A survey on partially dissipative systems: global well-posedness and strong relaxation limit in the critical regularity setting

Timothée Crin-Barat

Friedrich-Alexander-Universität (FAU) Erlangen-Nuremberg

Nanjing University of Aeronautics and Astronautics (NUAA) 20th November 2023

くぼう くちゃ くちゃ

I First part: Stability of partially dissipative hyperbolic systems

Second part: Hyperbolisation via partial dissipation

(4回) (4回) (4回)

э.

Stability of hyperbolic systems

We consider *n*-component hyperbolic systems of the form:

$$\begin{cases} \partial_t U + \sum_{j=1}^d A^j(U) \partial_{x_j} U + BU = 0, \\ U_0(x, t) = U_0(x), \end{cases}$$

where

- $U(x,t)\in \mathbb{R}^n$, $x\in \mathbb{R}^d$ or \mathbb{T}^d and t>0,
- The matrices valued maps A^j are symmetric,
- The $n \times n$ matrix B is positive and symmetric.

く 目 ト く ヨ ト く ヨ ト

Stability of hyperbolic systems

We consider *n*-component hyperbolic systems of the form:

$$\begin{cases} \partial_t U + \sum_{j=1}^d A^j(U) \partial_{x_j} U + BU = 0, \\ U_0(x, t) = U_0(x), \end{cases}$$

where

- $U(x,t)\in \mathbb{R}^n$, $x\in \mathbb{R}^d$ or \mathbb{T}^d and t>0,
- The matrices valued maps A^j are symmetric,
- The $n \times n$ matrix B is positive and symmetric.

Three scenarios:

- When B = 0, small and smooth initial data lead to local-in-time solutions (Kato, Majda, Serre) that may develop shock waves in finite time (Dafermos, Lax).
- When rank(B) = n, existence of global-in-time solutions (Li) that are exponentially damped.
- Partially dissipative setting: $0 < \operatorname{rank}(B) < n$.

= nar

く 同 ト く ヨ ト く ヨ ト

Partially dissipative structure

• For simplicity, we look at one-dimensional hyperbolic systems of the form

$$\partial_t U + A \partial_x U + B U = 0, \tag{1}$$

where A is symmetric and B is partially dissipative: $rank(B) = n_2 < n$, $n_1 + n_2 = n$ and

$$B = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} \quad \text{with } D > 0.$$

Partially dissipative structure

• For simplicity, we look at one-dimensional hyperbolic systems of the form

$$\partial_t U + A \partial_x U + B U = 0, \tag{1}$$

where A is symmetric and B is partially dissipative: $rank(B) = n_2 < n$, $n_1 + n_2 = n$ and

$$B = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} \quad \text{with } D > 0.$$

• Decomposing $U=(U_1,U_2),$ with $U_1\in \mathbb{R}^{n_1}$ and $U_2\in \mathbb{R}^{n_2},$ we have

$$\begin{cases} \partial_t U_1 + A_{1,1} \partial_x U_1 + A_{1,2} \partial_x U_2 = 0, \\ \partial_t U_2 + A_{2,1} \partial_x U_1 + A_{2,2} \partial_x U_2 = -DU_2, \end{cases} \text{ where } A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}.$$

The symmetry of *B* implies that: there exists $\kappa > 0$ such that

$$\langle DX, X \rangle \geq \kappa \|X\|^2.$$

Examples of application • The compressible Euler equations with damping:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x P(\rho) + \rho u = 0, \end{cases}$$

For the pressure law $P(\rho) = A\rho^{\gamma}$, with A > 0 and $\gamma > 1$, we can rewrite System (5) into the symmetric form:

$$\begin{cases} \partial_t c + u \partial_x c + \frac{\gamma - 1}{2} c \partial_x u = 0, \\ \partial_t u + u \partial_x u + \frac{\gamma - 1}{2} c \partial_x c = -u, \end{cases}$$
(2)

where $c = \sqrt{\frac{\partial P(\rho)}{\partial \rho}}$ corresponds to the sound speed.

• *Partial dissipation* occurs in many compressible models including dissipation: Compressible Navier-Stokes equations, Chemotaxis systems, Timoshenko systems, Discrete BGK, Euler-Maxwell equations, Sugimoto model, damped wave equation, Cattaneo's approximation etc.

Large-time stability for partially dissipative systems

< 回 > < 三 > < 三 > -

Context

Goal: establish time-decay rates for

$$\partial_t U + A \partial_x U + B U = 0.$$

First difficulty: partial dissipation leads to an obvious lack of coercivity:

$$\frac{1}{2}\frac{d}{dt}\|(U_1,U_2)(t)\|_{L^2}^2+\kappa\|U_2(t)\|_{L^2}^2\leq 0, \tag{3}$$

イロト 不得 トイヨト イヨト

2

 \rightarrow no time-decay information on U_1 .

Context

Goal: establish time-decay rates for

$$\partial_t U + A \partial_x U + B U = 0.$$

First difficulty: partial dissipation leads to an obvious lack of coercivity:

$$\frac{1}{2}\frac{d}{dt}\|(U_1,U_2)(t)\|_{L^2}^2+\kappa\|U_2(t)\|_{L^2}^2\leq 0,$$
(3)

ヘロン 不可と 不可と イロン

3

 \rightarrow no time-decay information on U_1 .

Inspiration to tackle this issue: Theories of hypoellipticity (Hörmander), control (Kalman), and hypocoercivity (Villani):

"There might be regularizing/stabilizing mechanisms *hidden* in the interactions between the hyperbolic part A and the dissipative matrix B."

 \rightarrow Let's see what how it looks like in the context of ODEs.

ODE toy-model

Consider the ODE

$$\partial_t U + AU + BU = 0 \tag{4}$$

such that A is skew-symmetric and B positive symmetric (rank(B) < n).

Lemma

The following statement are equivalent.

• The pair (A, B) satisfies the Kalman rank condition:

$$rank(B, BA, BA^2, \dots, BA^{n-1}) = n$$

(K)

3

イロト イポト イヨト イヨト

• The solution of (4) with the initial data $U_0 \in L^2$ satisfies

 $\|U(t)\|_{L^2} \leq C e^{-\lambda t} \|U_0\|_{L^2}.$

ODE toy-model

Consider the ODE

$$\partial_t U + AU + BU = 0 \tag{4}$$

such that A is skew-symmetric and B positive symmetric (rank(B) < n).

Lemma

The following statement are equivalent.

• The pair (A, B) satisfies the Kalman rank condition:

$$rank(B, BA, BA^2, \dots, BA^{n-1}) = n$$
 (K)

• The solution of (4) with the initial data $U_0 \in L^2$ satisfies

$$\|U(t)\|_{L^2} \leq C e^{-\lambda t} \|U_0\|_{L^2}.$$

Sketch of proof: Since A is skew-symmetric, we have

$$\frac{1}{2}\frac{d}{dt}\|U(t)\|_{L^{2}}^{2}+\kappa\|U_{2}(t)\|_{L^{2}}^{2}\leq0.$$
(5)

Using the interactions between A and B,

$$\frac{d}{dt}\left(\sum_{k=1}^{n-1} \langle BA^{k-1}U, BA^{k}U \rangle\right) + \sum_{k=1}^{n-1} \|BA^{k}U(t)\|_{L^{2}}^{2} \leq C \|U_{2}(t)\|_{L^{2}}^{2} + \dots$$
Crin-Barat Timothé Partially dissipative systems

Under the Kalman rank condition, we have

$$\sum_{k=0}^{n-1} \|BA^k U(t)\|_{L^2}^2 \sim \|U(t)\|_{L^2}^2.$$

Therefore, the following functional is a Lyapunov functional

$$\mathcal{L}(t) = \|U(t)\|_{L^2}^2 + \eta \left(\sum_{k=1}^{n-1} < BA^{k-1}U, BA^kU >_{L^2}\right)$$

verifying

$$rac{d}{dt}\mathcal{L}(t)+\|U_2(t)\|^2_{L^2}+\eta\|U(t)\|^2_{L^2}\leq \eta\|U_2(t)\|^2_{L^2}.$$

イロト イポト イヨト イヨト

Under the Kalman rank condition, we have

$$\sum_{k=0}^{n-1} \|BA^k U(t)\|_{L^2}^2 \sim \|U(t)\|_{L^2}^2.$$

Therefore, the following functional is a Lyapunov functional

$$\mathcal{L}(t) = \|U(t)\|_{L^2}^2 + \eta \left(\sum_{k=1}^{n-1} < BA^{k-1}U, BA^kU >_{L^2}\right)$$

verifying

$$\frac{d}{dt}\mathcal{L}(t) + \|U_2(t)\|_{L^2}^2 + \eta \|U(t)\|_{L^2}^2 \leq \eta \|U_2(t)\|_{L^2}^2$$

For η small enough, we have

 $\mathcal{L}(t) \sim \|U(t)\|_{L^2}^2$

and thus

$$rac{d}{dt}\mathcal{L}(t)+\eta\mathcal{L}(t)\leq 0.$$
 \Box

Morale: The conservative part A of the system helped to *propagate/rotate* the partial dissipation of B.

・ロト ・ 一下・ ・ ヨト・

э.

Partially dissipative hyperbolic systems

• In the hyperbolic setting, the idea is essentially the same.

Main difficulty: The operators $A\partial_x$ and B are of a different order.

 \rightarrow Need to find a way to make them communicate as in the ODE setting.

く 同 と く ヨ と く ヨ と

э.

Partially dissipative hyperbolic systems

• In the hyperbolic setting, the idea is essentially the same.

Main difficulty: The operators $A\partial_x$ and B are of a different order.

 \rightarrow Need to find a way to make them communicate as in the ODE setting.

Two approaches:

• Fourier-based approach. (Shizuta-Kawashima, Yong, Beauchard-Zuazua, CB-Danchin)

Roughly, one can proceed as in the ODE setting by adding frequency weights to the Lyapunov functional.

• Time-weighted Fourier-free approach. (CB-Shou-Zuazua)

 \rightarrow Not optimal results but a broader range of applications e.g. numerics, bounded domains, nonlinear dissipation.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Partially dissipative hyperbolic systems

• In the hyperbolic setting, we follow the same idea.

Main difficulty: The operator $A\partial_x$ and B are of a different order \rightarrow how to make them communicate as in the ODE setting.

Two approaches:

• Fourier-based approach. (Shizuta-Kawashima, Yong, Beauchard-Zuazua, CB-Danchin)

Essentially, one can proceed as in the ODE setting by adding frequency-weights to the Lyapunov functional.

• Time-weighted Fourier-free approach. (CB-Shou-Zuazua)

 \rightarrow Not optimal results but a broader range of application (e.g. numerics, bounded domains, nonlinear dissipation)

Beauchard and Zuazua's Result

We have the following result for

$$\partial_t U + A \partial_x U + B U = 0. \tag{6}$$

Lemma (Beauchard-Zuazua '11)

The following statements are equivalent.

• The pair (A, B) satisfies the Kalman rank condition:

$$rank(B, BA, BA^2, \dots, BA^{n-1}) = n$$
 (K)

• The solution of (6) with the initial data $U_0 \in L^1 \cap L^2$ satisfies

$$\|U(t)\|_{L^2} \leq Ce^{-\min(1,\xi^2)t} \|U_0\|_{L^2}$$

and, for $U^{\ell} = \widehat{U}(t,\xi) \mathbf{1}_{|\xi| \le 1}$ and $U^{h} = \widehat{U}(t,\xi) \mathbf{1}_{|\xi| \ge 1}$, $\| U^{\ell}(t) \|_{L^{\infty}} \le Ct^{-1/2} \| U_{0} \|_{L^{1}},$ (7) $\| U^{h}(t) \|_{L^{2}} \le Ce^{-\gamma_{*}t} \| U_{0} \|_{L^{2}},$ (8)

In the multi-dimensional setting: The Kalman rank condition leads to similar decay estimates but is not necessary to justify the stability.

Toy-model analysis

イロン イヨン イヨン -

∃ < n < 0</p>

Toy-model analysis

Let us look at the damped *p*-system:

$$\begin{cases} \partial_t \rho + \partial_x u = 0, \\ \partial_t u + \partial_x \rho + u = 0. \end{cases}$$

Standard H^1 estimates:

$$\frac{d}{dt}\|(\rho, u, \partial_x \rho \partial_x u)\|_{L^2}^2 + \|(u, \partial_x u)\|_{L^2}^2 = 0$$

Cross estimates:

$$\frac{d}{dt}\int_{\mathbb{R}}u\partial_{x}\rho\ dx+\|\partial_{x}\rho\|_{L^{2}}^{2}=\|\partial_{x}u\|_{L^{2}}^{2}+\int_{\mathbb{R}}u\partial_{x}\rho.$$

・ロト ・回ト ・ヨト ・ヨト

4

Toy-model analysis

Let us look at the damped *p*-system:

$$\begin{cases} \partial_t \rho + \partial_x u = 0, \\ \partial_t u + \partial_x \rho + u = 0. \end{cases}$$

Standard H^1 estimates:

$$\frac{d}{dt}\|(\rho, u, \partial_x \rho \partial_x u)\|_{L^2}^2 + \|(u, \partial_x u)\|_{L^2}^2 = 0$$

Cross estimates:

$$\frac{d}{dt}\int_{\mathbb{R}}u\partial_{x}\rho\ dx+\|\partial_{x}\rho\|_{L^{2}}^{2}=\|\partial_{x}u\|_{L^{2}}^{2}+\int_{\mathbb{R}}u\partial_{x}\rho.$$

Using Young inequality and gathering the estimates, we get

$$\frac{d}{dt}\mathcal{L}_{1}(t) + \|(u,\partial_{x}u)(t)\|_{L^{2}}^{2} + \|\partial_{x}\rho(t)\|_{L^{2}}^{2} \leq 0,$$
(9)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

where

$$\mathcal{L}_1(t) = \|(\rho, u, \partial_x \rho, \partial_x u)\|_{L^2}^2 + \frac{1}{2} \int_{\mathbb{R}} u \partial_x \rho \, dx \quad \sim \|(\rho, u, \partial_x \rho, \partial_x u)\|_{L^2}^2$$

How to get decay estimates from here?

Fourier heuristics

We have

$$\frac{d}{dt}\mathcal{L}_{1}(t) + \|(u,\partial_{x}u)(t)\|_{L^{2}}^{2} + \|\partial_{x}\rho(t)\|_{L^{2}}^{2} \leq 0.$$
(10)

Heuristically, applying the Fourier transform, it reads

$$\frac{d}{dt}\mathcal{L}_1(t) + \|\min(1,\xi)(\widehat{u},\widehat{\rho})\|_{L^2}^2 \le 0. \tag{11}$$

From which it is easy to obtain

- A heat behavior for low frequencies,
- Exponential decay for high frequencies:

$$\|(\rho, u)^{\ell}(t)\|_{L^{\infty}} \leq Ct^{-1/2} \|(\rho_0, u_0)\|_{L^1},$$
(12)

$$\|(\rho, u)^{h}(t)\|_{L^{2}} \leq C e^{-\gamma_{*} t} \|(\rho_{0}, u_{0})\|_{L^{2}}.$$
(13)

(1) マント (1) マント (1)

э.

How to obtain (11) rigorously?

First approach: Beauchard-Zuazua's method

Consider

$$\mathcal{L}_{\xi}(t) = \left| (\widehat{\rho}, \widehat{u})(\xi, t) \right|^{2} + \frac{1}{2} \min\left(\frac{1}{|\xi|}, |\xi|\right) < \widehat{u} \cdot \widehat{\rho} >_{\mathbb{C}^{n}}.$$
(14)

Second approach:

Homogeneous Littlewood-Paley decomposition

 \rightarrow Allows to obtain precise decay rates, critical GWP results and to justify the strong relaxation limit.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

э.

Littlewood-Paley decomposition

・ロト ・四ト ・ヨト ・ヨト

Littlewood-Paley decomposition

• We define $\dot{\Delta}_j$ as dyadic blocks such that $f\in \mathcal{S}_h'(\mathbb{R}^d)$

$$f = \sum_{j \in \mathbb{Z}} \dot{\Delta}_j f \quad \text{and} \quad \text{supp}(\widehat{\dot{\Delta}_j f}) \subset \{\xi \in \mathbb{R}^d \text{ t.q. } \frac{3}{4} 2^j \leq |\xi| \leq \frac{8}{3} 2^j \}.$$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ ・

∃ < n < 0</p>

Littlewood-Paley decomposition

• We define $\dot{\Delta}_j$ as dyadic blocks such that $f \in \mathcal{S}'_h(\mathbb{R}^d)$

$$f = \sum_{j \in \mathbb{Z}} \dot{\Delta}_j f \quad \text{and} \quad \text{supp}(\widehat{\dot{\Delta}_j f}) \subset \{\xi \in \mathbb{R}^d \text{ t.q. } \frac{3}{4} 2^j \leq |\xi| \leq \frac{8}{3} 2^j \}.$$

 The main motivation behind this decomposition is the following Bernstein inequality: ∀k ∈ N, p ∈ [1,∞],

$$c2^{jk}\|\dot{\Delta}_j f\|_{L^p} \leq \|\boldsymbol{D}^k\dot{\Delta}_j f\|_{L^p} \leq C2^{jk}\|\dot{\Delta}_j f\|_{L^p}.$$

▲ロ ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● ● ● ● ● ●

Littlewood-Paley decomposition

• We define $\dot{\Delta}_j$ as dyadic blocks such that $f\in \mathcal{S}_h'(\mathbb{R}^d)$

$$f = \sum_{j \in \mathbb{Z}} \dot{\Delta}_j f \quad \text{and} \quad \text{supp}(\widehat{\dot{\Delta}_j f}) \subset \{\xi \in \mathbb{R}^d \text{ t.q. } \frac{3}{4} 2^j \leq |\xi| \leq \frac{8}{3} 2^j \}.$$

 The main motivation behind this decomposition is the following Bernstein inequality: ∀k ∈ N, p ∈ [1,∞],

$$c2^{jk}\|\dot{\Delta}_j f\|_{L^p} \leq \|D^k\dot{\Delta}_j f\|_{L^p} \leq C2^{jk}\|\dot{\Delta}_j f\|_{L^p}.$$

• The homogeneous Besov semi-norms are defined as follows:

$$\|f\|_{\dot{B}^s_{p,1}} \triangleq \sum_{j\in\mathbb{Z}} 2^{js} \|\dot{\Delta}_j f\|_{L^p}.$$

• We have $\dot{B}^0_{p,1} \hookrightarrow L^p$, $\dot{B}^1_{2,1} \hookrightarrow \dot{H}^1$, $\dot{B}^{\frac{d}{2}}_{2,1} \hookrightarrow L^{\infty}$ and $\dot{B}^{\frac{d}{2}+1}_{2,1} \hookrightarrow \dot{W}^{1,\infty}$

Littlewood-Paley decomposition

• We define $\dot{\Delta}_j$ as dyadic blocks such that $f\in \mathcal{S}_h'(\mathbb{R}^d)$

$$f = \sum_{j \in \mathbb{Z}} \dot{\Delta}_j f \quad \text{and} \quad \text{supp}(\widehat{\dot{\Delta}_j f}) \subset \{\xi \in \mathbb{R}^d \text{ t.q. } \frac{3}{4} 2^j \leq |\xi| \leq \frac{8}{3} 2^j \}.$$

 The main motivation behind this decomposition is the following Bernstein inequality: ∀k ∈ N, p ∈ [1,∞],

$$c2^{jk}\|\dot{\Delta}_j f\|_{L^p}\leq \|D^k\dot{\Delta}_j f\|_{L^p}\leq C2^{jk}\|\dot{\Delta}_j f\|_{L^p}.$$

• The homogeneous Besov semi-norms are defined as follows:

$$\|f\|_{\dot{B}^{s}_{p,1}}\triangleq \sum_{j\in\mathbb{Z}}2^{js}\|\dot{\Delta}_{j}f\|_{L^{p}}.$$

- We have $\dot{B}^0_{p,1} \hookrightarrow L^p$, $\dot{B}^1_{2,1} \hookrightarrow \dot{H}^1$, $\dot{B}^{\frac{d}{2}}_{2,1} \hookrightarrow L^{\infty}$ and $\dot{B}^{\frac{d}{2}+1}_{2,1} \hookrightarrow \dot{W}^{1,\infty}$
- For a threshold $J_0 \in \mathbb{Z}$ and $s, s' \in \mathbb{R}$, we define the high and low norms:

$$\|f\|_{\dot{B}^{s}_{2,1}}^{h} \triangleq \sum_{j \ge J_{0}} 2^{js} \|\dot{\Delta}_{j}f\|_{L^{2}} \text{ and } \|f\|_{\dot{B}^{s'}_{p,1}}^{\ell} \triangleq \sum_{j \le J_{0}} 2^{js'} \|\dot{\Delta}_{j}f\|_{L^{p}}$$

(日) (周) (ヨ) (ヨ) (ヨ)

Toy-model analysis

Back to the damped *p*-system:

$$\begin{cases} \partial_t \rho + \partial_x u = 0, \\ \partial_t u + \partial_x \rho + u = 0.. \end{cases}$$
(15)

Applying the localisation operator $\dot{\Delta}_j$ to (15) and denoting $\dot{\Delta}_j f = f_j$, we have

$$\begin{cases} \partial_t \rho_j + \partial_x u_j = 0, \\ \partial_t u_j + \partial_x \rho_j + u_j = 0. \end{cases}$$
(16)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

Toy-model analysis

Back to the damped *p*-system:

$$\begin{cases} \partial_t \rho + \partial_x u = 0, \\ \partial_t u + \partial_x \rho + u = 0.. \end{cases}$$
(15)

Applying the localisation operator $\dot{\Delta}_j$ to (15) and denoting $\dot{\Delta}_j f = f_j$, we have

$$\begin{cases} \partial_t \rho_j + \partial_x u_j = 0, \\ \partial_t u_j + \partial_x \rho_j + u_j = 0. \end{cases}$$
(16)

Differentiating in time $\mathcal{L}_j(t) = \|(\rho_j, u_j, \partial_x \rho_j, \partial_x u_j)(t)\|_{L^2}^2 + \frac{1}{2} \int_{\mathbb{R}} u_j \partial_x \rho_j \, dx$, we get

$$\frac{d}{dt}\mathcal{L}_{j}(t) + \|(u_{j},\partial_{x}u_{j})\|_{L^{2}}^{2} + \|\partial_{x}\rho_{j}\|_{L^{2}}^{2} \leq 0.$$
(17)

Using Bernstein inequality, we have

$$\frac{d}{dt}\mathcal{L}_{j}(t) + \min(1, 2^{2j}) \|(u_{j}, \rho_{j})\|_{L^{2}}^{2} \leq 0,$$
(18)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ のへで

where $2^{2j} \sim |\xi|^2$.

We are going to use the following lemma.

Lemma

Let $p\geq 1$ and $X:[0,T]\to \mathbb{R}^+$ be a continuous function such that X^p is a.e. differentiable. If

$$\frac{1}{p}\frac{d}{dt}X^p + bX^p \le AX^{p-1} \quad a.e. \text{ on } [0,T].$$

Then, for all $t \in [0, T]$, we have

$$X(t)+b\int_0^t X\leq X_0+\int_0^t A.$$

Applying this lemma to

$$\frac{d}{dt}\mathcal{L}_{j}(t) + \min(1, 2^{2j}) \|(u_{j}, \rho_{j})\|_{L^{2}}^{2} \leq 0,$$
(19)

since $\mathcal{L}_j \sim \|(u_j, \rho_j)\|_{L^2}^2$, we obtain

$$\sqrt{\mathcal{L}_j(t)} + \min(1, 2^{2j}) \int_0^t \|(u_j, \rho_j)\|_{L^2} \le 0.$$
 (20)

Using that $\sqrt{\mathcal{L}_j(t)} \sim \|(u_j, \rho_j)\|_{L^2}$, we get

$$\|(u_j,\rho_j)(t)\|_{L^2} + \min(1,2^{2j}) \int_0^t \|(u_j,\rho_j)\|_{L^2} \le 0.$$
(21)

イロン イヨン イヨン -

∃ < n < 0</p>

Using that $\sqrt{\mathcal{L}_j(t)} \sim \|(u_j,
ho_j)\|_{L^2}$, we get

$$\|(u_j,\rho_j)(t)\|_{L^2} + \min(1,2^{2j}) \int_0^t \|(u_j,\rho_j)\|_{L^2} \le 0.$$
 (21)

• For high frequencies: $j \ge 0 \implies \min(1, 2^{2j}) = 1$.

Multiplying (21) by 2^{js} for $s\in\mathbb{R}$ and summing on $j\geq 0$, we obtain

$$\|(u,\rho)(t)\|^{h}_{\dot{B}^{s}_{2,1}}+\|(u,\rho)\|^{h}_{L^{1}_{T}(\dot{B}^{s}_{2,1})}\leq 0.$$

= nar

・ 同 ト ・ ヨ ト ・ ヨ ト

Using that $\sqrt{\mathcal{L}_j(t)} \sim \|(u_j, \rho_j)\|_{L^2}$, we get $\|(u_j, \rho_j)(t)\|_{L^2} + \min(1, 2^{2j}) \int_0^t \|(u_j, \rho_j)\|_{L^2} \leq 0.$

• For high frequencies: $j \ge 0 \implies \min(1, 2^{2j}) = 1$.

Multiplying (21) by 2^{js} for $s \in \mathbb{R}$ and summing on $j \ge 0$, we obtain

$$\|(u,\rho)(t)\|_{\dot{B}^{s}_{2,1}}^{h}+\|(u,\rho)\|_{L^{1}_{T}(\dot{B}^{s}_{2,1})}^{h}\leq 0.$$

(21)

• For low frequencies: $j \le 0 \implies \min(1, 2^{2j}) = 2^{2j}$ which leads to

$$\|(u,\rho)(t)\|_{\dot{B}^{s}_{2,1}}^{\ell}+\|(u,\rho)\|_{L^{1}_{T}(\dot{B}^{s+2}_{2,1})}^{\ell}\leq 0.$$

Using that $\sqrt{\mathcal{L}_j(t)} \sim \|(u_j, \rho_j)\|_{L^2}$, we get $\|(u_j, \rho_j)(t)\|_{L^2} + \min(1, 2^{2j}) \int_0^t \|(u_j, \rho_j)\|_{L^2} \leq 0.$

• For high frequencies: $j \ge 0 \implies \min(1, 2^{2j}) = 1$.

Multiplying (21) by 2^{js} for $s\in\mathbb{R}$ and summing on $j\geq 0$, we obtain

$$\|(u,\rho)(t)\|_{\dot{B}^{s}_{2,1}}^{h}+\|(u,\rho)\|_{L^{1}_{T}(\dot{B}^{s}_{2,1})}^{h}\leq 0.$$

(21)

ヘロン 人間 とくほ とくほう

• For low frequencies:
$$j \le 0 \implies \min(1, 2^{2j}) = 2^{2j}$$
 which leads to

$$\|(u,\rho)(t)\|_{\dot{B}^{s}_{2,1}}^{\ell}+\|(u,\rho)\|_{L^{1}_{T}(\dot{B}^{s+2}_{2,1})}^{\ell}\leq 0.$$

- Heat effect in low frequencies and exponential decay in high frequencies.
- From here: optimal decay rates using time-weights and interpolations.
- Notice the $L^1_T(B^{s+2}_{2,1})$ norm compared to the usual $L^2_T(H^{s+1})$ norm.

General hyperbolic hypocoercivity

Back to

$$\partial_t U + A \partial_x U + B U = 0.$$

Under the Kalman rank condition (or the Shizuta-Kawashima) condition for (A, B), differentiating in time the following functional

$$\mathcal{L}_j(t) = \|U_j(t)\|_{H^1}^2 + \eta \int_{\mathbb{R}} \left(\sum_{k=1}^{n-1} < BA^{k-1}U_j, BA^k \partial_x U_j >
ight)$$

leads to

$$rac{d}{dt}\mathcal{L}_j+\min(1,2^{2j})\mathcal{L}_j\leq 0$$

and thus similar estimates.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

э.
• What we have just seen allows us to recover the classical existence results for nonlinear systems in a slightly better framework:

$$\dot{B}^{rac{d}{2}}_{2,1}\cap \dot{B}^{rac{d}{2}+1}_{2,1} \quad {
m vs} \quad H^s \quad {
m for} \,\, s>rac{d}{2}+1.$$

Recalling that

$$H^s(s>rac{d}{2}+1)\hookrightarrow B^{rac{d}{2}+1}_{2,1}\hookrightarrow \dot{B}^{rac{d}{2}}_{2,1}\cap \dot{B}^{rac{d}{2}+1}_{2,1}\hookrightarrow \dot{B}^{rac{d}{p},rac{d}{2}+1}_{p,2}(p>2)\hookrightarrow \mathcal{C}^1_b.$$

イロト イポト イヨト イヨト

= nar

• What we have just seen allows us to recover the classical existence results for nonlinear systems in a slightly better framework:

$$\dot{B}^{rac{d}{2}}_{2,1}\cap \dot{B}^{rac{d}{2}+1}_{2,1} \quad {
m vs} \quad H^s \quad {
m for} \; s>rac{d}{2}+1.$$

Recalling that

$$H^s(s>rac{d}{2}+1)\hookrightarrow B_{2,1}^{rac{d}{2}+1}\hookrightarrow \dot{B}_{2,1}^{rac{d}{2}}\cap \dot{B}_{2,1}^{rac{d}{2}+1}\hookrightarrow \dot{B}_{
ho,2}^{rac{d}{p},rac{d}{2}+1}(p>2)\hookrightarrow \mathcal{C}_b^1.$$

- However, that is not the full story for these systems. The low-frequency behaviour is more complex than what we just saw.
- A sharper understanding allow us to establish new results.

く 白 ト く ヨ ト く ヨ ト

• What we have just seen allows us to recover the classical existence results for nonlinear systems in a slightly better framework:

$$\dot{B}^{rac{d}{2}}_{2,1}\cap \dot{B}^{rac{d}{2}+1}_{2,1} \quad {
m vs} \quad H^s \quad {
m for} \,\, s>rac{d}{2}+1.$$

Recalling that

$$H^s(s>rac{d}{2}+1)\hookrightarrow B_{2,1}^{rac{d}{2}+1}\hookrightarrow \dot{B}_{2,1}^{rac{d}{2}}\cap \dot{B}_{2,1}^{rac{d}{2}+1}\hookrightarrow \dot{B}_{
ho,2}^{rac{d}{p},rac{d}{2}+1}(p>2)\hookrightarrow \mathcal{C}_b^1.$$

- However, that is not the full story for these systems. The low-frequency behaviour is more complex than what we just saw.
- A sharper understanding allow us to establish new results.

Essentially:

- We have to go beyond "standard hypocoercivity" in the low frequencies.
- The eigenvalues in low-frequency are purely real \rightarrow It is possible to decouple the system, up to linear high-order terms (good in LF).
- For that matter we introduce a purely damped mode, in contrast with the heat behavior, in the low-frequency regime,

ヘロト 人間ト ヘヨト ヘヨト

Low-frequency analysis.

・ロ・・(型・・モー・・モー・)

Ξ.

Hypocoercivity for hyperbolic systems Hyperbolic relaxation

Low frequencies in a simple case

Back to the localized damped p-system:

$$\begin{cases} \partial_t u_j + \partial_x v_j = 0\\ \partial_t v_j + \partial_x u_j + v_j = 0, \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

∃ 990

Hypocoercivity for hyperbolic systems Hyperbolic relaxation

Low frequencies in a simple case

Back to the localized damped p-system:

$$\begin{cases} \partial_t u_j + \partial_x v_j = 0\\ \partial_t v_j + \partial_x u_j + v_j = 0, \end{cases}$$

Defining the damped mode $w_j = v_j + \partial_x u_j$, the system can be rewritten

$$\begin{cases} \partial_t u_j - \partial_{xx}^2 u_j = -\partial_x w_j \\ \partial_t w_j + w_j = -\partial_{xx}^2 w_j - \partial_{xxx}^3 \rho_j. \end{cases}$$

く 同 と く ヨ と く ヨ と

э.

Low frequencies in a simple case

Back to the localized damped p-system:

$$\begin{cases} \partial_t u_j + \partial_x v_j = 0\\ \partial_t v_j + \partial_x u_j + v_j = 0, \end{cases}$$

Defining the damped mode $w_j = v_j + \partial_x u_j$, the system can be rewritten

$$\begin{cases} \partial_t u_j - \partial_{xx}^2 u_j = -\partial_x w_j \\ \partial_t w_j + w_j = -\partial_{xx}^2 w_j - \partial_{xxx}^3 \rho_j. \end{cases}$$

• This diagonalisation exhibits the low-frequency behaviour observed in the spectral analysis: $\lambda_1(\xi) = \xi^2$ and $\lambda_2(\xi) = 1$ for $\xi \ll 1$.

・ロト ・ 一下・ ・ ヨト・

Low frequencies in a simple case

Back to the localized damped p-system:

$$\begin{cases} \partial_t u_j + \partial_x v_j = 0\\ \partial_t v_j + \partial_x u_j + v_j = 0, \end{cases}$$

Defining the damped mode $w_j = v_j + \partial_x u_j$, the system can be rewritten

$$\begin{cases} \partial_t u_j - \partial_{xx}^2 u_j = -\partial_x w_j \\ \partial_t w_j + w_j = -\partial_{xx}^2 w_j - \partial_{xxx}^3 \rho_j. \end{cases}$$

- This diagonalisation exhibits the low-frequency behaviour observed in the spectral analysis: $\lambda_1(\xi) = \xi^2$ and $\lambda_2(\xi) = 1$ for $\xi \ll 1$.
- To deal with the linear source terms, we use the Bernstein inequality

$$\|\partial_{x}f\|_{B^{s}_{p,1}}^{\ell} = \|f\|_{B^{s+1}_{p,1}}^{\ell} = \sum_{j \leq J_{0}} 2^{j(s+1)} \|f_{j}\|_{L^{p}} \leq \sum_{j \leq J_{0}} 2^{js} 2^{j} \|f_{j}\|_{L^{p}} \leq J_{0} \|f\|_{B^{s}_{p,1}}^{\ell}.$$

where J_0 is the threshold between low and high frequencies that has to be chosen small enough.

(日) (周) (ヨ) (ヨ) (ヨ)

Low frequencies in a simple case

Back to the localized damped p-system:

$$\begin{cases} \partial_t u_j + \partial_x v_j = 0\\ \partial_t v_j + \partial_x u_j + v_j = 0, \end{cases}$$

Defining the damped mode $w_j = v_j + \partial_x u_j$, the system can be rewritten

$$\begin{cases} \partial_t u_j - \partial_{xx}^2 u_j = -\partial_x w_j \\ \partial_t w_j + w_j = -\partial_{xx}^2 w_j - \partial_{xxx}^3 \rho_j. \end{cases}$$

• This diagonalisation exhibits the low-frequency behaviour observed in the spectral analysis: $\lambda_1(\xi) = \xi^2$ and $\lambda_2(\xi) = 1$ for $\xi \ll 1$.

• To deal with the linear source terms, we use the Bernstein inequality

$$\|\partial_{x}f\|_{B^{s}_{p,1}}^{\ell} = \|f\|_{B^{s+1}_{p,1}}^{\ell} = \sum_{j \leq J_{0}} 2^{j(s+1)} \|f_{j}\|_{L^{p}} \leq \sum_{j \leq J_{0}} 2^{js} 2^{j} \|f_{j}\|_{L^{p}} \leq J_{0} \|f\|_{B^{s}_{p,1}}^{\ell}.$$

where J_0 is the threshold between low and high frequencies that has to be chosen small enough.

• A priori estimates in a L^p framework for $2 \le p \le 4$ is available in the low-frequency regime.

イロン イロン イヨン イヨン

In the general case, the system can be rewritten as follows:

$$\begin{cases} \partial_t U_1 + A_{1,1} \partial_x U_1 + A_{1,2} \partial_x U_2 = 0, \\ \partial_t U_2 + A_{2,1} \partial_x U_1 + A_{2,2} \partial_x U_2 + DU_2 = 0. \end{cases}$$
(22)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

In the general case, the system can be rewritten as follows:

$$\begin{cases} \partial_t U_1 + A_{1,1} \partial_x U_1 + A_{1,2} \partial_x U_2 = 0, \\ \partial_t U_2 + A_{2,1} \partial_x U_1 + A_{2,2} \partial_x U_2 - DU_2 = 0. \end{cases}$$
(23)

We define the damped mode

$$W \triangleq U_2 + D^{-1}A_{2,1}\partial_x U_1 + D^{-1}A_{2,2}\partial_x U_2 = D^{-1}\partial_t U_2.$$

・ロト ・回ト ・ヨト ・ヨト

∃ 990

In the general case, the system can be rewritten as follows:

$$\begin{cases} \partial_{t} U_{1} + A_{1,1} \partial_{x} U_{1} + A_{1,2} \partial_{x} U_{2} = 0, \\ \partial_{t} U_{2} + A_{2,1} \partial_{x} U_{1} + A_{2,2} \partial_{x} U_{2} - D U_{2} = 0. \end{cases}$$
(23)

We define the damped mode

$$\boldsymbol{W} \triangleq \boldsymbol{U}_2 + \boldsymbol{D}^{-1}\boldsymbol{A}_{2,1}\partial_x\boldsymbol{U}_1 + \boldsymbol{D}^{-1}\boldsymbol{A}_{2,2}\partial_x\boldsymbol{U}_2 = \boldsymbol{D}^{-1}\partial_t\boldsymbol{U}_2.$$

The system can be rewritten

$$\begin{cases} \partial_t U_1 - A_{1,2} D^{-1} A_{2,1} \partial_x \partial_x U_1 = f \\ \partial_t W + DW = g \end{cases}$$
(24)

(日) (周) (ヨ) (ヨ) (ヨ)

where f and g are controllable in the low-frequency regime with Bernstein-type inequalities.

Question: What can we say about the second order operator $A_{1,2}D^{-1}A_{2,1}\partial_x\partial_x$ in the equation of U_1 ?

To study the equation of U_1 , we have the following property

Lemma

For D > 0, the following assertions are equivalent:

- (A,B) satisfy the Kalman rank condition,
- the operator $\mathcal{A} := A_{1,2} D^{-1} A_{2,1} \partial_{xx}^2$ is strongly elliptic.

 \rightarrow We may study the equations of W and U_1 separately, the former as a damped equation and the latter as a heat equation.

・ロト ・ 一下・ ・ ヨト・

• This approach can be applied to general systems of the form:

$$\begin{cases} \partial_t U + \sum_{j=1}^d A^j(U) \partial_{x_j} U + G(U) = 0, \\ U_0(x, t) = U_0(x), \end{cases}$$
(25)

for solutions close to a constant equilibrium \bar{U} such that $G(\bar{U}) = 0$.

Important assumptions:

- $A_{1,1}(\overline{U}) = 0$ which means that $\overline{u} = 0$ for fluid-type systems (Galilean transformation).
- We need $\bar{U}>$ 0, e.g. $\bar{\rho}>$ 0.

くぼう ヘヨン ヘヨン

• This approach can be applied to general systems of the form:

$$\begin{cases} \partial_t U + \sum_{j=1}^d A^j(U) \partial_{x_j} U + G(U) = 0, \\ U_0(x, t) = U_0(x), \end{cases}$$
(25)

for solutions close to a constant equilibrium \overline{U} such that $G(\overline{U}) = 0$.

Important assumptions:

- $A_{1,1}(\overline{U}) = 0$ which means that $\overline{u} = 0$ for fluid-type systems (Galilean transformation).
- We need $\bar{U} > 0$, e.g. $\bar{\rho} > 0$.

Tools to deal with the nonlinear terms:

• Embeddings for the type:

$$\dot{B}^{rac{d}{p}}_{p,1} \hookrightarrow L^{\infty}, \quad \dot{B}^{rac{d}{p}+1}_{p,1} \hookrightarrow \dot{W}^{1,\infty} \quad ext{and} \quad B^{s}_{2,1} \hookrightarrow B^{s}_{p,1}$$

• Advanced product laws, commutators estimate and composition estimates to deal with the $(L^2)^h \cap (L^p)^\ell$ setting:

$$\|ab\|_{\dot{B}^{5}_{2,1}}^{h} \lesssim \|a\|_{\dot{B}^{\frac{d}{p}}_{p,1}} \|b\|_{\dot{B}^{5}_{2,1}}^{h} + \|b\|_{\dot{B}^{\frac{d}{p}}_{p,1}} \|a\|_{\dot{B}^{5}_{2,1}}^{h} + \|a\|_{\dot{B}^{\frac{d}{p}}_{p,1}}^{\ell} - \frac{d}{p^{*}}} \|b\|_{\dot{B}^{\frac{d}{p}}_{p,1}}^{\ell} + \|b\|_{\dot{B}^{\frac{d$$

Well-posedness result for nonlinear systems.

We set $Z = U - \overline{U}$.

Theorem (Danchin, C-B '22 Math. Ann.)

Let $d\geq 1,\ p\in [2,4].$ There exists $c_0=c_0(p)>0$ and J_0 such that if

$$\|Z_0\|_{\dot{B}^{\frac{d}{p}}_{p,1}}^{\ell} + \|Z_0\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}^{h} \leq c_0,$$

then the system admits a unique solution Z satisfying

$$X_{
ho}(t) \lesssim \|Z_0\|_{\dot{B}^{rac{d}{p}}_{
ho,1}}^\ell + \|Z_0\|_{\dot{B}^{rac{d}{2}+1}_{2,1}}^h \quad ext{for all } t \geq 0,$$

where

$$egin{aligned} X_{m{
ho}}(t) & \triangleq \|Z\|^{h}_{L^{\infty}_{t}(\dot{B}^{\frac{d}{2}+1}_{2,1})} + \|Z\|^{h}_{L^{1}_{t}(\dot{B}^{\frac{d}{2}+1}_{2,1})} + \|Z_{2}\|_{L^{2}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} \ & + \|Z\|^{\ell}_{L^{\infty}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})} + \|Z_{1}\|^{\ell}_{L^{\frac{d}{2}}_{t}(\dot{B}^{\frac{d}{p}+2}_{p,1})} + \|Z_{2}\|^{\ell}_{L^{1}_{t}(\dot{B}^{\frac{d}{p}+1}_{p,1})} + \|W\|_{L^{1}_{t}(\dot{B}^{\frac{d}{p}}_{p,1})}. \end{aligned}$$

Proof: Previous linear analysis + Perturbation and Bootstrap arguments.

・ロト ・四ト ・ヨト ・ヨー

Decay estimates

Theorem (Danchin, C-B '22)

Assuming additionally that $Z_0 \in \dot{B}_{2,\infty}^{-\sigma_1}$ for $\sigma_1 \in \left] - \frac{d}{2}, \frac{d}{2} \right]$ then there exists C > 0 such that

$$\left\|Z(t)\right\|_{\dot{B}^{-\sigma_1}_{2,\infty}} \leq C \left\|Z_0\right\|_{\dot{B}^{-\sigma_1}_{2,\infty}}, \quad \forall t \geq 0.$$

Moreover, if $\sigma_1 > 1 - d/2$,

$$\langle t \rangle \triangleq \sqrt{1+t^2}, \quad \alpha_1 \triangleq \frac{\sigma_1 + \frac{d}{2} - 1}{2} \quad \text{and} \quad C_0 \triangleq \|Z_0\|_{\dot{B}^{-\sigma_1}_{2,\infty}}^{\ell} + \|Z_0\|_{\dot{B}^{\frac{d}{2}+1}_{2}}^{h},$$

then Z satisfies the following decay estimates:

$$\begin{split} \sup_{t\geq 0} \left\| \langle t \rangle^{\frac{\sigma+\sigma_1}{2}} Z(t) \right\|_{\dot{B}^{\sigma}_{2,1}}^{\ell} &\leq CC_0 \quad \text{if} \quad -\sigma_1 < \sigma \leq d/2 - 1, \\ \sup_{t\geq 0} \left\| \langle t \rangle^{\frac{\sigma+\sigma_1}{2} + \frac{1}{2}} Z_2(t) \right\|_{\dot{B}^{\sigma}_{2,1}}^{\ell} &\leq CC_0 \quad \text{if} \quad -\sigma_1 < \sigma \leq d/2 - 2, \\ \text{and} \quad \sup_{t\geq 0} \left\| \langle t \rangle^{2\alpha_1} Z(t) \right\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}^{h} &\leq CC_0. \end{split}$$

Extensions

• The hypocoercive-type analysis can be extended to general system of any order

$$\partial_t V + A(D)V + L(D)V = 0$$
, where

- A(D) is a skew-symmetric homogeneous Fourier multiplier of order α ,
- L(D) is a partially elliptic homogeneous Fourier multiplier of order β .
- What dictates the decay rates is difference of order between A and L.

・ 同 ト ・ ヨ ト ・ ヨ ト

Extensions

• The hypocoercive-type analysis can be extended to general system of any order

$$\partial_t V + A(D)V + L(D)V = 0$$
, where

- A(D) is a skew-symmetric homogeneous Fourier multiplier of order α ,
- L(D) is a partially elliptic homogeneous Fourier multiplier of order β .
- What dictates the decay rates is difference of order between A and L.
- Anisotropic case (cf. Bianchini-CB-Paicu) concerning stably stratified solutions of the 2D-Boussinesq system.
- **Open question:** What kind of nonlinearities can we include depending on the partial effect occurring? Relation between partial dissipation, hyperbolicity and anisotropy.

ヘロト 人間ト ヘヨト ヘヨト

Extensions

• The hypocoercive-type analysis can be extended to general system of any order

$$\partial_t V + A(D)V + L(D)V = 0$$
, where

- A(D) is a skew-symmetric homogeneous Fourier multiplier of order α,
- L(D) is a partially elliptic homogeneous Fourier multiplier of order β .
- What dictates the decay rates is difference of order between A and L.
- Anisotropic case (cf. Bianchini-CB-Paicu) concerning stably stratified solutions of the 2D-Boussinesq system.
- **Open question:** What kind of nonlinearities can we include depending on the partial effect occurring? Relation between partial dissipation, hyperbolicity and anisotropy.
- Another interesting case

$$\partial_t U + A \partial_x U + B U = 0$$

for A symmetric and B non-symmetric e.g. Euler-Maxwell system or Timoshenko system

• One must consider Kalman rank condition for (B^s, B^a) where B^s is the symmetric part of B and B^a the skew-symmetric part.

Second part: Relaxation procedure and hyperbolisation

< 回 > < 三 > < 三 > -

Cattaneo approximation of the heat equation

Let us consider the heat equation on \mathbb{R}^d

$$\partial_t \rho - \Delta \rho = 0.$$

Its hyperbolic Cattaneo approximation reads

$$\begin{cases} \partial_t \rho_{\varepsilon} + \partial_x u_{\varepsilon} = 0, \\ \varepsilon^2 \partial_t u_{\varepsilon} + \partial_x \rho_{\varepsilon} + u_{\varepsilon} = 0. \end{cases}$$
(26)

When $\varepsilon \to 0$, we recover a heat equation for ρ and a Darcy-type law $u = \partial_x \rho$.

Cattaneo approximation of the heat equation

Let us consider the heat equation on \mathbb{R}^d

$$\partial_t \rho - \Delta \rho = 0.$$

Its hyperbolic Cattaneo approximation reads

$$\begin{cases} \partial_t \rho_{\varepsilon} + \partial_x u_{\varepsilon} = 0, \\ \varepsilon^2 \partial_t u_{\varepsilon} + \partial_x \rho_{\varepsilon} + u_{\varepsilon} = 0. \end{cases}$$
(26)

When $\varepsilon \to 0$, we recover a heat equation for ρ and a Darcy-type law $u = \partial_x \rho$.

- System (26) has a partially dissipative and hyperbolic structure.
- \rightarrow Dissipative hyperbolisation.
- How to justify the limit $\varepsilon \to 0$ rigorously?

Hypocoercivity for hyperbolic systems Hyperbolic relaxation

Solution first! Spectral analysis

Cattaneo approximation:

$$\begin{cases} \partial_t \rho_{\varepsilon} + \partial_x u_{\varepsilon} = \mathbf{0} \\ \varepsilon^2 \partial_t u_{\varepsilon} + \partial_x \rho_{\varepsilon} + u_{\varepsilon} = \mathbf{0} \end{cases}$$

$$\xrightarrow[\varepsilon \to 0]{} \partial_t \rho - \partial_{xx}^2 \rho = 0$$

・ロン ・四 と ・ ヨ と ・ ヨ と

÷.

Hypocoercivity for hyperbolic systems Hyperbolic relaxation

Solution first! Spectral analysis

Cattaneo approximation:

$$\overrightarrow{\partial}_{t}\rho - \partial_{xx}^{2}\rho = 0$$

★御★ ★注★ ★注★

- The Cattaneo approximation creates a high-frequency regime where the solution is exponentially damped.
- The high-frequency regime vanishes in the relaxation limit.
- Goal: Justify this process for nonlinear systems.

• We work with the following hybrid homogeneous Besov norms:

$$\|f\|_{\dot{B}^s_{2,1}}^h \triangleq \sum_{j \ge \frac{\eta}{\varepsilon}} 2^{js} \|\dot{\Delta}_j f\|_{L^2} \quad \text{and} \quad \|f\|_{\dot{B}^{s'}_{\rho,1}}^\ell \triangleq \sum_{j \le \frac{\eta}{\varepsilon}} 2^{js'} \|\dot{\Delta}_j f\|_{L^p}.$$

イロン イヨン イヨン -

Spaces

• We work with the following hybrid homogeneous Besov norms:

$$\|f\|^{h}_{\dot{B}^{s}_{2,1}} \triangleq \sum_{j \geq \frac{\eta}{\varepsilon}} 2^{js} \|\dot{\Delta}_{j}f\|_{L^{2}} \quad \text{and} \quad \|f\|^{\ell}_{\dot{B}^{s'}_{p,1}} \triangleq \sum_{j \leq \frac{\eta}{\varepsilon}} 2^{js'} \|\dot{\Delta}_{j}f\|_{L^{p}}.$$

• For low-frequencies: $j \leq \frac{\eta}{\varepsilon}$,

$$\begin{cases} \partial_t \rho_j + \partial_x u_j = 0\\ \varepsilon^2 \partial_t u_j + \partial_x \rho_j + u_j = 0, \end{cases}$$

defining the damped mode $w = v + \partial_x u$, the system can be rewritten as

$$\begin{cases} \partial_t \rho_j - \partial_{xx}^2 \rho_j = -\partial_x w, \\ \varepsilon \partial_t w_j + \frac{w_j}{\varepsilon} = -\varepsilon \partial_{xxx}^3 \rho_j - \varepsilon \partial_{xx}^2 w. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Spaces

• We work with the following hybrid homogeneous Besov norms:

$$\|f\|_{\dot{B}^s_{2,1}}^h \triangleq \sum_{j \geq \frac{\eta}{\varepsilon}} 2^{js} \|\dot{\Delta}_j f\|_{L^2} \quad \text{and} \quad \|f\|_{\dot{B}^{s'}_{p,1}}^\ell \triangleq \sum_{j \leq \frac{\eta}{\varepsilon}} 2^{js'} \|\dot{\Delta}_j f\|_{L^p}.$$

• For low-frequencies: $j \leq \frac{\eta}{\varepsilon}$,

$$\begin{cases} \partial_t \rho_j + \partial_x u_j = 0\\ \varepsilon^2 \partial_t u_j + \partial_x \rho_j + u_j = 0, \end{cases}$$

defining the damped mode $w = v + \partial_x u$, the system can be rewritten as

$$\begin{cases} \partial_t \rho_j - \partial_{xx}^2 \rho_j = -\partial_x w, \\ \varepsilon \partial_t w_j + \frac{w_j}{\varepsilon} = -\varepsilon \partial_{xxx}^3 \rho_j - \varepsilon \partial_{xx}^2 w. \end{cases}$$

Due to the different threshold, the Bernstein inequality becomes:

$$\|\partial_{x}f\|_{B^{s}_{p,1}}^{\ell} \leq \frac{\eta}{\varepsilon}\|f\|_{B^{s}_{p,1}}^{\ell}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

For $s \in \mathbb{R}$, we have

$$\begin{aligned} \|(u,\varepsilon w)(t)\|_{B^{s}_{\rho,1}}^{\ell} + \|\rho\|_{L^{1}_{T}(B^{s+2}_{\rho,1})}^{\ell} + \frac{1}{\varepsilon}\|w\|_{L^{1}_{T}(B^{s}_{\rho,1})}^{\ell} \leq \|(u_{0},w_{0})\|_{B^{s}_{\rho,1}}^{\ell} + \varepsilon\|w\|_{L^{1}_{T}(B^{s+2}_{\rho,1})}^{\ell} \\ + \varepsilon\|\rho\|_{L^{1}_{T}(B^{s+3}_{\rho,1})}^{\ell} \end{aligned}$$

イロン イヨン イヨン -

For $s \in \mathbb{R}$, we have

$$\begin{aligned} \|(u,\varepsilon w)(t)\|_{B^{s}_{p,1}}^{\ell} + \|\rho\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} + \frac{1}{\varepsilon}\|w\|_{L^{1}_{T}(B^{s}_{p,1})}^{\ell} \leq \|(u_{0},w_{0})\|_{B^{s}_{p,1}}^{\ell} + \varepsilon\|w\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \\ + \varepsilon\|\rho\|_{L^{1}_{T}(B^{s+3}_{p,1})}^{\ell} \end{aligned}$$

With the Berstein inequality, we have

$$\varepsilon \|\rho\|_{L^{1}_{T}(B^{s+3}_{p,1})}^{\ell} \leq \eta \|\rho\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \quad \text{and} \quad \varepsilon \|w\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \leq \frac{\eta^{2}}{\varepsilon} \|w\|_{L^{1}_{T}(B^{s}_{p,1})}^{\ell}.$$

Thus, choosing η small enough, these terms can be absorbed by the l.h.s.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э.

For $s \in \mathbb{R}$, we have

$$\begin{aligned} \|(u,\varepsilon w)(t)\|_{B^{s}_{p,1}}^{\ell} + \|\rho\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} + \frac{1}{\varepsilon}\|w\|_{L^{1}_{T}(B^{s}_{p,1})}^{\ell} \leq \|(u_{0},w_{0})\|_{B^{s}_{p,1}}^{\ell} + \varepsilon\|w\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \\ + \varepsilon\|\rho\|_{L^{1}_{T}(B^{s+3}_{p,1})}^{\ell} \end{aligned}$$

With the Berstein inequality, we have

$$\varepsilon \|\rho\|_{L^{1}_{T}(B^{s+3}_{p,1})}^{\ell} \leq \eta \|\rho\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \quad \text{and} \quad \varepsilon \|w\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \leq \frac{\eta^{2}}{\varepsilon} \|w\|_{L^{1}_{T}(B^{s}_{p,1})}^{\ell}.$$

Thus, choosing η small enough, these terms can be absorbed by the l.h.s.

• This estimate provides $\mathcal{O}(\varepsilon)$ bounds on $w = u + \partial_x \rho$ which is crucial to justify the relaxation.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

э.

For $s \in \mathbb{R}$, we have

$$\begin{aligned} \|(u,\varepsilon w)(t)\|_{B^{s}_{p,1}}^{\ell} + \|\rho\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} + \frac{1}{\varepsilon}\|w\|_{L^{1}_{T}(B^{s}_{p,1})}^{\ell} \leq \|(u_{0},w_{0})\|_{B^{s}_{p,1}}^{\ell} + \varepsilon\|w\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \\ + \varepsilon\|\rho\|_{L^{1}_{T}(B^{s+3}_{p,1})}^{\ell} \end{aligned}$$

With the Berstein inequality, we have

$$\varepsilon \|\rho\|_{L^{1}_{T}(B^{s+3}_{p,1})}^{\ell} \leq \eta \|\rho\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \quad \text{and} \quad \varepsilon \|w\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \leq \frac{\eta^{2}}{\varepsilon} \|w\|_{L^{1}_{T}(B^{s}_{p,1})}^{\ell}.$$

Thus, choosing η small enough, these terms can be absorbed by the l.h.s.

• This estimate provides $\mathcal{O}(\varepsilon)$ bounds on $w = u + \partial_x \rho$ which is crucial to justify the relaxation.

• High frequencies $j \ge \frac{\eta}{\varepsilon}$: Hypocoercivity-type approach but there is no damped mode!

High frequencies trick

To be able to recover $\mathcal{O}(\varepsilon)$ bounds on w in high frequencies, we use the Bernstein inequality

$$\|f\|_{B^s_{2,1}}^h \leq \frac{\varepsilon}{\eta} \|\partial_x f\|_{B^s_{2,1}}^h.$$

2

イロト イヨト イヨト イヨト

High frequencies trick

To be able to recover $\mathcal{O}(\varepsilon)$ bounds on w in high frequencies, we use the Bernstein inequality

$$\|f\|_{B^s_{2,1}}^h \leq \frac{\varepsilon}{\eta} \|\partial_x f\|_{B^s_{2,1}}^h.$$

Say you want to obtain uniform bounds for w in $B_{2,1}^{\frac{d}{2}}$, then you should assume that the initial data are in $B_{2,1}^{\frac{d}{2}+1}$ and use that

$$\|w\|_{B^{\frac{d}{2}}_{2,1}}^{h} \leq \frac{\varepsilon}{\eta} \|w\|_{B^{\frac{d}{2}+1}_{2,1}}^{h}.$$

 \implies We must study the low and high frequencies at different regularities.

In the general case, the system can be rewritten as follows:

$$\begin{cases} \partial_t Z_1 + \sum_{k=1}^d \left(A_{1,1}^k(V) \partial_k Z_1 + A_{1,2}^k(V) \partial_k Z_2 \right) = 0, \\ \partial_t Z_2 + \sum_{k=1}^d \left(A_{2,1}^k(V) \partial_k Z_1 + A_{2,2}^k(V) \partial_k Z_2 \right) + \frac{L_2 Z_2}{\varepsilon} = 0. \end{cases}$$

We define the damped mode:

$$\boldsymbol{W} \triangleq Z_2 + \varepsilon \sum_{k=1}^{d} L_2^{-1} (\boldsymbol{A}_{2,1}^k(\boldsymbol{V}) \partial_k Z_1 + \boldsymbol{A}_{2,2}^k(\boldsymbol{V}) \partial_k Z_2) = -L_2^{-1} \partial_t Z_2.$$

・ロ・・(型・・モー・・モー・)

Ξ.
General case

In the general case, the system can be rewritten as follows:

$$\begin{cases} \partial_t Z_1 + \sum_{k=1}^d \left(A_{1,1}^k(V) \partial_k Z_1 + A_{1,2}^k(V) \partial_k Z_2 \right) = 0, \\ \partial_t Z_2 + \sum_{k=1}^d \left(A_{2,1}^k(V) \partial_k Z_1 + A_{2,2}^k(V) \partial_k Z_2 \right) + \frac{L_2 Z_2}{\varepsilon} = 0. \end{cases}$$

We define the damped mode:

$$\boldsymbol{W} \triangleq Z_2 + \varepsilon \sum_{k=1}^d L_2^{-1} (\boldsymbol{A}_{2,1}^k(\boldsymbol{V}) \partial_k Z_1 + \boldsymbol{A}_{2,2}^k(\boldsymbol{V}) \partial_k Z_2) = -L_2^{-1} \partial_t Z_2.$$

The system can be rewritten

$$\begin{cases} \partial_t W + \frac{L_2 W}{\varepsilon} = g\\ \partial_t Z_1 - \varepsilon \sum_{k=1}^d \sum_{\ell=1}^d \bar{A}_{1,2}^k L_2^{-1} \bar{A}_{2,1}^\ell \partial_k \partial_\ell Z_1 = f \end{cases}$$
(27)

= 990

where f and g are controllable in the low-frequency regime.

General case

To study the equation of Z_1 , we have the following property

Lemma

Assume that $\forall k \in \{1, \dots, d\}, \ \bar{A}_{1,1}^k = 0$. The following assertions are equivalent:

- the system satisfy the (SK) condition at \overline{V} ;
- the operator $\mathcal{A} := \sum_{k=1}^{d} \sum_{\ell=1}^{d} \bar{A}_{1,2}^{k} L_{2}^{-1} \bar{A}_{2,1}^{\ell} \partial_{k} \partial_{\ell}$ is strongly elliptic.

To study the equation of Z_1 , we have the following property

Lemma

Assume that $\forall k \in \{1, \dots, d\}, \ \bar{A}_{1,1}^k = 0$. The following assertions are equivalent:

- the system satisfy the (SK) condition at \bar{V} ;
- the operator $\mathcal{A} := \sum_{k=1}^{d} \sum_{\ell=1}^{d} \bar{A}_{1,2}^{k} L_{2}^{-1} \bar{A}_{2,1}^{\ell} \partial_{k} \partial_{\ell}$ is strongly elliptic.

 \rightarrow We may study the equations of W and Z₁ separately, the former as a damped equation and the latter as a heat equation.

(日) (周) (ヨ) (ヨ) (ヨ)

Hypocoercivity for hyperbolic systems Hyperbolic relaxation

Back to the compressible Euler equations

・ロト ・回ト ・ヨト ・ヨト

Back to the compressible Euler equations

The system reads:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \varepsilon^2 (\partial_t u + u \cdot \nabla u) + \frac{\nabla P(\rho)}{\rho} + u = 0. \end{cases}$$
(E)

The damped mode associated to the relaxation is $w = u + \frac{\nabla P(\rho)}{\rho}$.

・ロト ・ 一下・ ・ ヨト・

= 990

Back to the compressible Euler equations

The system reads:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \varepsilon^2 (\partial_t u + u \cdot \nabla u) + \frac{\nabla P(\rho)}{\rho} + u = 0. \end{cases}$$
(E)

The damped mode associated to the relaxation is $w = u + \frac{\nabla P(\rho)}{\rho}$.

Inserting it in the above equation, we recover

$$\partial_t \rho - \Delta P(\rho) = \operatorname{div} w.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Back to the compressible Euler equations

The system reads:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \varepsilon^2 (\partial_t u + u \cdot \nabla u) + \frac{\nabla P(\rho)}{\rho} + u = 0. \end{cases}$$
(E)

The damped mode associated to the relaxation is $w = u + \frac{\nabla P(\rho)}{\rho}$.

Inserting it in the above equation, we recover

$$\partial_t \rho - \Delta P(\rho) = \operatorname{div} w.$$

 \bullet Let ${\cal N}$ be the solution of the porous media equation:

$$\partial_t \mathcal{N} - \Delta P(\mathcal{N}) = 0.$$

Then, using that $\|w\|_{L^1_T(B^s_{\rho,1})} = \mathcal{O}(\varepsilon)$, in the error estimates for $\tilde{\rho} = \rho - \mathcal{N}$, we can justify that ρ converges strongly toward \mathcal{N} in $B^{s-1}_{p,1}$.

Relaxation result

Theorem (Danchin, C-B, Math. Ann. 2022)

Let $d \ge 1$, $p \in [2, 4]$ and $\varepsilon > 0$.

- Let ρ̄ be a strictly positive constant and (ρ^ε − ρ̄, u^ε) be the solution of the compressible Euler system with damping (constructed with the previous arguments)
- Let N ∈ C_b(ℝ⁺; B^{d/p}_{p,1}) ∩ L¹(ℝ⁺; B^{d/p+2}_{p,1}) be the unique solution associated to the Cauchy problem:

$$\left\{egin{array}{l} \partial_t \mathcal{N} - \Delta P(\mathcal{N}) = 0 \ \mathcal{N}(0,x) = \mathcal{N}_0 \in \dot{B}_{p,1}^{rac{d}{p}} \end{array}
ight.$$

If we assume that

$$\|\rho_0^{\varepsilon} - \mathcal{N}_0\|_{B^{\frac{d}{p}-1}_{\rho,1}} \leq C\varepsilon,$$

then

$$\|\rho^{\varepsilon}-\mathcal{N}\|_{L^{\infty}(\mathbb{R}_{+};\dot{B}^{\frac{d}{p}-1}_{\rho,1})}+\|\rho^{\varepsilon}-\mathcal{N}\|_{L^{1}(\mathbb{R}_{+};\dot{B}^{\frac{d}{p}+1}_{\rho,1})}+\left\|\frac{\nabla P(\rho^{\varepsilon})}{\rho^{\varepsilon}}+u^{\varepsilon}\right\|_{L^{1}(\mathbb{R}^{+};\dot{B}^{\frac{d}{p}}_{\rho,1})}\leq C\varepsilon.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

Remarks

Remarks

- Performing a similar analysis with Sobolev spaces does not allow (to the best of my knowledge) to exhibit an explicit convergence rate.
- It only leads to $\|w\|_{L^2_T(H^s)} = \mathcal{O}(1)$ vs $\|w\|_{L^1_T(B^s_{2,1})} = \mathcal{O}(\varepsilon)$

▲ロ ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● ● ● ● ● ●

Remarks

Remarks

- Performing a similar analysis with Sobolev spaces does not allow (to the best of my knowledge) to exhibit an explicit convergence rate.
- It only leads to $\|w\|_{L^2_T(H^s)} = \mathcal{O}(1)$ vs $\|w\|_{L^1_T(B^s_{2,1})} = \mathcal{O}(\varepsilon)$
- First result to establish the strong relaxation limit in the multi-dimensional setting.
- It can be employed in many other contexts.

The Jin-Xin Approximation.

・ロト ・回ト ・ヨト ・ヨト

Ξ.

Jin-Xin Approximation

We justified the strong convergence of the diffusive Jin-Xin approximation

$$\begin{cases} \frac{\partial}{\partial t}u + \sum_{i=1}^{d}\frac{\partial}{\partial x_{i}}v_{i} = 0, \\ \varepsilon^{2}\frac{\partial}{\partial t}v_{i} + A_{i}\frac{\partial}{\partial x_{i}}u = -(v_{i} - f_{i}(u)), \quad i = 1, 2, ..., d, \end{cases}$$
(28)

toward viscous conservation laws:

$$\frac{\partial}{\partial t}u^* + \sum_{i=1}^d \frac{\partial}{\partial x_i} f_i(u^*) = \sum_{i=1}^d \frac{\partial}{\partial x_i} (A_i \frac{\partial}{\partial x_i} u^*).$$
(29)

ヘロン 不可と 不可と イロン

э.

• In a L^2 framework, collaboration with L-Y. Shou (JDE) '23

- In an hybrid $L^2 L^p$ framework, collaboration with L-Y Shou and J. Zhang.
- Applications in numerical analysis.

In joint work with Q. He and L-Y. Shou, we studied the following hyperbolic-parabolic system:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla P(\rho) + \frac{1}{\varepsilon}\rho u - \mu\rho\nabla\phi = 0, \\ \partial_t \phi - \Delta\phi - a\rho + b\phi = 0, \qquad x \in \mathbb{R}^d, \quad t > 0, \end{cases}$$
(HPC)

In this case, when $\varepsilon \to 0$, we show that the diffusive-rescaled solution of (HPC) converges strongly to the solution of the Keller-Segel system:

$$\begin{cases} \partial_t \rho - \operatorname{div} \left(\nabla P(\rho) - \mu \rho \nabla \phi \right) = 0, \\ \rho u = -\nabla P(\rho) + \mu \rho \nabla \phi, \\ -\Delta \phi - a\rho + b\phi = 0, \end{cases}$$
(KS)

イロト イポト イヨト イヨト

In a joint work with C. Burtea, J. Tan and L.-Y. Shou, we studied the following damped Baer-Nunziato system:

$$\begin{cases} \partial_t \alpha_{\pm} + u \cdot \nabla \alpha_{\pm} = \pm \frac{\alpha_+ \alpha_-}{2\mu + \lambda} (P_+ (\rho_+) - P_- (\rho_-)), \\ \partial_t (\alpha_{\pm} \rho_{\pm}) + \operatorname{div} (\alpha_{\pm} \rho_{\pm} u) = 0, \\ \partial_t (\rho u) + \operatorname{div} (\rho u \otimes u) + \nabla P + \eta \rho u = 0, \\ \rho = \alpha_+ \rho_+ + \alpha_- \rho_-, \\ P = \alpha_+ P_+ (\rho_+) + \alpha_- P_- (\rho_-) \end{cases}$$
(BN)

Limit $\lambda, \mu, \nu \to 0$.

- Difficulties: the entropy that is naturally associated with this system is only positive semi-definite.
- The system (BN) is not a system of conservation laws
- We find an ad-hoc change of variables that enables us to symmetrize the system with a good structure to treat the nonlinear terms.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Other applications:

- Hyperbolic Navier-Stokes system, on-going work with S. Kawashima, J. Xu and E. Zuazua.
- 2D-Boussinesq System (Bianchini-CB-Paicu) ARMA '24.
- Baer-Nunziato System (Burtea-CB-Tan), M3AS '23.
- Chemotaxis/Keller-Segel, (CB-He-Shou) SIAM '23.

< 同 > < 三 > < 三 >

Conclusion

- Hypocoercivity tells you that when the dissipation is not strong enough, its interactions with the hyperbolic part can make up for the lack of coercivity.
- When the skew-symmetric operator A and the dissipative B are of different order then the decay rates may not be exponential and the rates depend on the difference of their order.
- In the full space \mathbb{R}^d and the Torus \mathbb{T}^d , the classical hypocoercivity techniques need to be extended to treat the low frequencies.
- The hyperbolic relaxation creates a temporary exponentially stable high-frequency regime and the low frequencies correspond to the behavior of the limit system.

- 4 回 ト 4 回 ト

Thank you!

Crin-Barat Timothée Partially dissipative systems

イロト イヨト イヨト イヨト

Ξ.

Hypocoercivity for hyperbolic systems Hyperbolic relaxation

Formal link between (IPM) and (2D-B)

The 2-dimensional Boussinesq system read

$$\begin{cases} \partial_t \eta + \mathbf{u} \cdot \nabla \eta = 0, \\ \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla P = \eta \mathbf{g}, \qquad \mathbf{g} = (0, -g), \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$
(E)

The linearized system around $\overline{\rho}_{\mathsf{eq}}(y) = \rho_0 - y$, reads

$$\begin{cases} \partial_t b - \mathcal{R}_1 \Omega = 0, \\ \varepsilon^2 \partial_t \Omega - \mathcal{R}_1 b + \Omega = 0. \end{cases}$$
(30)

where

$$\mathcal{R}_1 = rac{\partial_x}{(-\Delta)^{-rac{1}{2}}}$$

Formally, as $\varepsilon \to 0$, the second equation gives the Darcy's law $\tilde{\Omega}^{\varepsilon} = \mathcal{R}_1 \tilde{b}^{\varepsilon}$ and inserting it in the first one gives the linear part of the incompressible porous media equation:

$$\partial_t \widetilde{b}^{\varepsilon} - \mathcal{R}_1^2 \widetilde{b}^{\varepsilon} = 0.$$

Overdamping

Figure: A graph of overdamping phenomenon for System (??).

・ロ・・(型・・モー・・モー・