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Abstract

We derive a novel two-phase flow system in porous media as a relaxation limit of compressible
multi-fluid systems. Considering a one-velocity Baer-Nunziato system with friction forces, we first
justify its pressure-relaxation limit toward a Kapila model in a uniform manner with respect to
the time-relaxation parameter associated with the friction forces. Then, we show that the diffusely
rescaled solutions of the damped Kapila system converge to the solutions of the new two-phase
porous media system as the time-relaxation parameter tends to zero. In addition, we also prove
the convergence of the Baer-Nunziato system to the same two-phase porous media system as both
relaxation parameters tend to zero. For each relaxation limit, we exhibit sharp rates of convergence
in a critical regularity setting.

Our proof is based on an elaborate low-frequency and high-frequency analysis via the Littlewood-
Paley decomposition and includes three main ingredients: a refined spectral analysis of the linearized
problem to determine the frequency threshold explicitly in terms of the time-relaxation parameter,
the introduction of an effective flux in the low-frequency region to overcome the loss of parameters
due to the overdamping phenomenon, and renormalized energy estimates in the high-frequency region
to cancel higher-order nonlinear terms. To justify the convergence rates, we discover several auzxiliary

unknowns allowing us to recover crucial O(g) bounds.

Keywords— Multi-fluid system, pressure-relaxation limit, overdamping phenomenon, critical regu-
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1 Introduction

1.1 Models and motivations

Multi-phase flows have been used to simulate a wide range of physical mixing phenomenon, from
engineering to biological systems (cf. [1,11,32,46] and the references therein). In the present paper, we

investigate an inviscid compressible one-velocity Baer-Nunziato system with two different pressure laws
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in presence of drag forces, which was discussed in the recent work [10] of Bresch and Hillairet:

ayo
Oray +u-Vay = %(P+(P+) —P_(p-)),
Or(axps) + div (axpru) =0, (BN)
8t(pu)+div(pu®u)+vp+%:0, reRY t>0,

where the unknowns ax = a4 (¢, z) € [0,1], p+ = p+(t,x) > 0 and u = u(t,z) € R stand for the volume
fractions, the densities and the common velocity of two fluids (denoted by 4+ and —), respectively, which
satisfy

apt+a-=1,  p=aiprtap., P=arP(py)+a_P_(p-)

The two positive constants € and 7 are (small) relaxation parameters associated to the pressure-relaxation

and time-relaxation limits. Finally, the two pressures P, and P_ take the gamma-law forms
P, (s) = Ays"* with constants Ay > 0, 1<~y <4 (1.1)

The Baer-Nunziato terminology refers to the pressure-relaxation mechanism in the equations of volume
fractions. Numerically, such relaxation procedure can simplify its resolution as it reduces the number
of constraints by introducing new unknowns: two pressures instead of one. The readers can see [10]
and references therein for more discussions on this pressure-relaxation process. Very recently, the one-
dimensional version of System (BN) was rigorously derived by Bresch, Burtea and Lagoutiére in [6,7].

There is an extensive literature on the mathematical analysis of multi-fluid systems. For example,
in the one-velocity case, the global existence of weak solutions has been studied in [14,37,42,45,47,52],
and the global well-posedness and optimal time-decay rates of strong solutions has been established in
the framework of Sobolev spaces [30, 51,53, 54] and critical Besov spaces [15,31,36], etc. We also refer
to [9,12,13,26,35] on the study of multi-fluid systems in the two-velocity case. Complete reviews on multi-
fluid systems are presented in [8,48]. Concerning the study of relaxation problems associated to systems
of conservation laws, it can be traced back to the work [16] by Chen, Levermore and Liu. Recently,
Giovangigli and Yong in [28,29] studied a relaxation problem arising in the dynamics of perfect gases out
of thermodynamic equilibrium.

At the formal level, the solution (37, p3",u®") of System (BN) tends, as ¢ — 0, to some limit
(a7, pT, u”) that satisfies the so-called one-velocity Kapila system (cf. [34]):

Op(alpl) +div (alpluT) =0,
O(p"u") +div(pu” @u”) + VP + p: =0, (K)

PT = Pl(ps)=P(p-),

with a7 + a7 =1 and p” = o] p} +a” p”. System (K) can be rewritten as classical two-phase fluid
models of drift-flux type, see [25,32,47] and the references therein. For existence of finite energy weak
solutions to System (K) with viscosities, refer to the recent works [14,37,42,47].

Then, we further investigate the time-relaxation limit of System (K) as 7 — 0. Inspired by the

works [17,33,50] concerning the relaxation problems for the compressible Euler system with damping,



we introduce a large time-scale O(1/7) and define the following charge of variables

T

U s
(BL, 0%, vT)(s,x) = (a;,p; > <77x) . (1.2)
T T
Under the diffusive scaling (1.2), System (K) becomes

95(BLok) + div(BLeiv™) =0,

7205(0"v") + T2div (070" @ vT) + VII™ + o"v” = 0, (K-)
with o7 = B7pl + BTo7 and II” = Py (0} ) = P_(o”). As 7 — 0, one then expects that (8%, 0%,v7)
converges to some limit (84, o+, v) which is the solution of a new two-phase system

9s(Bex) + div (Bro+v) =0,
VII + v =0, (1.3)
5-"- + 6— = ]-a

with o = f104 + f—o— and I = P, (04) = P_(0-). Inserting Darcy’s law (1.3), into (1.3),, we derive

the following two-phase system in porous media:

_ _ O =7 )BB- ( Vi )
O vv Ve = s W \ B 1 he )
oMl +v-viT = — =1Ly (VH )
oV Y4B + =B+ Y\ Bror 480" ) (PM)
54’ + ﬁ* = ]-a
I = Py (04) = P-(0-).

The present paper is a follow-up to the paper [15] by Burtea, Crin-Barat and Tan where the authors
justified the pressure-relaxation limit for the viscous version of System (BN) to System (K). In [15],
the smallness condition on initial data employed to justify their global well-posedness result depends on
min{7, 2} (due to the overdamping phenomenon that will be explained below) and therefore does not

allow to further investigate the limit when 7 — 0.

The main results of this article are the quantitative justification of the pressure-relaxation limit from
System (BN) to System (K) as € — 0 uniformly in 7 and the time-relazation limit from System (K.) to
System (PM) as 7 — 0. Consequently, a new two-phase flow system in porous media (PM) is rigorously
derived from Systems (K, ) and (BN, ), which implies that Kapila and Baer-Nunziato systems considered

in our paper can be viewed, for € and 7 small enough, as hyperbolic approximations of (PM).

For both relaxation limits, we will focus on global-in-time strong solutions being small perturbations
of constant equilibrium states. In other words, we consider solutions (a3", p7",u7) to System (BN)
(resp. (o, pL,u”) to System (K)) with positive densities and volume fractions which, as |z| — oo, tend

to some thermodynamically stable equilibrium state (@4, g+, 0) fulfilling

O<O_é:|:<17 0_5++O_é—:17 ﬁ:l:>07 P+(ﬁ+):P—(15—) (14)



For convenience, we also define the corresponding equilibrium state for the total density and the total
pressure as
pi=aypy +a-p-,  P:=Pi(py)=P-(p-) (1.5)
To achieve our goals, we prove uniform in € and 7 (such that € < 7) a priori estimate for System (BN)
which improves the analysis performed in [15] that did not provide uniform-in-7 estimate. Such estimate
allows us to justify a global well-posedness for a class of non-symmetric partially dissipative hyperbolic
systems with rough coefficients in the context of overdamping phenomenon, which is not covered by the
recent lecture of Danchin [24]. Indeed, our proof generalizes the techniques developed in [5,18,19,21]
which cannot be directly applied to System (BN) due to the complex forms of the total pressure and the

lack of symmetry.

On the other hand, it is natural to ask what happens for System (BN) as 7 tends to 0 first. To

investigate this process, we introduce a diffusive scaling similar to (1.2) as follows

e,T  ET &, T e,  E,T UE7T S
(B, 037,057 (s,x) == | a3, pY S (f,x). (1.6)

T

Under such scaling (1.6), System (BN) becomes

E,T QE,T
QBT 07T VBT = == (P — P-e),
Ds(BET 05T + div (B3 03 T0™7) =0, (BN,)

7288(96,71}6,7) + 7‘2div (QE’T’UE’T ® vg,q—) + VI + QE’TUE’T —0,

with 877 4+ 827 =1, 057 = 27077 + 827077 and 1157 = L7 P (077) + B2 P_(0=7). The crucial
observation is that the parameter 7 now also appears under the pressure-relaxation term in the equation
of the volume fractions. This reveals that as 7 — 0, the two pressures in System (BN,) should converge
to a common pressure, and the solutions of System (BN) should converge to the solutions of System
(K) regardless of . Additionally, in the sequel of the paper we are only able to justify the limit in the
case € < 7 which corresponds to the situation that the time-scale of the pressure-relaxation is small than
the time-scale of the diffusive relaxation. The condition £ < 7 appears in the spectral analysis of the
system (see Section 1.4) and is essential for us to close the uniform a-priori estimate in both low and
high frequencies (See Sections 3.1-3.2 for the details). But in a formal way, the condition ¢ < 7 seems
not necessary in the limit process 7 — 0, so the case € > 7 remains an interesting open problem. The

Figure 1 summarizes the limit processes that we tackle in this article.

1.2 Outline of the paper

The rest of the paper is organized as follows. Our main results are stated in Section 1.3. In Section
1.4, we first recall a reformulation of System (BN) from [15] and present an explicit spectral analysis
for the associated linear system, then the difficulties and strategies of proof are discussed. Section 2
is devoted to some notations and properties of Besov spaces and Littlewood-Paley decomposition, and
the regularity estimates for some linear problems are stated. In Section 3, we establish uniform a priori

estimate for the linearized problem. Next, in Section 4, we prove the global existence and uniqueness
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Figure 1: Relaxation limits diagram.

results of solutions for Systems (BN), (K) and (PM), respectively. Section 5 is devoted to the justification

of the relaxation limits with explicit convergence rates.

Notations. We end this section by presenting a few notations. As usual, we denote by C' (and
sometimes with subscripts) harmless positive constants that may change from line to line, and A < B
(A Z B) means that both A < CB (A > CB), while A ~ B means that A < Band A > B. For X a
Banach space, p € [1,00] and T' > 0, the notation LP(0,T; X) or L4.(X) designates the set of measurable
functions f : [0,7] — X with t = || f(t)||x in LP(0,T'), endowed with the norm [|-[| e (x) == [|[|*|x[|r (0.7)-
We agree that Cp([0,77]; X) denotes the set of continuous and bounded (uniformly in T') functions from
[0,T] to X. Sometimes, we use the notation LP(X) to designate the space LP(Ry;X) and || - [[z»(x)
for the associated norm. We will keep the same notations for multi-component functions, namely for
f:10,T] = X™ with m € N. F and F~! stand for the Fourier transform and its inverse, and define the
operator A° := F~1(|¢|7F(+)). Finally, let o(1) denote a generic constant which can be sufficiently small.

1.3 Main results

Our first theorem concerns the uniform, in both relaxation parameters € and 7, global well-posedness

of System (BN) in a critical regularity framework.

Theorem 1.1. Let d > 2 and 0 < e < 7 < 1. Given the constants &, px verifying (1.4)-(1.5), assume
that the initial data (a0, pt.0,uo) satisfies (Lo — Gx,px,0 — P, Uo) € B2-1N B2+l There exists a

positive constant cy independent of T and € such that if

(o0 = Qx, pr0 = P u0)ll a1 sa40 < co, (L.7)

then the Cauchy problem of System (BN) with the initial data (ot o, p+.,0,%o) has a unique global solution



(@37, pS 7, uST) satisfying

(037 = @, p27 — pe,u™T) € G(Rys BET N BEYY),

Py(py") = P_(p™7) € L' (R B2 N BETY),

B 1 5441 2 5 4 5d 4 (1.8)
PT —PeL'Ry; BN L*(Ry; B2 N Bz,
uST € LRy B2 N B2t N LA (Ry; BE N BotY),
Moreover, the following uniform estimate holds:
05" — @, P37 = Py u T oo sty + 10027, 0epY", O™y g
]‘ T T ]‘ T T
+2IPO) = P ity JEIPH ) = Pt
e, T _ D e, T _ D
FTIPTT = Pl gy FVTIPTT =P, s (1.9)
1
g, T - g, T
+ ||u ”Ll(B%mB%Jrl) + \/;H’U, ||L2(B%’IOB%+1)
pE,TUE,T
+ +VPE7T S C”(azl:,()7C_V:t7p:t,07ﬁ:|:7u0)HB%—lmB%+17

. d . d
LY(B27'nB?2)
where C' > 0 is a generic constant.

Remark 1.1. It should be emphasized that the regularity and decay-in-T properties of the effective flux

E,T 0 E,T
P L VP57 s better than the one verified by the solution (a7, p3",u®T). This is consistent with

-
Darcy’s law and plays key role in the justification of the time-relazation limit.

By classical compactness arguments and the uniform estimate (1.9), we obtain the following global

well-posedness theorems for Systems (K) and (PM) in the critical regularity framework.

Theorem 1.2. Let d > 2 and 0 < 7 < 1. Given the constants a, px verifying (1.4)-(1.5), assume that
the initial data (ox 0, P+ 0, Uo) satisfies (s o—ax, pro— P, Uo) € BE-1NB5+L. There exists a positive

constant ¢, independent of T such that if

(a0 = @4, p+,0 — P+, uo) || <ei, (1.10)

BS1npsH
then the Cauchy problem of System (K) with the initial data (ot 0, p+0,%0) admits a unique global
solution (o7, pL,u™) satisfying
(aF =@z, p% — px,u7) € C(Ry; B N BEHY),
PT—PeL'Ry; BEtY) N L (Ry; B N B2, (1.11)
uT € LNRy; B2 N B2 N LA (R, B2t n BotY).
Moreover, the following uniform estimate holds:

[(ak — &, pk — px,u”) +7||PT - P||

I (8- e0) T 100, Oupk, 00y g LB
_ 1
T T T
+\/FHP *PHLZ(B%QB%JA)JFHU ||L1(B%OB%+1)+F||U HLZ(B%—lﬂB%H) (1.12)
p(s,TuT
VPT <C —a ) —p ) CC Hd 41
+ ‘ + L1(B§*1QB%) >~ ||(ai,O a4, P40 P+ uO)HBg lﬂBngl

where C' > 0 is a generic constant.



Theorem 1.3. Let d > 2. Given the constants ax, p+ verifying (1.4)-(1.5), assume that the initial data
(B0, 02.0) satisfies (Bo — ax, 040~ ps) € BE"'NBEH! and

H(ﬂ:ﬁ:,o _O_Z:bQ:I:,O_ﬁ:I:)HB%—lmB%H < ¢o, (1'13)
for a positive constant ca, then the Cauchy problem of System (PM) with the initial data (B+0,0+0)

admits a unique global solution (B+,0+), which satisfies

By —ay € C(Ry; BE 10 BetL),

) iy ai i (1.14)
0+ — pr €C(Ry; B2 ' N B N LY(R ; B2,

Moreover, the following uniform estimate holds:

||(5:|: — O, 0+ — ﬁ:l:)”Lx(B%ﬂnt-u) + H(atﬂj:7at9:|:)HL1(B%) + ”Q:I: - ﬁi”Ll(B%HmB%'”) (1'15)

S OBz = 00 = P)ll g4 1 p2e0s (1.16)

where C' > 0 is a generic constant.

Next, we present the rigorous justifications of the pressure-relaxation limit for System (BN) to System
(K) as € — 0 uniform with respect to 7, and further the time-relaxation limit for System (K;) to System

(PM) as 7 — 0, with explicit convergence rates.

Theorem 1.4. Let d > 2 and 0 < ¢ < 7 < 1. Given the constants ax,p+ verifying (1.4)-(1.5),
let (@37, p3",uT), (a7, ph,u”) and (Bx,0+) be the global solutions to the Cauchy problems of Sys-
tems (BN), (K) and (PM) obtained from Theorems 1.1-1.3 associated to their corresponding initial data

(aifo,pi’jo,ugﬁ), (aZ 0, PL 0 ug) and (B0, 0+,0), Tespectively.

o Let the initial quantities Py" — Py and Yy'" — Yy be denoted by (5.1) and (5.3), respectively. If
d>3 and

[(Pe(07) = P (o). Yo ™ =Yg P = P g™ — )l g s g < VET, (1.17)

B2 NB2

then there exists a universal constant Cy such that the following estimate holds:

I(a&™ — ok, pi7 = Pk u™" =Tl pdappdo,

T T 1 T T
VLT = PRl gy + T = (118)

< Cr/fer.

g, T _ T
+ ”u u ||L1(B%—1)

o Furthermore, define (8%, 0%,v™) by the diffusive scaling (1.2) and v by Darcy’s law (1.3),. Let the
indtial quantity Z§ — Zo be denoted by (5.32). If

125 — ZO”B%_lﬂB% + ”Q;,O - Qi,OHBg—l <, (1.19)

then there exists a universal constant Cy such that the following estimate holds:

1(8% = Bas 0% — el e 581, ek = okl paey Fl0T =0l 54 S Com. (1.20)



Finally, Theorem 1.4 implies the relaxation limit for System (BN ) to System (PM) as both £,7 — 0.

Corollary 1.1. Letd > 3,0 < e <7 <1, and (837,0%7,v57) be defined by (1.6). Then under the

assumptions of Theorem 1.4, there is a generic constant C3 such that

< C3(Ver + 7).

T T
1(BL" — B+, 0% Qi)”Lm(Bgfl)

1.4 Difficulties and strategies

The first difficulty concerning the study of System (BN) are its lack of dissipativity and symmetriz-
ability. Indeed, the linearization of (BN) admits the eigenvalue 0 and therefore does not satisfy the well-
known “Shizuta-Kawashima” stability condition for partially dissipative hyperbolic systems (cf. [44]).
Additionally, System (BN) cannot be written in a conservative form and the entropy naturally associated
to (BN) is not positive definite, therefore the notion of entropic variables does not make sense in this
case. Therefore, the first crucial step in our analysis is to partially symmetrize System (BN), by hands.
We refer to [13,27] for the treatment of non-conservative systems in similar contexts. In our setting, as
explained in [15], we define the new unknowns

e,T E,T

eT . Ay Py ayp+
Y T &, T E,T e,T _€,T  ~ — e
aL Py +a’ p” aipy +a_p_
e ay’aZ’ e e (1.21)
W = e (P (}) = P-(p27)),

T F o

,],,E,T = Pa,‘r _ 13 _ (,er _ W,)wE’T7

and the corresponding initial data

o Q4.,00+,0 _ ay Py
a40p+,0+Q—0p—0 APyt a_p’
a4 00— 0
wWo 1= ~ (P (p+,0) = P-(p-0)), (1.22)

a0 T -0y

ro := oy 0Py (py0) +a_oP_(p—o) — P — (74 —v-)wo,

so that the Cauchy problem of System (BN) subject to the initial data (a4 0, p+.0, uo) is reformulated as

8ty6,7' JF US,T . vyE,T — ()7

e,T
D™ + uST - VST + (Fy + G dives™ + (Fy + G5 =0,
&,T &,T £,T n €,T\ 13 &,T ET(wE,T)Q
Or®T +usT VST 4 (Fy 4 G3 T )dive®T = Fy , (1.23)
€

g,T

DT +uST - VST + u n (FO + G(E)n')vrs,q— + (4 — ’Y—)(FO + GS,T)V,LUE,T =0,

E’Ta ,we,-r’ TE7T7 UE)T)(Oa (E) = (yoa Wo, 70, UO)(x)v

(y



where F;'" = F;"" (y,w,r) (i =0,1,2,3,4) are the nonlinear terms

1
EFm =
0 ai,‘rpi,‘r + airpfiT ’
(g —y)a} el o B G e G o
FIE’ = e,T * 7 (P—"_rg’)—"_% E”
vraZT 4y ay Yot +y_af
~ A2 (a2 — (v — A2 ) (aST)2
FQE,T = (’Y_A,_OKEJT“F')/_O&‘?T)(P“F'I"E’T) _ (’Y"F 7—‘,—)( — )577— g?;— ’Y—)( + ) ws;r’ (124)
al aZ
T V+7—
FE, = T TP&:’T7
3 Y42 +y_af
T Y+7- e,T €,T
Fmo=———s(1— o= y-ay
4 OéiTOéiT( Y+ Y-y );
F; (i =0,1,2,3) are the constants
_ 1
Fp=————>0,
atp +a_p-
Fo= o)A 5
Ve +y-ay (1.25)
Fy = (y4a- +y-a4)P >0,
FS = #ﬁ >0,
V+O— + -0y
and G577 = G5 (y,w,r) (i =0,1,2,3) are the coefficients
GST = F7T —F,. (1.26)

In this formulation, the equation (1.23), is purely transport and the linear part of subsystem (1.23),-
(1.23), is partially dissipative and satisfies the “Shizuta-Kawashima” stability condition. Thus, we will
estimate the undamped unknown y*=7 and the dissipative components (w®7,r®7 u®7) separately. We
emphasize here that due to the double parameters ¢,7 and the lack of time-integrability of G;'", the
dissipative structures of subsystem (1.23),-(1.23), does not fit into the general theorems that can be
found in [18, 19, 24, 44, 49, 50], and a new analysis is needed to be developed to obtain the uniform
estimates with respect to the two relaxation parameters ¢, 7.

In order to understand the behaviors of the solution to (1.23) with respect to €, 7, we perform a spectral
analysis of the linear system for (1.23). For simplicity we set F; =1 (i = 0,2,3) and [} =v4 —v_. In
terms of Hodge decomposition, we denote the compressible part m = A~'divu and the incompressible

part Q = A~1V x u and rewrite the linear system of (1.23) as

1
w w S 0 —(y+—7-)A )
815 T = A T 5 A = O 0 7A B OtQ + ;Q = O
1
m m (v+ —7-)A A -

The eigenvalues of the matrix 1&(5 ) satisfy

~ 1 1 1 1
|A(§)Mlgx3|A3+< +E) A2+LT+(V+7_IQ+1)I£2 A+l =0.

T

Under the condition 0 < € << 7, the behaviors of \; (i = 1,2,3) can be analyzed as follows:



e In the low-frequency region |§| << I, by Taylor’s expansion near |7¢| << 1 as in [41], all the

cigenvalues are real, and we have A\; = —1 + LO(|7¢[?), A2 = —7|¢]2 + 20(|7¢]?) and A3 =
—7 +70(7¢?).

« In the medium-frequency region 1 << |¢| << 1, according to Cardano’s formula, A; is real and A;

(i = 2,3) are conjugated complex, and Re A; < f% holds for all i = 1,2, 3.

« In the high-frequency region |£| >> 1, by Taylor’s expansion near |e£|~! << 1, the real eigenvalue

A1 and the conjugated complex eigenvalues \; (i = 2,3) satisfy A\ = ma + (9 ( E§|2)

and A273 = *% - |,)!++,Y’Y|2|+1 2¢ + |’Y+ - 7= |2 |§|Z + + w)o (@)

The above spectral analysis suggests us to separate the whole frequencies into two parts [¢| < % and
€| = % so as to capture the qualitative properties of solutions for System (1.23). Indeed, the time-decay
rates (determined by o) achieve the fastest rate in the low-frequency region |£] < % Moreover this
region recover the whole frequency-space when 7 — 0, as expected from the well-known overdamping
phenomenon which will be mentioned below. To this end, the threshold J, between these two regions is
used in the definition of the hybrid Besov spaces in next section.

It should be noted that Ay and A3 exhibit similar behaviors to the eigenvalues of the compressible
Euler equations with damping. Indeed, to study System (1.23), one considers the following simplified
system of damped Euler type with rough coefficients:

Or™ + (1+ G)divu™ =0,

T (1.27)
O + 1+ GHVr™+ — =0.
T

The well-known spectral analysis for the linear Euler part of System (1.27) implies that the frequency
space shall be separated into the low-frequency region [£| < % and the high-frequency region |¢| 2 % to
recover the uniform estimates and optimal regularity of solutions. Formally, this implies that as 7 — 0,
the low-frequency region covers the whole frequency space and is therefore be dominant at the limit. We
observe here the classical overdamping phenomenon: as the friction coefficient % gets larger, the decay
rates of 77 do not necessarily increase and on the contrary follow min{r, %}, cf. Figure 2. For more
discussion on the overdamping phenomenon, see Zuazua’s sildes [55].

Recently, in [18,19], the issue concerning the relaxation limit from compressible Euler system with
damping toward the porous media equation has been rigorously justified in critical space BtNBE+!. The
readers also can refer to the work [20] about the relaxation limit for a hyperbolic-parabolic chemotaxis
system to a parabolic-elliptic Keller-Segel model. The regularity index % + 1 is called critical for initial
data of general hyperbolic systems since B 541 is embedded in the set of globally Lipschitz functions.
Indeed, It has been observed by many authors that controlling the Lipschitz regularity of solutions for
general hyperbolic systems can prevent blow-up in finite time, see e.g., [40,49]. We also refer to [38,39]
about the ill-posedness results for hyperbolic systems in H® with s < g + 1.

Nevertheless, the methods developed in [18-20] are not applicable in the current situation to derive
estimates which are uniform with respect to the relaxation parameter 7. This is mainly due to the complex

form of the total pressure P in the velocity equation (BN), and the fact that one can not expect any
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Figure 2: A graph of overdamping phenomenon for System (1.27).

time integrability property on R, for the purely transported unknown y°7, which generally leads to a
lack of time integrability on Ry for (ay” — ag,py" — ps) (see Remarks 3.2-3.3), and thus for G7, G in
System (1.27). In addition, we can not find a a rescaling to reduce the proof to the case 7 = 1 and then
recover the corresponding uniform estimates with respect to 7 thanks to the homogeneity of the Besov
norms as in [18,19]. To overcome these new difficulties, we will keep track of the dependence of &, 7 and
perform elaborate energy estimates with mixed L!-time and L?-time type dissipation. More precisely, in

the low-frequency region, we introduce a purely damped mode (effective flux)

P
o7

uE,T + VPE,T

corresponding to Darcy’s law (1.3)y in the low-frequency setting to partially diagonalize the system
and capture maximal dissipative structures. In addition, we derive some uniform estimates at a lower
regularity level compared to [18-20] (see Lemma 3.1). In the high-frequency setting, due to the lack of
symmetry, we need to cancel higher-order terms so as not to lose derivatives. For that, the construction of
a Lyapunov functional in the spirit of Beauchard and Zuazua as in [3] with additional nonlinear weights
allows us to capture the L!-time dissipation properties in high frequencies (cf. Lemma 3.2). Moreover, we
also establish the uniform L2-in-time estimates at B %H—regularity level to recover the necessary bounds
of parameters (refer to Lemma 3.3). Applying these ideas, we obtain uniform estimates in terms of the
parameters ¢, T satisfying 0 < ¢ < 7 < 1 for the linearized problem (see Proposition 3.1), which is crucial
for our later nonlinear analysis.

Let us finally sketch the proof of the justifications of the strong relaxation limits. In fact, to obtain
convergence rates, we will not estimate the differences of solutions between systems directly. The rea-
son shares similarities with the proof of global uniform well-posedness. Roughly speaking, since both
pressure-relaxation limit and time-relaxation limit are singular limits, there are singular terms which are
only uniformly bounded but not necessarily vanishing in the equations satisfied by the difference of solu-
tions. To overcome these difficulties, we discover some auziliary unknowns associated with the difference
systems, which reveal better structures (cancellations), and then perform error estimates on them for

each relaxation limit. More details are presented in Sections 5.1 and 5.2.
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2 Functional framework and tools

In this section, we recall the notations of the Littlewood-Paley decomposition and Besov spaces. The
reader can refer to [2][Chapter 2] for a complete overview. Choose a smooth radial non-increasing function
x(€) with compact supported in B(0, 3) and x(§) = 1 in B(0, ) such that

P& = x(€/2) ~x(©), M) =1, swppc{cer!| <<}

JEZ

For any j € Z, the homogeneous dyadic blocks Aj and the low-frequency cut-off operator S"j are defined
by
Ajui= F o279 )Fu),  Sjui= F~(x(277)Fu).

From now on, we use the shorthand notation
Aju = Uy.

Let S) be the set of tempered distributions on R? such that every u € S, satisfies u € S’ and
lim;_, o ||Sjul|ze = 0. Then it follows that

U:Zuj in S, Sju = Z ujr, Yu €Sy,

JEL J'<j—=1

With the help of these dyadic blocks, the homogeneous Besov space B® for s € R is defined by

B = {u €S | ull g = > 2% uyll 2 < oo}.

JEL
We denote the Chemin-Lerner type space Z@(07 T; Bé) forse Rand T > 0:

L2(0,T; B®) := {u € L0, T584) | ullze (5o = 3 2" lusllg z2) < oo}.
JEZ

By the Minkowski inequality, it holds that
lullgs gy < Mllze gy 0> 1 lullgy sy = lullzs ey

where || - || ;e 5y 18 the usual Lebesgue-Besov norm.
L3.(B*)

In order to perform our analysis on the low and high frequencies regions, we set the threshold
Jr = —[logy 7] + K, (2.1)

for suitable negative integer k (to be determined). Denote the following notations for p € [1,00] and

seR:
lully. == 2%%[luy]l 2, lullle. =Y 27wl e (22,
J<Jr j>J-—1
lalbe gy = D 2Muslizes Nullby gy = Do 2% lullogey-
j<J- j>Jr—1

12



For any u € S, we also define the low-frequency part u* and the high-frequency part u” by
ut = Z uj, ul = —ut = Zuj.
jSJT_l jZJT

It is easy to check for any s’ > 0 that

4 £ ry L ! —1ys’ ¢
lull 3o < Nlulle < 27 ull g <25 @577 lullfaew, (2.2)

"l 5. < Ilullfy, < 277D ully

ro ’
Bs > ’ S 25 (2 kT)S Hu||%§+g/

s+s

Next, we state some properties of Besov spaces and related estimates which will be repeatedly used
in the rest of paper. The reader can refer to [2, Chapters 2-3| for more details. Below, all the properties
of Besov norms can be easily extended to the Chemin-Lerner norms.

The first lemma pertains to the so-called Bernstein’s inequalities.

Lemma 2.1. Let0<r < R, 1 <p<q< o0 and k € N. For any function u € LP and A > 0, it holds

that
Supp F(u) € {€ € R? | |¢] < AR} = || D ullpe S MG~ |Ju 10,

Supp F(u) C {£ € R? [ Ar < [€] AR} = || D ull o ~ A*lu] 0.
Due to the Bernstein inequalities, the Besov spaces have many useful properties:
Lemma 2.2. The following properties hold:
e For any s € R and q > 2, we have the following continuous embeddings:

54
2

B® — H*, B

4
q

— L9,

e B% s continuously embedded in the set of continuous functions decaying to 0 at infinity.
e For any o € R, the operator A% is an isomorphism from B* to B57.

o Let s1 € R and s2 < g, Then the space B N B*2 is a Banach space and satisfies weak compact
and Fatou properties: If uy is a uniformly bounded sequence of B5* N B2, then an element u of

B** N B* and a subsequence uy, exist such that

klggounk =u in S and Hu”BSlmBSQ 5 %ingg||unk||lemBsz'

The following Morse-type product estimates in Besov spaces play a fundamental role in our analysis

of nonlinear terms.
Lemma 2.3. The following statements hold:

e Let s >0. Then BN L™ is a algebra and
[uv]| e S llullzeellvll 5o + llvllzes el 5. (2.3)
o Let s1, 89 satisfy s1,82 < g and s1 + so > 0. Then there holds
[wv]] o vop-g S ullgor 0] ges - (2.4)

13



The following commutator estimates will used to control some nonlinearities in high frequencies.

Lemma 2.4. Letp € [1,00] and —% —1 < s < % + 1. Then it holds that
D2, Ajlosulle S IVl g llullge, i =1, (2.5)
jez

for the commutator [A, B] := AB — BA.

We prove the following lemma about the continuity for composition of multi-component functions. It

should be noted that (2.7) will be used to deal with the two-dimensional case in B°.

Lemma 2.5. Let m € N, s > 0, and G € C>°(R™) satisfy G(0,...,0) = 0. Then for any f; € B N L>®
(i =1,...,m), there exists a constant Cy > 0 depending on > .~ ||fillL=, F, s, m and d such that

IG(Frs o Sl ge < Cr D N fill e (2.6)

i=1

In the case s > —g and f; € B¥N B%, it holds that

IG(1s e fdllge < CrL+ D0 MFillya) D il g (2.7)
i=1 i=1
Furthermore, for any fl, f? € Bsn B%, we have
IGU oo £12) = G e < CHOUA Sl ) SIS = £ s (2.8)
i=1 i=1

Here C; > 0 depends on 31" | ||(fl, f7)|lL~, F, s, m and d.

Proof. The estimate (2.6) can be found in [43][Pages 387-388]. Then for —% < s < £, Taylor’s formula
implies that there exists a sequence H;(f1, ..., fm) satisfying H;(0, ...,0) = 0 and

m

G(fla ey fm) = Z (8fLG(O7 70) + ﬁi(fh ) fm))fz

i=1
This together with the product law (2.4) and the estimate (2.6) yields (2.7).

Moreover, we note that
1
d
0

= (.f} *ff)aqu(OvaO)
=1

m 1
=13 [ (00 G U = ) B+ 5 = 1)) = 91 GL0..0) s,
=1

Therefore, applying (2.3), (2.6) and the embedding B < L, we get (2.8). O

Finally, we give optimal regularity estimates of some linear equations. We mention that such estimates
on usual Besov norms can be easily extended to the norms restricted in low or high frequencies. We recall

the estimates of the heat equation as follows (cf. [2][Page 157] for example).
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Lemma 2.6. Let pu, > 0, s € R and 1 < p < oco. For given time T > 0, assume ug € B* and
fe ET’(O,T; Bs—2+%), If u solves the problem

Oy — pAu = f, zeRY ¢t>0,

U(O,QZ‘) :Uo(ﬂf), JZERd,

then the following estimate is fulfilled:

1

lze ey + 27l

1
rrisedy S Cllwallge + 1 Iy sz ) tE OT),

(B

where C' > 0 is a constant independent of T and fi..

We have the regularity estimates of the damped transport equation. Since it can be directly shown

by the commutator estimates (2.5) and Gronwall’s inequality as in [15,23], we omit the proof for brevity.

Lemma 2.7. Let A\, >0, p=10r A >0, 1< p < 0. Forfg <s < %Jrl and given time T > 0,
assume that ug € B*, v € L1(07T;B%+1) and f € ZP(O,T; Bs) If u solves the problem

diu+v-Vu+ \u=f, zeRYL >0,
U(O,l’) = uO(z)a T € Rda

then it holds that

1
etz ey + A Il ey < Cexp(Cl0l, i) (luol

i
Li(B2+h) Be T A ||fHEf(Bs))7 te(0,7),

where C' > 0 is a constant independent of T' and \.

3 Analysis of the linearized system
We now consider the linearized problem associated to (1.23), which reads
Oy +v-Vy =0,
w
atw +v- Vuw + (hl + Hl)dIVU + (hg + HQ); = Sl,

atT+U~VT+(h3+H3)diVUZSQ, (31)
Owu+v-Vu+ ; + (ha + Hy)Vr + (hs + H5)Vw = S3,

(y,w,r,u)(0,2) = (yo,wo, o, ug) (),

where h; (i = 1, ...,5) are given positive constants and H; = H;(t,z) (i = 1,...,5), S; = Si(t,z) (1 =1,2,3)
are given smooth functions.

We first establish the following a-priori estimate for solutions of the linear problem (3.1) uniformly
with respect to the parameters e, 7, which improves the result in [15] without the uniformity with respect
to 7. As explained before, the threshold J; between low and high frequencies given by (2.1) is the key to

our analysis.
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Proposition 3.1. Letd > 2,0 <e <7 <1, T > 0, and the threshold J. be given by (2.1). Assume
that (wo,r0,u0) € BE"'N B2+ 61,8, S5 € LY(0,T; B:—1 N Bi+1), H, € C([0,T); B~ N BT and
O.H; € L'(0,T; B%) fori=1,2,..5. There exists a constant ¢ > 0 independent of T, € and T such that
if

5
Z(t) C= Z HHin?Q(B%—lmB%H) <c te (O,T), (3.2)

i=1

then for t € (0,T), the solution (y,w,r,u) of the Cauchy problem (3.1) satisfies

(1) = w7 ) e g1y, + 1 Oots D0, O, 0, g

+ llwll + —=|lwl]

. d . d
LI(B27'nB2) L2(BEnBEHY)

NG

h
Ll(Bd+1ﬂBd+2 + ”T”L%(B%+1) +T||r||Lt1(B’%+l + \/7H7n||L2 B2ﬂB2+1)

+ ||u||L%(B%mB%+1) + F”UHZ%(BgflmBgﬂ)

1
+ o lut r(ha+ H) Vel g g,

t
< Caoexp(Co [ V(s)ds) (s, ro, o) 41 s + (S, S )]
0

BE-'nB Lg(B%-lmB%H))’

where Cy > 1 is a universal constant, and V(t) is denoted by

5

V() = o0 g a0+ S OH0)] . (3.4)

i=1
Proof. First, we deal with the purely transport unknown y. By the regularity estimate in Lemma 2.7

for the transport equation (3.1), it follows that

t
1980y S ([ 10N g ) Il (3.5)

And direct produce law (2.4) for the equation (3.1); gives that
10l 5, N/ o)1 lys) ] g (3.6)
Similarly, we also get from (2.4) and (3.1), that

108, % [ 0y I + (0 Vg Dol o 182Dy g (3

and

t
(Orw, Ocw)ll g, 5/0 IIU(S)IIBgII(w,U)(S)HBngSJr*HquT(hs.Jrﬂs)VT’llL1 5%

5
1
+ (1 M ) <E||w||L%(Bg) + ||u||L%(Bg+l)) 11081891,
(3.8)
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The conclusion of the proof will follow from Lemmas 3.1-3.3 given and proven in the next three subsections.
Indeed, combining (3.5)-(3.8) and the uniform estimates of (w,r, u) from Lemmas 3.1-3.3 together and

taking the constant 7 > 0 suitable small in Lemma 3.3, we obtain

X(O SN 52 50, 515800, + (VED + Z0)(0) + [ V()i
+ 1| (%0, wo, T0, uo)

lpg-1npge

Then making use of the Gronwall inequality and the smallness assumption (3.2) of Z(t), we obtain the

uniform a-priori estimate (3.3). O

3.1 Low-frequency analysis

Motivated by Darcy’s law (1.3),, we introduce the following effective flux
z:=u+1(hs + Hy)Vr, (3.9)

which undergoes a purely damped effect in the low-frequency region |£| < % and allows us to diagonalize
the subsystem (3.1)2-(3.1)4 up to some higher-order terms that can be absorbed. Indeed, substituting
(3.9) into (3.1), we obtain

atw—l—%w:Ll—i—Rl—i—Sl,

Btr — h3h4TA’I“ = L2 + RQ + SQ,

. (3.10)
Btz+; = L3+ R3 + S3,
(U}, T, Z)(07 .’17) = (’IU(), To, ZO)(I’),
where the higher-order linear terms L; (i = 1,2,3) are denoted as
Li:=h (h4TAr —div z),
L2 = —hgdiVZ,
L3 := hzhytV (h47’Ar — div z) — hsVuw,
and the nonlinear terms R; (i = 1,2,3) are defined by
1
Ry := —v - Vw — Hydivu + hyrdiv (HyVr) — gng,
Ry = —v - Vr — Hydivu + hyrdiv (HyVr), (3.11)

R3 = —v-Vu— HsVw — 70, (H4Vr) + haTV Rs.

Now, to establish the B% ~1NB%-estimates in low frequencies to the solutions of System (3.1) uniformly
with respect to both & and 7, we understand the equations in (3.10) are decoupled. More precisely, we
will treat the equations of w and z as damped equations and r as a heat equation, respectively. This

viewpoint plays a key role in the proof of the following lemma.
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Lemma 3.1. Let T > 0, and the threshold J, be given by (2.1). Then fort € (0,T), the solution (w,r,u)
to the linear problem (3.1)2—(3.1)4 satisfies

1
¢ - ¢ — ¢
H(warau)Hzm(B%71 H ||L1(B77 B%)+ﬁ||w||Z%(BgflﬂB%)
L L
|| HLl(BZJrlﬂBngQ +\/FHT||~ d 1)
, . . (3.12)
Il gy + 2l \|L2(B,, oty F 1 g,
t
S o)l g g+ 051820801, g+ 20X+ [ VX,

where Z(t), X(t), V(t) and z are defined by (3.2), (3.3), (3.4) and (3.9), respectively.

Remark 3.1. In [15], the authors obtained the low-frequency estimates by constructing a related Lyapunov
functional. However, that method does not lead to the desired estimates which uniform with respect to 7.
Moreover, it should be noted that the effective unknown z given by (3.9) enables us to capture the heat-like
behavior of the unknown r in low frequencies directly, which is consistent with the parabolic nature of the

limiting porous media equations.

3.1.1 The B?%-estimates

We first perform B %_estimates in low frequencies for the heat equation (3.10)2. It follows from the

regularity estimate in Lemma 2.6 that

¢ ¢ < ¢ ¢ ¢
1S gty + TN, g S ol g + 12, g RIS, g 1S,
¢ AT ¢ ¢ (3.13)
<
oty +27 1, g+ IRI, g IS
Applying Lemma 2.7 to the damped equation (3.10)1, we get
[je *|| [
LOC(Bz) L1(32
< ¢ ¢ ¢
Juollyg + NEalE, g, + IR, g +ISHS, g -
¢ ¢ ATV ¢ ¢
S Nl g + Il 4%+2)+2 209, g, + IR, g + IS, g
< ¢ AT ‘
S Mooy + 2711, g +IEL R, g+ 1SS, g

where we used inequality (3.13) to control terms involving r in equation (3.10);.

Similarly, by virtue of inequality (3.13) and Lemmas 2.6-2.7, we have for equation (3.10)3 that

1
¢ ¢
2l 59y + 7120

S llzolly g +IIL3II‘;1( g, IRas SO,

L L L
S llzollyg + 27wl g+ 7227 I

(3.15)

+ 72272 s4+2) +[I(Rs, S3)

.d -
LY(B2 2

LIBET?) Ly(B2)

Since the threshold .J, satisfies condition (2.1), thus 7277 ~ 2¥ << 1 for suitable negative integer k. Due

to the condiiton & < 7 so that 2/~ ||w||‘3 ) < 21?1 Hw||£ PITRAL have by the inequalities (3.13)-(3.15)
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that

1 1
II(me)II‘i s, il jd+2) + Ml e+ 2120,
Lg° Li(B2 Li(B?2) L}(B2) (3.16)

d + ||(Sl7527 53)”

N ||(woa7“0720)||é +||(R1,R27R3)H€1(. Lishy

The terms on the right-hand side of (3.16) can be estimated as follows. First, one derives from inequality

(2.2) and product law (2.4) and the composition estimate (2.6) that

ol g < 100, o)l + IO Il g S 170,05 (317)
By the product law (2.4) again, we also get
¢
oVl g, S [ 1) gl g,
dival, o S Wl g el g (3.15)
é” ”f)l(B )< ||H2HLW(B2)1|| Wl sy
According to (2.2) and (2.3)-(2.4), the tricky nonlinear term H,Vr in (3.11) can be estimated as
7||div (H4V7")H 154
STHTYN, g+ T o
S T||H4W||C(Bd+l FIET, o |
Sy I, g+ W o T g W I g

Remark 3.2. The above estimate (3.19) for HyVr arising from two pressures implies that one needs uni-
form B~ l.estimates for low frequencies. Indeed, as Hy does not have the either L -in-time or L?-in-time
integrability property, the product law (2.3) in B2+ indicates us to discover the control of 7||r|)* LBy
which can not be obtained from the B% -estimates in this section.

Remark 3.3. It is also one of the reasons why we need to perform the B%+1 estimates in the both low
and high frequencies in the later Section 3.3. Indeed, in the low-frequency setting, the uniform zfo(B%)-
norm is not enough to produce the uniform Li°(B211Y)-estimates required in (3.19) due to the inclusion

(2.2).

Now, one derives from inequalities (3.17)-(3.19) that

IRl g, & o Dl o vl
TIHTrL, g+ 210l (3.20)
—l—/o V(s)X(s)ds
Similarly, we have
IRall g, S0 Vel g +Esdival, T,

' (3.21)
S Z@)X(t) + /0 V(s)X(s)ds.
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To estimate R3, we notice that (2.2) together with (2.4) implies

SILICA G
(3.22)

AT
< / 100 (5) g W) g s+ 1l 1907,

and
‘ S [1H:

iy gy S Ml oty 210y o1

1
H, ¢ < —|HsV
[Hwl, g S SIHsY
where we used the assumption € < 7. Thus, it holds that

IR ) S [ I g 0

14 J4
R LI A TP T

ds+r||H4erf o + | 5Vw\|

L}(B2 L1(B%)

(3.23)

<Z(t)X(t)+/0 V(s)X(s)ds.

~

We substitute inequalities (3.17), (3.20)-(3.21) and (3.23) into inequality (3.16) and use standard inter-

polation to get

e, rz>||~m(3d I g+ VI,
1
- 4 14 - 14
0l g, + Z2lol g + 712 ||L1(BQ (3.24)

+Z(t)X(t) + /0 V(s)X(s)ds.

(N9

< l1Cwo, 70, w0 g +11(S1, 82, Sa)7, )

Thence, we rewrite the form (3.9) and use inequalities (2.2) and (3.19) to obtain the L!(B% )-estimate of

u as follows:
|| ||€ < H HéLl(Berl ||v Hi]1(3d+1 +T||H4v HLI(B2+1)
5 + ||H4||Loo BQ)THTHZ Bf+2)

Lo e ¢
Sl g, TN, g

h

¢
+ HH4HLOO(BQ+I HTHL%(B%JA + ||H4||L°°(B2)H ||L1(BZ+1)

Similarly, we have
SICIE o+ 1l g I

[ E
=)

Le(BE) ™~
and

SRS gy S TR g VI )+ VS VI
We thus obtain from mequahty (3.24) that

el

L
LQ(B2 || H (B(2l+1
(3.25)

)-i—Z(t)X(t) —|—/0 V(s)X(s)ds

[t

Le(BY) f

< l(wo, 7m0, uo)ll 44 + ||(51a52,53)||21(3

(N9
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3.1.2 The B% l-estimates

We perform the B2l estimates so as to control T”T‘HZ Li(péey as explained in Remark 3.2. Arguing
similarly as for inequalities (3.13)-(3.16), we have
RS e o L *|| ||€ 4
T e BE Y npdoy Tl st B:7h) (3.26)
< ”(wOaTOvuO)” s ”(Rla RQ? R3)HZ 1(3771 + H(Sla S27 S3)H£ (B——l)'
Direct calculations give
I(RLBI, g
/ [o5) ) g s + 1 Bl
1 (3.27)
I Wy o, + DBl g Sl
+/ V(s)X(s)ds
0
By inequalities (3.22), (3.27) and product law (2.4) for d > 2, the term R3 can be bounded by
1
IRl s, Hv [ O I T N s
‘
FrIOHDN, o+ IR, g (3.25)
t
+/ V(s)X(s)ds
0
Inserting (3.27) and (3.28) into (3.26) and taking advantage of interpolation, we obtain
¢ ¢
(a2 \\~w(3,, Tl g + VAL,
,H I s f|| H;(Bf_l f|| ||§1(B§_1
(3.29)
< ||(w0a7”07uo)||3g_1 + ”(S“SQ’S?’)”Lg(B%*)

t
t —|—/ V(s)X(s)ds
0

This together with inequality (2.2) and the fact that v = z — 7(ha + H4)Vr leads to

4 < 4
Il sy S I PIE  gms, + IHal  t

Similarly, one gets

¢ ¢
R TP M N Y. & TN A NPV
and
1
’ < 1.t ¢
I, g, S 210, gy + 7 g+ Wl gt 7l

21



Combining the above three estimates, we are led to

[|u HZL +llult, 4 S [(wo, ro, wo)ll 4+ + 1(S1, S2, 93)|

a_ full, .o 4 24—
o (BE1) L2(BSY) L}(B%) 2 Li(B27Y)
\f (3.30)

+ Z(t)X(t) +/0 V(s)X(s)ds.

Putting the estimates (3.12), (3.24), (3.25) and (3.29), (3.30) together, we complete the proof of Lemma
3.1.

3.2 High-frequency analysis

In this section, we establish some uniform high-frequency estimates of solutions to the linear problem
(3.1) in terms of the Lyapunov functional. More precisely, we establish the Etoo(B 21N B %)—estimates,

and furthermore obtain the control of higher-order L!(B% N B2+!)-norms.

Lemma 3.2. Let T > 0, and the threshold J; be given by (2.1). Then for any t € (0,T), the solution
(w,r,u) to the linear problem (3.1)2-(3.1)4 satisfies

1
h . h h
||(’LU T, ’U,)”~ BZ 1 B%) + ||(w7r7u)”L%(B%+l) || HLI(B§71 B%) + \/EHU}||Z$(B%71QB%)
h h
VI, g+ I g, (3.31)

< ll(wo, o, o) 1% 4y + [1(S1, 82, S3) + Z(H)X (1) +/O V()X (s)ds.

LiBEHY
Proof. To prove of Lemma 3.2, we localize in frequencies for the equations (3.1),-(3.1), as
ow; +v - Vw; + (hy + Hy)divu; + (hy + HQ) =A;8 + T},
Oyrj +v - Vrj + (hg + H3)divu; = A;S, + T7, (3.32)
Beu; +v - Vu; + “7] + (ha + Hi)Vr; + (hs + Hs)Vw; = A; Sy + T,
with the commutator terms
T} = [v,A;]Vw + [Hy, Aj]divu + = [Hz, Ajlw
T-2 = [v, Aj]Vr + [H3, Aj]divu, (3.33)
T? = [v,Aj]Vu+ [Hy, Aj]Vr + [Hs, Aj]Vw.
Multiplying (3.32), by u; and integrating the resulting equation by parts, we get

d L, 1
i Zlusl?d s 2d
dt Rd 2‘u]| x“!‘/]RdTl'U/]l v

B / ((h4 + H4)rjdiv u; + (h5 + H5)’LUjdiV ’u])dl‘ (334)
Rd

< Idivollpeellugllze + (1258502 + 17 22) lugll 2 + IV Hallpoe 1wy, 75) | 22 1w -
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hs+Hs

Thence, we multiply (3.32), by R+ Hy

w; and integrate the resulting equation by parts to show

i 1h5+H5
dt Rd 2h1+H1

+ / ((h5 + H5)U}jdiVUj +
R4

w;|?dx
|wj|

(he + Hy)(hs + Hs) w,-|2) .

€(h1 +H1)
(3.35)
< <’a (h5+H5> ‘ h5 +H5 ||dlvv||L =+ Hv<h5 +H5) HU”L )|w||2
hs + Hs hs + Hs . hs + Hs _ ]
~ ‘\hi + H oo hi+ Hi || hy+ Hy /|| JllL
hs + Hs . L
‘wm+ﬂlmm%&hﬂﬁnmmwmm

Similarly, direct computations on (3.32), yield

d 1h4+H4 2 / -
dt S rild ha + Hy))rdivud

dt /]Rd 2h3—|—H3‘r]| z + Rd( 4+ Hy)rjdivujde

hat s ha + Ha : hy + Hy
< 8(7) T divollpe + V(i) v oc> 2 .
_( “\hs + Hs/ || oo ‘h3+H3 . [div ol H he t )|, [vllzoe | Il (3.36)
h4+H4 .
a i (1A Sellze + 1T ze) Il o

To derive the cross estimate and capture the dissipative property of 7;, we gain by taking the L2-inner
product of (3.32), with Vr; that

6tu]' . V’I“jd],‘ + / (]’L4 + H4)|V’I“j‘2d$
Rd R4

1
+/ <(h5 + H5)VU)]' -Vr; + ;Uj . V’f’j) dx (3.37)
Rd
< (ol Vuslize + 14885l 22 + 1 T7122) 1975 22,
and taking the L2-inner product of (3.32), with divu; that
/ uj - Voyr;dx —/ (hs + H3)|divu;|*dx
R R

< (Pl lIVrjlize + 18820 22 + 1 T7 | 22) lldiv ugl 2z

(3.38)

In the spirit of the work [3] by Beauchard and Zuazua, for a small constant 7, > 0 to be determined, we

define the following Lyapunov functional with nonlinear weights as

1 [ hs+ Hj 9  ha+Hy 2 2 Mx 72‘/
Lot):= [ = (D5 ey a2 2 de g D02 [ v
]() /]Rdz <h1 F[l ‘w]| h3 E[3|T]| |uJ| €z T R ’U,] TJ €T,

and its dissipation rate

. L o (ha+Hs)(hs + H5) o
1= [ (Gl + P ) 4o

Py 1

+ %2 2 / ((h4 + H4)‘V7”j|2 + (h5 + H5)ij . V?“j + ;Uj . V?"j) dx.
Rd

One derives from assumption (3.2) and the embedding B% < L™ that

I Hill oo ooy + IVHil|Loo(pooy S |1 Hill Sce<<1, (3.39)

~ . d . d
Lse(B2nB2 1Y) ~
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which together with estimates (3.34)-(3.38) and the fact that 279 < 7 < 1 for any j > J, — 1 yields the

following Lyapunov inequality:

5
d .
L5+ H;(8) < (ldivollpe + (vl + Y 10Hil|z)| (s, w)u)|7
. =1 (3.40)
+ (Z 10:Hill Lo + |A;(S1, S2, S3)| 2 + II(T},T]«Q,TE’)IIL2> 1(rj w5 uj) [ 2
1=1

It follows from the smallness condition (3.39), Bernstein’s inequality in Lemma 2.1 and the fact 277 < 7

that
(L= n)ll(wy,rj u)lFe S L) S A+ n)ll(wy, rj,u)l| 72,
and

n 1
) 2 il + sl + 227 (197,12 ~ 195l — plle:

S \H'—‘

1 n
2 (U= n)llwsl7e + 2 (1 =na)lewjlze + sz,
where one has used the condition € < 7. Thus, we can choose a sufficiently small constant n, > 0

independent of € and 7 so that

L;t). (3.41)

3=

1
Li(t) ~ (wy,ryu)lz,  Hit) 2 ;||(wj,rj,uj)||%2 2

Dividing the two sides of (3.40) by +/L;(t) +n for any n > 0, we have

d 1 n
a\/ﬁj(t)+n+;\/ﬁj(t)+ﬁ— W

5
S (IIdivvlle ol + If)tHillLoo> g5 wis ws) 2
i=1

+ 1 Aj(St, Sz, 83) |2 + (T T, T7) | 2

From (3.41) and the embedding B% < L™ we get after integrating the above inequality over [0,#] and
taking the limit as n — 0 that

T”(UJ r u)”zm(Bd+1 + ||( )||}£1(Bi+1) 5 TH(w07T07u0)H};%+1
t

T / <||v< BmBﬁﬁZnat >T||<wru><s>||§;gﬂds (3.42)

+ 7 Z 27 (5+1) ||(Tj17T]27T]3)||L%(L2) +7|‘(51,S2,S3)H}£1(Bd+1)
jz2Jdr—1

According to the commutator estimate (2.5), it follows that

t
(2
T Z 2](2+1)|‘(Tj1’TJ‘Q’T;’)HL}(L%5/0 HU(S)HB%H”(w?r,u)(S)HB%HdS
j=J-—1

1
- Z Il o, (210058, 77D )+ g

< Z(4)X(1).
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This with inequality (3.42) leads to

h h
w0l g, + 0l g

5T\|(w077"07u0)\|~ +T||(51a52753)Hh

441

+/0 V(s)X(s)ds

On the other hand, for any 1 > 0, we deduce from inequality (3.35) that

d 2 1 2
el + 0+ <l +n
< % lugllze + (19 Hy, 0, H) | o oy 2

1B (3.43)

+ldivo] e llwgllzz + [loll o lwsllzz + 12581l 22 + 1T} | 22,
which together with (3.43) implies

1 h
_ < h h
Zloll}, ) S ol + 11}, o
(g
+l 1”’;<Bd>+7 > YENIT
j>Jr-1

+ [ OO g + 1060y, 5.00) ()] g

h
”B%+1

t
t +/ V(s)X(s)ds
0

l[(w, 7 U)HZW(BTI) 7| (w, 7, U)II~W(B g, STl )2

+7(/(S1. 52, S5)||"

ST”(’WQ,TO,U()) Ll(Bd+l

Thanks to inequality (2.2), one has

Fe iy (3.44)

Finally, the remain estimates in (3.31) can be achieved similarly to (3.44). We omit the details here and
complete the proof of Lemma 3.2. O

3.3 Recovering the B:"!l-estimates

As explained in Remark 3.3, we need to establish the uniform L$°(B%*1)-norm estimate of (w,r, u)
which in fact leads to the uniform control of L?(B'f“l)-norms for (% % u) at both low and high

frequencies as a byproduct.

Lemma 3.3. Let T > 0, and the threshold J; be given by (2.1). Then for any t € (0,T), the solution
(w,r,u) to the linear problem (3.1)2-(3.1)4 satisfies

1 1
L33+ + %”wHEE(B%‘H) + FHUHE%(Bgﬂ)

S ||(w0,r0,u0)||3%+1 + (51, 52, SS)”L%(B%

T+ VED))X(E) + 1/tV(s)X s)ds
nJo

where n € (0,1) is a constant to be chosen.

[[(w,r, u)|

y (3.45)
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Proof. We perform a L2-in-time type estimates and make use of the decay-in-7 of u for L?-time type

norms. In fact, for any j € Z, by combining inequalities (3.34)-(3.35) together, we get
d 1/hs+ Hs ha+ Hy
(o bl + T P o 2 ) da

dt Jga 2\hy + H; hs+ Hs'
1 2 (h2+H2)(h5+H5) 9
+ [ Gl B L ) o

5
. (3.46)
S ldiv ol ooe 1w,y u)Ee + (0 10cH e + o] )1l s, )13
i=1
I Hal e w7 2 s e + 1T 2 o2
T2 g s llze + 1T lellugll o2 + 185(S1, 82, S8) 2w s, ) | 2

Furthermore, from (3.46) we have

1 1
H(w T, u)||L°°(Bz+1 THIU”ZQ(BgH) + FHuHZf(B%“)
S lwo,mo, wo)ll yg40 + v Ik [[(w, 7wl

. d = - d
Li(B2 ) Ly(B2T

[N

¢ 5
+( / (DS 106H )+ 05) g )06 ggals) eI
= ) (3.47)

2
 (IHal e fu (PPN (X1 [Saprany
+ > ( / (T e lwsle + 1T e sl 22 + ||T3|\L2||u]||p)ds)2
JEZL

[NIE

+ (181,82, 89)l g ) ) )

The right-hand side of inequality (3.47) can be estimated as follows. By the commutator estimate (2.5),

we have

1
S 2ED ([ el )

JEZ
t
< (W0l gy [ 1000

+ [ Hyl

N

1 2
ooy 1l g g T2, )

regston 0l g el

< VZOX() + (/O V(s)X(s)ds)i X(0).

Similarly, it holds

1
S 2E ([ el as)’

JEZ

t
< (nrnzwgﬂ) / [0 g I grds + 1 Hall g gt I e g u||L%(BgH))

ZOX() + (/tV(s)X(s)ds); X0,

0

N

A
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and

t 1

.od 5

S PEO( [T ey 1as)
JEZ

t
S ("ullffC(Bg+1)/0 ||U(S)||B%+1||U(S)HB%+1dS—|— (H4’H5)||E§°(Bg“)THZ;’O(B(%J“)Hu”Li(Bg“))
t 1
\/Z(t)X(t)—k(/ V(s)X(s)ds) " VA(E).
0

We conclude from the above estimates that

N

1 1
([ (w, U)HZ?Q(B%H) + %”wHZf(B%“) + FH“HE?(B%JA)
Sz ||(w0aT07u0)||B%+1 + ”(SleQa SB)HL%(B%JA)

FVEDX () + (/Otws);c(s)ds)é X(0).

Applying Holder’s inequality to the above estimate leads to inequality (3.45). O

4 Global well-posedness for the nonlinear problems

4.1 The Cauchy problem of System (BN)

In this section, we prove the uniform in ¢ and 7 global existence and uniqueness of solutions to the
Cauchy problem for (BN) subject to the initial data (a0, p4,0, uo). i.e. Theorem 1.1. For simplicity, we

omit the superscript concerning the parameters € and 7 in this section.

Proof of Theorem 1.1: Let (a0, p+ .0, Uo) satisfy the smallness condition (1.7) and denote

Xo = ||(CH:,0 — 04, P40 — ﬁi,uo)” 54—

. d .
B2 'np2t!

Let (yo,wo, o) be the perturbation of (a4 o, p+.0) given by (1.22).
o Step 1: Construction of approximation sequence
For any n > 1, we define the regularized perturbation
(yy, wy,ri,ug)(x) = (890, Snwo, SnTo, Snig)(z),

where S, is the low-frequency cut-off operator (see Section 2). One can verify that (Yo, wy, ri,ud) is
smooth and converges to (yo,wo, o, ug) strongly in B2~1NB&+! as n — co. In addition, due to Lemmas

2.3 and 2.5, there exists a constant Cjj independent of n, € and 7 such that

||(ygawgargaug)||gg—1ﬂ3%+1 < CSXO (41)
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Set (4w, r".u) = (0.0.0,0). For any n > 0, we consider the approximate scheme for (1.23) as
follows:
Opy™ ™ 4w - vy =0,
- _ wn+1
Spw™ Tt +u - VT 4 (Fy 4+ GY)divet 4 (Fy + G) =0,
£

(w")?

)

O™ ™ et (B 4+ GR)dive" T = Fp E

+ (Fo + GR)(VI™ + (74 — 7o) V) =0,

n+1

m
O™t - VTt 4

(yn+1= wn—&-l’ 7"n+1a un+1)(07 .%') = (y(T)IJ wy, Th u(’})(m),

with F* = F.7 (y", w",r"), Fi and G? = G5 (y",w",r") defined in (1.24), (1.25) and (1.26), respec-

tively. We define the functional space E; associated to the following norm:

||(y,w,r, U)H]Ef L= ”(vaara u)‘

‘Z?O(B%flﬂggﬁ»l) + ||(6ty,8tw,8tr, atu)”L%(B%)
1 1
* g”wHLg(B%—lmB%) + %Hw”Zf(B%—lnB%“)

h
) + HTHL%(B%H) + THTHL%(B%Jrl) + \EHTH

L
LY BET AR

+ 7|7l Zf(B%ﬁB%“)

1
+ HUHL%(B%NB%“) + F||uHZf(B%71I’WB%+1)'

For any fixed n > 1, we assume that (y™, w™,r™, u™) satisfies

1 _
[(y™, w™, r™ u™)||k, + ;||u" +7(Fp + Gg_l)Vr”H 4 <2C,CiXp, t>0, (4.3)

Li(B8nBS
where the constants Cj and Cff are given by (3.3) and (4.1), respectively. Since the initial data is smooth,
by virtue of the classical theorems for the transport equation (4.2); and the symmetric hyperbolic system
(4.2),-(4.2), (cf. [2,4]), there exists a unique global solution (y"™!, w"! r*+ yn+1) € C(Ry; H®) with
all s > % + 1.

e Step 2: Uniform estimate

Our goal is to show that (y"+1, wn*! rntl 4" +1) also satisfies the estimate (4.3) uniformly in n, ¢, 7
and time. To this end, we first let Xy < 1. It follows from (4.3) and the composition estimates in Lemma

2.5 that
4

Z HG?HZ?O(B%AOB%N) < C3ll(y", ™, wn)Hz;}o(B%—lmB%H)a (4.4)
=0

and similarly,

4
310G 51, < G310 000" 0™ (45)

. d
Li(Bz)’

for some universal constants C5 and C5. According to (4.1) and (4.4), we can justify the condition (3.2)
provided that

c
X <cfi=——7—.
0= T 90,Ci 0y
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Hence, we are able to employ the uniform a-priori estimate established in Proposition 3.1 to obtain

1 _
”(yn-&-l’ wn-&-l’ Tn+17 un+1)||]Et + ;||un+1 + T(FO + GG)V n+1||Ll B?’l Bd)

t 4
< Cuoxp(Co [ ("GNt g0 + D NOGT G y)a) (16)

(w")?
x (I w7, wi)l g g + I

HLg(B%—lnB%“))'
Applying (4.3), Lemma 2.3 and 2.5 gives directly

L (wn)? iy
(B4 — ~ llw [

L3BEInBEHY) .7

”LI(BTlnBz“) - ’

where C} > 0 is a universal constant. Combining (4.1), (4.3), (4.5), (4.6) and (4.7) together, we have

1 _
||(yn+1’ wn—&-l’ rn+17un+1)”Et + ;||un+1 + T(FO —+ Gg)v n+1||L1 B?’l BZ)
< Cpe2(1+C3)C5C; X (c;;xo + c;;(zcochof) < 2C,C X,

as long as

1 2
Xy < ¢ :=mi
0= mm{2(1 +C5)C2CElog 3 9(20005)201}

such that e2(1+C35)CC5 % < 3 and C;(2CoC3Xp)? <
for any n > 0.

3Xo. Thus, the uniform estimate (4.3) holds true

e Step 3: Strong convergence

The uniform estimate (4.3) enables us to obtain the weak compactness of the approximate sequence.
In order to pass the limit in every nonlinear term of (4.2) as n — oo, one needs to have robust strong
compactness in a suitable sense. Classical compact embedding theorem merely gives the strong conver-
gence locally in space-time and up to a subsequence, which is not enough for System (4.2). In what

follows, we show that the strong convergence holds in R, x R? for the whole sequence.
Lemma 4.1. There exists a small constant ¢ € (0, min{1,c},c5}] and a limit (y, w,r,u) such that if
Xy < c3, then as n — oo,
(y",w™, r"u™) = (y,w,r,u) strongly in LOO(R_,_;B%*l N B%) (4.8)
In particular, we have
(y™, w™, ", u™) — (y,w,r,u) strongly in  L=(Ry; LN L%). (4.9)
Proof. In order to show (4.8), one needs to perform uniform energy estimates on the error unknown

~n ~m -m ~n\ .__ n+1 n n+1 n n+1 n n+1 n
(y ,w,r,u).—(y -y ,w —w.,T —r,u _u)

Following the framework in Section 3, we aim to estimate the functional

- B 1,
X" (t) = [I(g", @", 7, +-lla]

~ 1
T g 541054 A s

IHE:E R N/
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n|lf ~n|h ~n
FrlF g FIFE VIR \\L2(32

LiBEHY Li(B%)

@ 4 (B + GV g

~n
+a HL}(B%) \[| D2(BS1nB%)

To this matter, one can verify that for any n > 1, (3", @™+, 7" 4" *1) solves

1 1
T i

,{Dn-{-l .

BT + u™ - VE T 4 (Fy 4+ GP)diva"t + (Fy + GB)

At VM (B + G divat! = P, (4.10)

~n-+1

Q" - Va4 C - (Fy 4+ GB) (VP 4 (74 — 7o) V@) = 57,

(gt @™t L @ (0,2) = An(yo, wo, o, uo) (@),
with

S = —u" - Vy",

S o=~V — (G - G v — (G5 - G5

n\2 ~
(’U) ) +F£_1 ,

S = —u" - V" — (G — G Ydivu" + (F} — FP7Y)

Siti= =" V" — (G — Gy (V" + (vy — - ) V).
First, employing Lemma 2.7 to (4.10), yields

17 sty S Py ) ) Iabll gt 157y st (4.11)

By similar computations on (4.10),-(4.10), as in Lemma 3.1, we have the low-frequency estimate at the

B2~ regularity level:

~n+l ~n+1 ~n+1 ~n+1¢ ~n-+4+1 £
@ o, + I g + VA, g
1
~n+11¢ ~n+11¢ ~n+1 n ~n+1 4
SN g+ I o+ I B GOYTL Ly )

S 1An(wo.ro,u)l g+ 155,55, SN, g+ 20 OF ¢ /Vn B (5)ds

with

3
= Z ”G?HB%_lﬂB%'ﬂ’
=0
3

V() = Hun”B%mB%JA + Z ”athnHB%—lmB%H'
=0

Moreover, as in Lemma 3.2, one can obtain the following estimate in the high-frequency region:

1
n+1 ~n+1 ~n+1 h n+1 mn ~n+1|h
& >||LW(BTW1(BZ)+T|| r(Fo+ GV, Ly
~n+411h ~n+1 h ~n+1|h
ST g+ T g, VAP (.13

t
S V(oo o)y + 153 53,5010, g + 27O 0 + [ V() (s
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Finally, following the proof of Lemma 3.3, we also have

@D )+ 21T gy )+ 21T )
< 180, 70,w0)l g + 105585 50, 1, (4.14)
+ ([ + V2 (0)) X (1) + %/Ot V7 (s) X"+ (s)ds
where 77 > 0 is a constant to be chosen. Combining (4.11)-(4.14) together, we arrive at
X S 1A (os w0, 70, 0) g1 g + ”(52’53’S4)HL1(B%*IQB%)
(4.15)

+ [+ VEMt) + ZME)X) + (1 + %) /Ot V()X (s)ds.

Now we estimate the right-hand side of (4.15) as follow. First, due to A,/A,, = 0 with |n —n/| > 2, one

has
d_ n/ Q’I’L/ R
e S Y (2T 25| AL (yo, wo, o, wo) | 2

n’—n|<1

||An(y0aw07T07u0)||

Thence, applying uniform estimate (4.3) leads to

2t S ™ w™, el S Ao,

~ . d . d
Lye(B2 7 'nB2th) ~

<
st -

t
[ Vs < 0w o 00,
0

Regarding the nonlinear terms on the right-hand side of (4.15), one deduces from (2.4), (2.6)-(2.8) and
(4.3) that

H( ?7ngsgvsf)HL%(ngmgg)
S H(yn7wn,’r‘n)”Ztoc(B.%mB%H)HﬂnH

1 n n— 1 ~n
I w g g

Gathering the above estimates into (4.15) and (4.11) and letting both 77 and X be sufficiently small, we

+ 1", w7,

T gt I

. d . d
Ll(Bz) Li(B2nB2 1Y)

2BEnBE) ~ < XX (1).

obtain " u , a1 >
A < Y @EI 28| A (yo, wo, ro, uo)[[12 + XoXT(2).

In/—n|<1

Summing this over n > 1 leads to

M\n.

oo
Z 7l+1 < || yO,wO;TO,uO)”B

Given (y°, w®, 7% u%) = (0,0,0,0) and (y',w*,r!,u') = (yo,wo, 70, un), we take sufficiently small Xy to

have

ZX" ) S o, wo, 7o, o)l g (4.16)

d_ .d .
B NB2
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’ ’ / ’

Now we define (y,w,r,u) :=> o _, (@™ ,w"™ 7™ ,u" ). Thanks to (4.16) and

it follows that

n— oo

oo
l(y™, w™, r™ u™) — (y’w’r’u)”L‘x’(B%’lﬁB%) < Z x"(t) — 0.
¢ n'>n+1

Gathering the embeddings in Lemma 2.2, we get (4.9), which finishes the proof of Lemma 4.1.

e Step 4: Global existence

Let Xy < c¢j. By virtue of the strong convergence properties (4.8)-(4.9), one can pass to the limit as
n — oo in (4.2) and justify that the limit (y,w,r, u), obtained in Lemma 4.1, is indeed a global strong
solution to the Cauchy problem (1.23). In addition, taking advantage of Fatou’s property in Lemma 2.2,
for all ¢ > 0, we have

1 _
(yow,ryw) s, + Zllu+7(Fo + Go)Vrl g (4.17)

< Xp.

1 _
< Tim i n n .n ,n S, n—1 n
Stiminf (1" w" " w) e, + — [0+ 7(Fo+ GOV g pe)

n—oo

To prove the time continuity property in (1.8)-(1.9), our proof relies on the uniform bound (4.17) and
employs a reasoning analogous to that found in [22]. Since ||(8sy, dyw, Byr, dyu)|| lies in L} (Ry; B%), one
has (y,w,r,u) € Cb(RJr;B%). To recover (y,w,r,u) € Cp(Ry; B:1n B%“), we shall investigate each

equations separately. Recall that the solution (y,w,r,u) satisfies

6ty = —Uu- Vy7

at'UJ = —u-Vw— (Fl —+ Gl)diV’l.L — (FQ + GQ)%,
2
Oir = —u-Vr — (F3 + Gs)diVU - F4w?a

Ou=—u-Vu— g — (F'o + Go)VT — (v+ —-) (F'o + Go)Vu/.

As the right-hand side terms of the components y, and w belong to L*(R.; B2~1), we directly get
(y,r,w) € Cy(Ry; B21). Concerning the equation of w, its right-hand side lies in L2(R.; B%~1) thus
we can also recover that u belongs to Cp(R4; B %_1). We are left with recovering the time continuity of
(y,w,r,u) in Bi+L, First, for a fixed j € Z, each (y;,w;,7;,u;) is continuous in time with values in L?
due to Bernstein’s inequality. Now, thanks to (y,w,r,u) € L>®(R4; B%“), for any 1 > 0, there exists an
large integer J, such that, for all ¢ > 0

(d n
> 23(2+1)||(yjawj»7“jauj)llL:O(Lz) <3
[EA

Thus, for any time ¢,¢ € R4, we have

I, w) () = (ow,r ) () ygn <D 2EFA (g0, w) (1) — (g w,r,u) ()] 2
[71< T

32



+ 3 PE A (g w,r ) () — (yw, ) ()] 2
[51> T

<2/

(y,w,nu)(t) - (y,w,r, U)(t/)H nd 1 — ).

B2 t—t/

Since 7 is an arbitrary constant, we get (y, w,r,u) € Cp(Ry; B%‘H). Finally, applying the inverse function
theorem, we can see that once ay and py are determined by (1.21), then (a4, pt,u) € Cp(Ry; B:-1n
B%H) is the unique global strong solution to the original Cauchy problem of System (BN). Using (4.17),
product laws and composite estimates, we are able to verify that (c4,ps,u) satisfies the properties

(1.8)-(1.9). To complete the proof, we prove the uniqueness in our regularity framework below.
e Step 5: Uniqueness

The final step is to show the uniqueness of solutions to (BN) belonging to the regularity class (1.8).
We emphasize that the proof does not require the smallness of regularity for initial data. It suffices to
consider the reformulated system (1.23). Without loss of generality, as the parameters do not affect our
argument for proving uniqueness, we set ¢ = 7 = 1. Let (y1, w1, 71, u1) and (y2,wa, ra, uz) be two solutions
to (1.23) subject to the same initial data (yo,wo, o, uo), satisfying (1.8) and F; + G,(y;,7;, w;) > 0 for
1=0,1,2,3 and j = 1,2. The difference

(Y, w,7,u) == (y1 — Y2, w1 — W2,71 — T2,U1 — Ug)

solves B
Oy +uy - Vy = Sy,

O + uy - VI + (Fy + G)diva + Fyw = S,

Oy + uy - V7 + (F3 + GL)divi = Ss, (4.18)
O+ uy - V4 + (Fy 4+ GY)(VF + (74 — y-)V@) = Sy,

(7, w,7,1)(0,z) = (0,0,0,0),

where we denoted

Sl .= —ﬁ' Vyg,

SQ =0 VUJQ - (G% - G%)diV’lQ — (G% — G%)wg — G%TE,
§3 i=—u-Vry — (Gé — Gg)diV’UQ + (F41 — F42)(w1)2 — F42(w1 + ’LUQ)’LA&,
St =~ Vuy — (G — G2)(Vry + (74 — 7 )Vws).

Here G! := G;(y;,w;, ;) and F} := Fy(y;,w;, ;) with i = 0,1,2,3, and [ = 1,2. Applying Lemma 2.7 to
(4.18) implies that, for all ¢ > 0,

t
15601 5 S exp(lunly g} [ 1575 (19)
Through the application of the weighted Lyapunov functional method, as outlined in (3.32)-(3.36), we
obtain J .
G L3 MIEE 4 Wi Py do+ [ (Wl + ) do
< (1@, Brwr, 0rs, Vi, Veor, Vi) e + e ) 118575, ) 7 (4.20)

+ (115, T Tl + 1452, 85, 80)llae ) 15,75, )l e,
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where W; = W;(y1,w1,7m1) > 0, i = 1,2,3 are some smooth weight functions depending on F; + G} > 0,

and the commutator terms are given by

Ty j = [u1, Aj]V@ + [GY, Aj)diva,
To ;= [u1, A;]VF + [GY, Aj]div @,

Tz = [u1, ]V + [GY, A VT + [Gh, Aj]VD.

Integrating (4.20) over [0,t], taking the square root of both sides and summing the resulting estimate

over j € Z with the weight Q%j, we get

@7 e gy, + 1 g, + 1T

t
< ([ (10,0001, 0001, 90, Fwr, Tl + o)., )1
0

N

X P Ty Talae + 180,50, 50)l g )as ) 170

1
2
Lo (BE)
JEL t

which together with Young’s inequality implies

t
1@ 7O g 5 [ (10w, Bewn,Burr, T, T, )= + )| @7 D)
0
Lo o (4.21)
+ 32T, Ty To)llee + 1105285, 80l g )ds. >0,
JEZ

Using the classical commutator estimate in Lemma 2.4 implies

A& .
D VE(Tu To g Ta)llee S I(ynsrswi,ud) || g (0,7, )] g
JEZ

In addition, according to standard product laws and composite estimates in Lemmas 2.3 and 2.5, the

nonlinear terms (§1, §2, §3, §4) can be handled as

”(51752733754)”3% S/ (H(yQaw%T27u2)||B%+1 + ”(wlaw2)”3%)‘|(§a {Ev Fv a)”B%

Substituting the above two estimates into (4.19) and (4.21) and then employing Gronwall’s inequality,

we end up with ||(g,w, 7, u)(t) = 0 for all ¢ > 0, which concludes the proof of Theorem 1.1.

g

4.2 The Cauchy problem of Systems (K) and (PM)

We provide a brief explanation of the proof of the global existence and uniqueness for System (PM).
The proof of the result for System (K) (Theorem 1.2) follows a very similar procedure, so we omit the
details here for brevity. The uniformity of the estimate (1.9) for System (K) allows us to construct
solutions for System (PM) by taking the limit as the relaxation parameter 7 — 0.

The following lemma states the uniform estimate verified by the solutions of System (K ), which are

rescaled from estimate (1.12) obtained in Theorem 1.2 for System (K).
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Lemma 4.2. Let (o7, p%,u”) be the global solution to the Cauchy problem of System (K) subject to the
initial data (a7 o, p% o, up) given by Theorem 1.2 and (8L, 0%, v") be defined by the diffusive scaling (1.2),
then it holds that

Leo(BS1nBI+Y)

+[[(I7 = P, oL — ps )| , + 117 = P, oL — p)|

(8L — ax, 0% — p+)|l

LB+ ‘Z2(B%m3%+1)

(4.22)

+ o7 i

P TRL Il IR
LY (B2nBz* L2(B2'nB2tY 1 LY(B2'nB%)
T = T = T
< C”(O‘ﬂz,o — 04,04 0 — Pivuo)HBgflmng
with 27 == vT + Q%VHT, and C > 0 a universal constant.

Proof of Theorem 1.3: Assume that the initial data (540, 0+ ,0) satisfies (1.13). For any 7 € (0, 1),

we define the regularized data as

(0L 0,0 0)(x) = S1) (B0, 020) () and  uf(z) := 0.

Hence, by employing Theorem 1.2 we can obtain a sequence (o7, p,u"), which is the global solution to
System (K) subject to the initial data (af o, p% o,ug). Taking the diffusive scaling (1.2), one has that
(BL, 0%, v7) is the global solution to System (K;) subject to the initial data (ag. o, p% o, up /7). In view of
the uniform estimate (4.22) established in Lemma 4.2, the Aubin-Lions lemma and the cantor diagonal
process, there exists a limit (81, o4) such that as 7 — 0, up to a subsequence, x (5%, 07}) converges to
X(Bx, 0x) in C([0,T); B®) (s < 4 +1) strongly for any given time 7 > 0 and y € CZ(R? x [0,T7).
Thus, we can check that (84, 0+) solves System (PM) in the sense of distributions. Furthermore, taking
advantage of the Fatou property and the optimal regularity estimate in Lemma 2.6 for the equation of
II, we can conclude (1.14). Finally, the uniqueness can be obtained in a simple fashion. The interested

reader may also refer to [19,20] for more details.

5 Relaxation limits with convergence rates

5.1 Pressure-relaxation limit: System (BN) to System (K)

In this section, we prove Theorem 1.4 related to the convergence rate of the relaxation process between
System (BN) and System (K). Let (a3",p3",u®7) and (a%, p7l,u”) be the global solutions to System
(BN) with the initial data (a7, p37,uy") and System (K) with the initial data (a3, p37, ug") given

by Theorems 1.1 and 1.2, respectively. Denote the error variables

Sat,6ps,0u) == (a3” — o, u=T —u7),
£ +

(6p56Pi76P) = (pj:’T - p;7p€77- - pT7Pi(pf|:7T) - Pi(ﬂ;)aPE’T - PT)7
and the initial data of 6P

0Pli—o =F5" = Py, Fj = O‘iTOP—&-(PiTo) + O‘T,TOP—(PiTO)v g = Pi(p} o) (5.1)
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First, to avoid dealing with difficult nonlinearities in the equation of o, we work with the following

purely transported variable instead of da:

e, T &,T T T
sy o OX AT kol (5.2
peT T
with the initial data
AT T o -
5Y‘t:0 = YE)E’T - YOTv YOE?T = £,T 677‘—‘1‘70’0“!‘78077— £,T 9 YOT = T T +70p+f T (53)
af P T A 0P 0 @ 0Pt0 T A 0P 0
Lemma 5.1. For d > 3, under the assumption (1.17), 0Y satisfies the following estimate:
I8V s 42t r) S VET + 000l g (5.4)
Proof. Since the equation of §Y reads
aT T
DY +uT - VY = —bu - VPt
p’T
Lemma 2.7 and the product law (2.4) for d > 3 gives
18 17 gt nt oy S (16l g ) (VAT + 10ull, 0 VR )
Le(Bz?nB271) ™ L{(B2T) Li(B27) pT 'LE(B27'nB2)/)”
This together with the uniform estimate (1.9) leads to (5.4). O

We are now ready to estimate (da,dp+, 0Py, 0P). It is easy to verify that P=7 satisfies

QP +uT - VPST = —(v3a " Pr(pT") + 7-aZ P_(p=7))divu®T

e,y e, (5.5)
a0t (s — DPL(57) — (- — )P (i) TR 2 ),

And the equation of P” reads

geso ey ol

P 4 u” VP 4 —
vral +y-_al

divu™ = 0. (5.6)
However it is not suitable to estimate § P directly from (5.5)-(5.6) as the decay rate of Py (pS")—P_(pZ")
can not be faster than ¢ in view of (1.9). To overcome this difficulty, we introduce an auxiliary unknown
QT = P57 —T77 (Py(pS") — P_(p=")) which verifies

Q%" +uST VYT + T3 T divusT = =TT (P (p}") — P- (piT))divua’T

e, T e, T £, T £, T (5.7)
+ (BT +u™T - VITT)(Pr(p77) — P-(p27)),

with e, T _E,T &, 7 e,
- SO~ )
Y+ Pr(py") +y-a} P_(p27)
YV7=Pr(p3)P-(pZ7)
Yra-Pp(p7) +v-af T P_(pZ7)
ay a2 (v Pr(pY") —v-P_(p77))
Y402 Py(pL") + - P_(p27)

?

677- p—
T =

)

E77- -—_
rem .=
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With this formulation, it will be possible to derive the O(¢) bounds for the last term on the right-hand
side of (5.7). Define
6Q = P57 — PT —T77(PL(p37) — P_(p=7)). (5.8)

The next lemma implies that to estimate (dat, dp+, 6Py, 0 P), it is sufficient to control (8Y,0Q, Py (p3") —
(o).

Lemma 5.2. For d > 3, under the assumption (1.17), the following estimates follow:

s 3 3 5 2ty S NP0 P P Wl sty
10021 3 81, S 10QPL(07) = P ) Iy - |
Proof. Due to (5.2) and
op = (p37 = pZ")dary + aldpy +aldp-, (5.10)
it holds that
Y = ﬁ (7 p76aT + al pTops — ol plop)
= pfipf (aZpS"pl +alplp=" )by + afal pldpy —alal pldp_).
This implies
Sop = ——— L ——(p"7p"0Y — alal pléps + alal plép-). (5.11)

alpy pl +alpip”

Inserting (5.11) into (5.10), we have

E,T £, T
Py — o
0p = ——r————== (0" Tp70Y — alal plopy + alal plop-)

al py pT +alplp” (5.12)

+al dpy +aldp_.

Moreover, we have
1
Py = 5pi/ PL(0p3"+(1—0)pL)dd and 0P =a (P77 —P27)+ 0P (5.13)
0

Using the previous uniform estimates (1.9) and (4.22), the product laws (2.3)-(2.4) and the composition
estimates (2.6)-(2.7), for some constant states I'; > 0 (i = 1,2, 3), we have

3

;(Hn ~Till gt inptn, IO 580 = 0(1): (5.14)

Therefore, (5.9) follows from (5.8), (5.11)-(5.14), the product laws (2.3)-(2.4) and the fact day = —da.
O

The next lemma pertains to O(y/e7) bounds for Py (pS") — P_(p>"), which leads to the convergence

rate \/eT.
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Lemma 5.3. For d > 3, under the assumption (1.17), the following estimate is valid:

1P () = Poo= M e s,

1 . . (5.15)
b NP = P sty S VAT
Proof. It is easy to verify from (BN) that Py (pS") — P_(p=") satisfies the damped equation
0P (557) — P(p) 4 V(P (T) — P (7))
Cx T T
(P = P-(E)
(5.16)

e,T £, T e,T £, T 1 £, T e, T
= (027 Pr(p37) + 73T P-(p27)) = ex) - (P (p37) = P-(p27))
— (4 Pr(pY7) = 7= P-(pZ7))divusT := Wy + W,

with ¢, := (y4@_+7_ay)P. Thence the L2-in-time type estimate in Lemma 2.7 for the damped transport
equation (5.16) leads to

E,T E,T ]‘ E,T £,T
1P = P02 gty + 2P = Poo gy o g
Sep (7, g ) (VET + VEIWL W)

By (1.9) and (2.4), there holds

~ . d
rat-2nat )

T — \T — ]' T sT
VEIWA gy -2ty S I0ET = 037 = Pl ) 2 IPH () = P gy g
1 ;
So ()\EIIPJF( ) = P00 4281y

and

VEIWal 2, gspgr) S VEIETI, < V.

Therefore, we gain (5.15). O

Bé 1mBz)

We are going to estimate (6Q,du). By virtue of (BN), (K) and (5.6)-(5.7), (0Q,du) satisfies the

following equations of damped Euler type with rough coefficients:

0,0Q +us™ - V6Q + 57 div du = 6F1,

1 1 1 5 (5.17)
bu +u*T - Vou+ -VoQ + (— — - =
p PP

with the nonlinear terms

_PT
0F, = —6u-VP™ — (FZ’T — %)diwﬂ
Y4l +y_al
T (PLET) — P (o) diva 4 (O + ST - VIS (P (o) — P (o)),

OF := (F‘i’T(P+(piT) ~ P (piT))>-

In order to establish the uniform-in-7 convergence estimates, we follow the ideas in Section 3 to overcome

the issue caused by the overdamping phenomenon.
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Lemma 5.4. Letd > 3, 0 < ¢ < 7 < 1, and the threshold J. be given by (2.1). Then under the
assumption (1.17), there holds

¢ h
100Q 80 5125 +T||5Q||L1(Bg) +10QE, g
T ﬁnmnzwg_l) R L EOPPRRPIE L S, (5.18)
SVET+ oI - g2t
Proof. As in Section 3, we split the proof into three parts:
e Step 1: B%2-estimates in low frequencies
We introduce the new damped mode (effective flux)
1 1
0z = du ( - —)VPT,
p T
so that (5.17) is rewritten as
FZT
0:0Q) — —AéQ = —Tydivz + §Fs,
5 0 (5.19)
B0z + i = IV(=2LA6Q — Tadivz) + 0 Fy,
PP

where T'y > 0 is the constant state of 'y, and §F; (i = 3,4) is defined by

§F3 1= —u®7 - ViQ — (T57 — T'y)divéu
= 1 1 1 1
+ Dardiv (( — — - )VIQ+ (— — —T)VPT> + 0F,
Pt D P p
5F4 = —u®" - Vu + ZV5F3
1 R
+T(pm - *WWQ —T&s( )V5Q+Tat(( p—T)VP ) + 6Fy.

Then by similar arguments used to get (3.13)-(3.16), we deduce from (5.19) and the choice (2.1) of the
threshold J, that

14 4
10Qu82)1%_ g +IOQIE, g +7I0SQIE, g
1
FVTISQIL, Ly + 02 (5.20)

LBih oY)
< ,/ET+||((5F3,6F4)H£1( s
We first estimate 0Fs. From (1.9), (5.14) and the product map B?~2 x B2 — B2~2 for d > 3, one

obtains

HUE,T . V(SQ =+ (]_—‘2’ — FQ)leéUHLtI(B%,z)

VTI6Q 2y g 1) + 1057 = all g 00l g (5.21)

w7l
LQ(Bz

=
S
<o) (VAIOQl g, + 00l s 1))
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By virtue of (1.9), (2.2), (5.9), (5.15) and (2.4), we also have

Jaiv (=L — Lywr|
T e = LY(BE?)

S 190l 5c gy 7P = P

. d
Ly(B2*)

S oY, 0Q) ;. 41, + VET.

As in the previous analysis (3.19), the tricky nonlinear term can be estimated as

T’div((piT %)V&Q) .
S TH(p‘flvT 1’) Qé‘ Ll(BE’l) + H(pflT B %)V(th e

. d
L{(B27?)

S o<1>(7||6c2||‘;( 4, 1L, ey )

Similarly, one can show

9Bl 52y S =00l g2 VAIQ Ny

_PT
-2,
Yol +y-al

+ 1P (p37) = P-(pZ

+ (0,177l

.
g, T
g g 471

+ [T

LI(BETY)

||VFE s T

LH(B?)

Ll(BZ) ‘L§°(B%))HP+(/71T)_P—(Pi

which implies

1
160 52y S oD (10Y:0Q) - g sy + =90l g a)) + VT

Therefore, we have

I6F512, g2y S o1 >(H<5Y S t-2, + 16QN 52, + VIR, 14,
oy g+ 160 ) +VET.
We turn to the estimate of § F;. Similar calculations give
|- 2| I O IS 1 (i
and

viQ

H psdon S 1N g 18I ) S OISR o)

For the third difficult term in 0Fy, we apply (2.2), the product law (2.4) for d > 3 and the fact
1

1 1 1 1
T — —)\WVWooQ =1V — =)0:0Q) — TV
(4 = DVO0Q =V (1 — 1100Q) — V(-

~ Do
17
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to have

il G ol
20000, o+ [V - 00,
P L1(B2 €T Ll(Bz
S o™ 7ﬁ||if°(B%ﬁB%+l 10 QHLl(Bi_Q
< o(05Q, g o
Similarly, the term JF5 can be easily estimated as follows:
1931, ) S 100l s 107, + IPHGET) = PGy g
< o(1) 5l g, +VET +e
S ol6ull, g1, + VET.
To bound the term T@t((ps% — %)VPT) noticing that
0dp = —div (5pu€"r + p"ou),
we use (1.9), (5.9), (5.15) and (2.6)-(2.7) that
HTat((pflﬁ - %)VPT) LBt
1030l 4, ||VPTHLOO(BZ 150l o TIVETIL,
<o) (I16Y.0Q) e 2581, + 100l 1 0)) + r
We thence get
IS, g S o(l)(H(éY, S5 12, +10QU, 1, + VIR 4, -

ga) + 6l

L}(B%*I)) + VeET.

f|\5UII

Substituting the above estimates (5.23)-(5.24) into (5.20) and taking advantage of du = dz— - Z=ViQ—
(=2 L)V P, we obtain

=T T pT

16Q.32)%_ g o+ HéQIIil(Bd)+WII5QH" s+ 2187, g
lul_ ygoa) fu ull g 10, g
o (IEY:0Q) . -2 581, T 7I9QU, g (5.25)
FIOQUL, gsy + VISRt

1
+ F”&U‘”Z?(B%—z) + ”(su”Ltl(B%*l) + ”at(sQHL}(B%fz)) + Ver.

o Step 2: B%~2_estimates of (6Q, du) in high frequencies
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Applying A; to (5.17), one gets

9 A;0Q +uST - VA;6Q +T57divA;0u = Aj5F, + 0R, 4,

A
0 A ;0u + usT - VA, ut —VA6Q + =
. 1
= _Aj((peﬂ' — p—T)VPT) + Aj5F2 + 5R2,j + 5R3,j,

with ) ) )
5R17j = [ug’T, AJ]V(SQ + [F;’T, Aj]diV Ajdu,

(SRQJ‘ = [UE’T,A]*]V(S’U,,
1 .
(SR37]’ = [F,A]]VCSQ
Similarly to the high-frequency analysis in Section 3.2, one gains

d 1

o ( | Q) +T57|A Hdx + —HA Sul|2z
. e,T e,T 1 £,T A A
< H(dlvu’ V57, V—,8; “,atr )L 1A;6Q) 12| A, 6ull 2
p=T pe L (5.26)
. 1 1 . . .
Az = VP L IAsSule + 145 (5F, 57 521 A5(6Q, 6u) 2
+ |6R ;| 22| A;0Q L2 + [|(6R2,5, R ;) || 2| Ajoul 12,
and the cross term
4 Ajou-VA,;VSPdx
dt Sy
1 .
Rd ’
11
<|UET|LOO||VA Sul| g2 + HA — - ?)VPT) , (5.27)

+ ||(AJ6F2, (5R2,j, 5R3,j)||L2) HVAJV(SPHLz
+ (v N 5 IVA;6Q L2 + |1 Aj0F || L2 + 6 Ry  £2) |6l 2.

For all j > J,, multiplying (5.27) by a suitable small constant and adding the resulting inequality and
(5.26) together, we can derive the Lyapunov inequality similar to (3.34)-(3.41) and then show the following

L'-in-time type estimate:

h h
TI6Q 0wl _ g, +16Q I, Lo
s\/a(uufflulwmzﬂ + 1107, 0L 1y 54)TNEQ W g,
T e,T h h
6 = TS = Tl II<5Q5>”L1< 4oy HTNOFL ORI, g
1 1
— VP
+TH(pE,T pT) L}(B%’l)
+7 Y 267VI|[(§Ry ;,0Rs5,0Rs ;)] 2
jzJ-—1
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y (1.9), (5.9), (5.15), the product laws (2.4) and the commutator estimate (2.5), it is easy to show

1 1

TH(pE’T “ oV sty
S 10l it TIPT = Pl gn) S oDIOY.6Q . g1, + VET.
and
T Z 2( 1)J” (5R1 ]7(5R2’j)||L2
j>Jr—1
SITE 0 16Q 60 g 1) S DR 80 g

For the tricky commutator term Rj3 ;, we have

.
T Z 202799 Ry 5 Ly (12)
J>J -1

. 1 .
<Ta>;122j‘ MY QZ’“(”)JFJ-;: 2 _1)]‘)[F’Aj]V5Qh‘L%<L2)
SIVO s 1) TIOQ N 1y ) 1Ry 2 1)

< o)(I0QI, g, +15QUL, Ly )
For §F} and §F5s, similar computations give rise to
1GF 0Py g2y S 10l g 1P = Poa)l o g
+\r37f—w”§1fﬂl RN s oS
S T +||atri’7+u8>f-vr?T||L%(Bg)>||P+<piT>—R(piwnmﬁﬂ) (5.28)
FIPHPT) = P01t
<o) (16Y.0Q)1 e i, + 100l i) ) +VET + 2
We thus get
160Q. 6l _ g o) +7IOQ WL g
FIOQIN?, Ly + VISR, oy + fn I s, 20
< o) (I6Q, 00l . 1, +7I6QU, g |

h
+ HaQHL%(E%*) + T||5u|\L}(B%71)) + /T
e Step 3: B%~l.estimates of (6Q, du) in all frequencies

We need to further establish the uniform B2 ~1-bounds. To this end, owing to (5.26), we obtain the
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L2-in-time estimate

160Q. 6l 51, + fua u

L3(B2Y

h

1
< e, T £, T e,T 2
VT (117 ) + 1@ Oy ) IGQuBIE_ gy

2

I E’T—*r“—mn% (vaiselr, 4 ) (—=lsul, oo, )
Pt Pz i) 102 VANANVZh s #10: 3

3 3 H L 1iopr? 3
FIGRLENE, o 16QIE_ o+ ([ = v P L lul

+ 20t (/ (I6R5111218,6Q0 12 + | (ORzg, 6 Ra )2 |1 Aull 2)ds ) .

JEZ
One has

- B

~ . d
ZI0E B

11
o o)V
PP

T D % 1
S W00l 1, (VNPT = Pl pgon)) (71000 gz 8 0))
1
<o(1 )(||(6Y Oz 41 +\7Hlléullzg(3gfl)) +V/eT

Concerning the commutator terms, we have

t
> 2t-ni( / (18R 5112211256Ql L2 + 6Bz s 1211 Agull2) ds )

||2

I

L2557

1
2

N

JEZ
S (19 g 19l g2 V1R 1 5 )
(2000 IVTE 0y VPIOQU 5 )+ (19l 002y
(195 g 1 VTIOQU 1y F=00  0)
o) (I0Q 80 50y + VISR 52y + ol ).
Gathering (5.28) and the above three estimates, we have
16Q 0 10y + =90, -

1
S o) (I6Y, 0@ 80l g1y +10Q g1y + =0l g0 ) +VET
e Step 4: Proof of convergence rate

Finally, as required in (5.25), one needs to estimate 0,0Q. We make use of the equation (5.17),, (5.21)
and (5.22) to get

19:8Q, g2, S 057 - V6Q + (57 = Ta)divbull, g

+ ||div dul| + [|6F1]|

. d . d
L{(B27%) Li(B27%)

1
S oV (16,0 g2, + =100l 7y 59 2))
110l g1, + VET.

(5.31)
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Combining (5.4), (5.25), (5.29), (5.30) and (5.31) together, we end up with (5.18) which completes the
proof of Lemma 5.4. O

5.2 Time-relaxation limit: System (K,) to System (PM)

This section is devoted to the proof of (1.20) in Theorem 1.4. Define the error variables

(6B+,604,00,01L,0v) == (BL — By, 0} —0x,0" — 0, II" = I, 0" — ).
First, similarly to (5.1), instead of 63, we need to estimate the variable

_ BLol _ Bro+
0" o’

07 :

where the initial data of dz is

, . ok 0P} 0 B4,00+,0
5Z|t:0 = ZO — Z()7 ZO = s T P = y Z() = . (532)
al opl ot al opl g By,00+,0+ B-00-0

Indeed, arguing similarly as in Lemma 5.2, we obtain from (K,) and (PM) that

1
B0+ Broso”
_ o} — oL
B0l o— + Broyo”

1 1
O = 5Q+/ Pl (007 + (1 —0)04)d0 = do_ / P (80" + (1 —6)p_)d0,
0 0

684+ (0700Z — By B-0-bor + BLB_04d0-),

do"

(07007 — B1B-0-b04 + B+B-0100-) + B1doy + B0, (5.33)

which leads to

”(SQ:‘:HZ;?"(B%’I) + H(SQZEHL%(B%“) ~ ”(SH”Z,?O(B%*l) + ||5H||L}(B%+1)’

”(SﬁiHZ?Q(B%—l) /S ||(6Z7 6H)HE?°(B%71)

(5.34)

It is therefore sufficient to estimate (411, 6v,8Z) to recover the information on all the error unknowns.

Next, note that 0 Z satisfies the transport equation

06Z +v" -V6Z = —bv- vm;’ﬁ (5.35)
Using Lemma 2.7, (4.22) and the product law (2.4), we get
T /B"FQ"F
1212 -1ty S P00 g s Wy o V25 gty
S o5l 4,

Then, we perform the key estimates of 6II. From (K;), it is easy to see

Y417 di (VHT> =y VII™

div 2" ZzT =" +
Y4BT 4+ - b1 o" ’

OJII™ + v - VII" = .
: 1B+ 1B, o7
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Thence by the above equation and (PM), §II satisfies

O0Il — Al = —v™ - VOII — v - VII

( e e e | ) div (VHT)
V4+BL + =B 4B+ +-B- 4 (5.37)
Y411 di ((i })VHT) I e dive,

e et S P NG
Y4By +7-B- o 0 Y4BT +v-BL

with the constant @ := —=Lr(2+)
(y+a—+v-a4)p

from the uniform estimate (4.22) of the effective unknown z7. Indeed, by Lemma 2.6, the uniform estimate
(4.22), the smallness of the initial data (1.7), the product laws (2.3) and the composition estimates (2.6)-
(2.7), one obtains

> 0. We mention that the convergence rate 7 is O(7) bound comes

01Tl 7. (g, + IOIL] ST g1y H00l] e ML=

Ly (B2 LiBEHY 22 Iz 59 Li(B%) ”L?(B%>
T 1 1 T T
Ty 07 = Pl iy + [ 7 = DV g 171 (5.:38)
< o) (16710 g, + 10025l gy + GBI g ) 47
where we have used the key fact
1 1 T < T T D
[ = DV, sy S 20 ) T = Py g+ U0l g T = Pl s )
S oW (1821 1, + 1502l 73 5,):
derived from (2.4), (4.22) and (5.33). Gathering (5.34) and (5.38) together, we get
IO ey 0011, g 0 (IZ1 g, + 19T, g 7 (5.40)
For the error unknown dv, in view of (4.22), (5.39) and dv = (Q—, )VHT - %VJH + 27, it can be
bounded by
1 1
Sl e S OTI s Hf_, " A
|| ’UHL%(B%) ~ H HL%(B%JF ) + ( T Q)v Ll(Bd + || ||L1(Bg) (541)
<
1510, + 0TI g + 10T g + 7

The combination of estimate (5.34) and inequalities (5.36)—(5.40) gives rise to estimate (1.20), which
completes the proof of Theorem 1.4.
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