(pu) =0,

1
Ot(pu) + div(pu @ u) + VP(p) + Zpu— upVeo =0, (HPQ)
Orp — Ap — ap + bp = 0, xeRY t>o0,

In this case, when ¢ — 0, we show that the diffusive-rescaled solution of (HPC)
converges strongly to the solution of the Keller-Segel system:

Oep — div(VP(p) — ppVe) =0,
pu = —VP(p) + upVe, (KS)
—A¢p—ap+ by =0,
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Hyperbolic relaxation
Multifluid system

In a joint work with C. Burtea, J. Tan and L.-Y. Shou, we studied the following
damped Baer-Nunziato system:

AL O —
Oy +u-Voy = i2ﬂ+_~_/\(P> (p+) = P-(p-)),

O (axp+) +div(arpru) =0,

Oc(pu) + div(pu ® u) + VP 4+ npu =0,
p=o04pr +a_p,

P =aiPi(ps) +a-P-(p-)

(BN)

Limit A\, u,v — 0.
o Difficulties: the entropy that is naturally associated with this system is
only positive semi-definite.
@ The system (BN) is not a system of conservation laws

@ We find an ad-hoc change of variables that enables us to symmetrize the
system with a good structure to treat the nonlinear terms.
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Hyperbolic relaxation

Other applications:

@ Hyperbolic Navier-Stokes system, on-going work with S. Kawashima, J.
Xu and E. Zuazua.

@ 2D-Boussinesq System (Bianchini-CB-Paicu) ARMA "24.
@ Baer-Nunziato System (Burtea-CB-Tan), M3AS '23.
o Chemotaxis/Keller-Segel, (CB-He-Shou) SIAM '23.
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Hyperbolic relaxation

Conclusion

@ Hypocoercivity tells you that when the dissipation is not strong enough, its
interactions with the hyperbolic part can make up for the lack of coercivity.

@ When the skew-symmetric operator A and the dissipative B are of
different order then the decay rates may not be exponential and the rates
depend on the difference of their order.

o In the full space R? and the Torus T9, the classical hypocoercivity
techniques need to be extended to treat the low frequencies.

@ The hyperbolic relaxation creates a temporary exponentially stable
high-frequency regime and the low frequencies correspond to the behavior
of the limit system.
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Thank you!
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Hyperbolic relaxation

Formal link between (IPM) and (2D-B)

The 2-dimensional Boussinesq system read

8t77+U'V7):07
8tu+u-Vu+VP:77g, g:(O, 7g)7 (E)
V.-u=0.

The linearized system around 5. (y) = po — y, reads

d:b—R1Q =0,
(30)

28,0 — Rib+Q =0.
where
O«
(-A)2

1=

Formally, as € — 0, the second equation gives the Darcy's law Q° = Ryb° and

inserting it in the first one gives the linear part of the incompressible porous
media equation:

atgs - R%BE = 0
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Hyperbolic relaxation

Overdamping

w: decay rate

w =g

w==L 2rjg?

2r w=—2lEF
14+4/1-472¢|2

1 — damping

b

=2l

Figure: A graph of overdamping phenomenon for System (?7).
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