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Abstract. We present a weak-strong uniqueness result for the inhomogeneous Navier-Stokes (INS)
equations in Rd (d = 2, 3) for bounded initial densities that are far from vacuum. Given a strong
solution within the class employed in [27] and [6] and a Leray-Hopf weak solution, we establish that
they coincide if the initial data agree. The strategy of our proof is based on the relative energy method
and new W−1,p-type stability estimates for the density. A key point lies in proving that every Leray-
Hopf weak solution originating from initial densities far from vacuum remains distant from vacuum at
all times.

1. Introduction and main results

1.1. Presentation of the model and literature. We consider the inhomogeneous incompressible
Navier–Stokes equations in Rd for d = 2, 3:

∂tρ+ div(ρu) = 0, t > 0, x ∈ Rd,

∂t(ρu) + div(ρu⊗ u)− ν∆u+∇P = 0, t > 0, x ∈ Rd,

div u = 0, t > 0, x ∈ Rd,

ρ(0, x) = ρ0(x), x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,

(1.1)

where ρ = ρ(t, x) ≥ 0 is a scalar density function, P = P (t, x) ∈ R is the pressure and u = u(t, x) ∈ Rd is
the velocity field of the fluid. The first equation of (1.1) represents the conservation of mass, the second
is the momentum equation and the third is the incompressibility condition.

The inhomogeneous Navier-Stokes system shares many properties with its homogeneous counterpart
((1.1) with ρ ≡ 1). Formally, its solutions satisfy the energy balance:

1

2

ˆ
Rd

ρ(t)|u(t)|2 dx+ ν

ˆ t

0

ˆ
Rd

|∇u|2 dx ds = 1

2

ˆ
Rd

ρ0|u0|2 dx,(1.2)

and they obey the same scaling symmetries as the solutions of the homogeneous Navier-Stokes equations.
More precisely, if (ρ, u, P ) is a solution of the inhomogeneous Navier-Stokes equations, then, for every
λ > 0, we have that (ρλ, uλ, Pλ), given by

(ρλ(t, x), uλ(t, x), Pλ(t, x)) = (ρ(λ2t, λx), λu(λ2t, λx), λ2P (λ2t, λx)), (t, x) ∈ (0,∞)× Rd,

is still a solution of the inhomogeneous Navier-Stokes equations.
These fundamental properties have significant implications for the theory of inhomogeneous Navier-

Stokes equations. Specifically, the energy equality (1.2) suggests seeking weak solutions within a frame-
work similar to that of the homogeneous Navier-Stokes equations. In that direction, one of the first
existence result of global-in-time weak solutions, satisfying (1.2), was obtained by Kazhikhov in [21] for
densities bounded from below. Later, Simon [29] removed the lower bound on the density and Lions
and Desjardins [24, 16] constructed weak solutions for the density-dependent Navier-Stokes equations in
arbitrary dimensions. The uniqueness of these solutions remains, however, an outstanding open problem,
even in two dimensions.
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In [22], for C1 initial densities and smooth enough initial velocities, Ladyzhenskaya and Solonnikov
established the first well-posedness result for the inhomogeneous Navier-Stokes equations in smooth
bounded domains of R2 and R3. This was generalized to weakly differential initial densities by Des-
jardins [17] and Danchin [10].

In the present paper, we focus on initial densities that are only assumed to be bounded and that are far
from vacuum. Under this condition, critical spaces (for the initial velocity) provide natural frameworks
to establish well-posedness results. As mentioned, the inhomogeneous Navier-Stokes equations have the
same scaling symmetries as the homogeneous Navier-Stokes equations and, therefore, the same critical
spaces for the velocity, e.g.

Ḣd/2−1(Rd), Ḃd/p−1
p,q (Rd), Ḃd/p−1

p,∞ (Rd),(1.3)

with p ∈ (1,∞) and q ∈ [1,∞). See [4] for a review on the topic of critical frameworks for the homogeneous
Navier-Stokes equations. The uniqueness of solutions emanating from initial velocities in critical spaces
of the inhomogeneous Navier-Stokes equations is, so far, mostly unknown. One of the reasons is the lack
of Lipschitz estimates for the solutions of (1.1) with initial values in (1.3). More precisely, let X be one
of the spaces in (1.3) and let (ρ, u) be a solution of (1.1) with respect to the initial value (ρ0, u0), with
u0 ∈ X. Then, for q ̸= 1, it is not clear how to show that the solutions of (1.1) satisfy, for any T > 0,

ˆ T

0

∥∇u∥∞ dt ≤ ∥u0∥X .(1.4)

Note that even the solutions of the heat equation do not satisfy such estimates in these critical frameworks.
For the heat equation, (1.4) becomes true if X = Hs(Rd) for s > d/2− 1, or X = Ḃ

d/p−1
p,1 (Rd).

This observation is consistent with the results obtained by Paicu, Zhang and Zhang [27] and Chen,
Zhang and Zhao [6]. In [27], the authors proved the existence and uniqueness of solutions of (1.1) when
u0 ∈ Hη(R2), with η > 0, and ρ0 ∈ L∞(R2) is bounded from below, i.e. far from vacuum. Furthermore,
in the three-dimensional case, the authors proved the existence and uniqueness of global-in-time solutions
of (1.1) provided the initial value u0 belongs to H1(R3) and satisfies the smallness condition

∥u0∥1/22 ∥∇u0∥1/22 ≤ ε∗,(1.5)

for ε∗ > 0 a small enough constant. Without the smallness assumption, their construction provides local-
in-time unique solutions for (ρ0, u0) ∈ L∞(R3)×H1(R3). In [6], the authors generalized this statement
and obtained a global-in-time well-posedness result for initial velocities lying in Hη(R3) with η > 1/2
and under the smallness condition

∥u0∥Ḣ1/2 ≤ ε∗.(1.6)

More recently, Danchin and Wang [15] showed the global-in-time well-posedness for initial velocities in

the critical Besov space Ḃ
d
p−1

p,1 (Rd) with p ∈ (1, d), and for small and only bounded initial densities. In
[15, Theorem 1.7], they suggest a way to derive weak-strong uniqueness results in 2d far from vacuum
and in 3d including vacuum. This is strongly related to our goal in the present paper, we discuss their
result in more detail in Remark 1.7. Then, Danchin [11] justified the global well-posedness when the
initial density is in L∞ and the initial velocity lies in a subspace of L2 obtained by interpolation. In the
case of smooth densities, the space defined in [11] coincides with the critical space B0

2,1(R2), otherwise, its
construction depends on ρ0. We also mention [14] where Danchin and Vasilyev obtain a well-posedness
result in critical tent spaces where the initial velocities lie in a subspace of BMO−1.

In the presence of initial vacuum, i.e. ρ0 ≥ 0, the local and global well-posedness in bounded domains
was justified by Danchin and Mucha [13]. Recently, in [28], Prange and Tan studied the existence and
uniqueness of solutions on Rd, d = 2, 3, with some special vacuum configurations. In [28, Proposition
4.1], they established a result concerning weak-strong uniqueness in R2, refer to Remark 1.6 to see how
this compares to ours.

Under regularity assumptions on the initial density, Danchin [9] demonstrated the existence and unique-
ness of local-in-time solutions if

∥ρ0 − 1∥
Ḃ

d/2
2,1

≤ ε∗ and u0 ∈ Ḃ
d/2−1
2,1 (Rd),
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and the global-in-time existence if the initial velocity is sufficiently small in Ḃd/2−1
2,1 (Rd). This result was

extended by Abidi and Paicu [3] and Danchin and Mucha [12], for suitable initial densities, to the Lp

framework:

u0 ∈ Ḃ
d/p−1
p,1 (Rd),

for 1 < p < d and 1 ≤ p < 2d, respectively. This was further generalized by Haspot [20] to cover the full
range p ∈ (1,∞). In these results, the philosophy is to balance the regularity between the initial velocity
and the initial density, see [20, Theorem 1.1]. Furthermore, Haspot removed the smallness assumption in
the case p = 2, see [20, Theorem 1.2]. Then, relying on L1-maximal regularity estimates, Xu [31] removed
the smallness condition in the case d = 3. In 2D, Abidi and Gui [1] established the well-posedness for
ρ0 ∈ Ḃ1

2,1(R2) and u0 ∈ Ḃ0
2,1(R2), lowering the regularity on the initial density. Recently, Abidi, Gui and

Zhang [2] generalized this result following the balance of regularity philosophy.

1.2. Aims of the paper and notions of solution. In this paper, we prove a weak-strong uniqueness
result for the inhomogeneous Navier-Stokes equations in both R2 and R3 for initial densities in L∞ that
do not exhibit vacuum. We consider initial data satisfying

(1.7)
0 < c0 ≤ ρ0(x) ≤ C0 < +∞ for almost every x ∈ Rd,

u0 ∈ L2
σ(Rd;Rd),

for two positive constants c0 and C0 and where L2
σ denotes the space of divergence-free L2 vector fields.

The weak solutions we consider are the energy-admissible weak solutions or Leray-Hopf weak solutions
defined by Lions in [24].

Definition 1.1 (Leray-Hopf weak solution). We designate a pair (ρ, u) as a Leray-Hopf weak solution
of (1.1) with initial data (ρ0, u0) satisfying (1.7) if

(i) The solution satisfies
√
ρu ∈ L∞((0,∞);L2(Rd)), ρ ∈ L∞((0,∞)× Rd),

u ∈ L2
loc((0,∞)× Rd)) and ∇u ∈ L2((0,∞);L2(Rd)).

(ii) The first three equations of (1.1) are satisfied in the sense of distributions:
• For every φ ∈ C∞

c ([0,∞)× Rd;R),

−
ˆ ∞

0

ˆ
Rd

ρ∂sφdx ds =

ˆ ∞

0

ˆ
Rd

ρu · ∇φdx ds+

ˆ
Rd

ρ0φ(0) dx,

• For every φ ∈ C∞
c,σ([0,∞)× Rd;Rd),

−
ˆ ∞

0

ˆ
Rd

ρ∂tφ · u+ ρu⊗ u : ∇φdxds+ ν

ˆ ∞

0

ˆ
Rd

∇u : ∇φdxds =

ˆ
Rd

ρ0u0 · φ(0) dx,

• For every φ ∈ C∞
c ([0,∞)× Rd;R),ˆ ∞

0

ˆ
Rd

u · ∇φdxds = 0.

(iii) For every t ∈ (0,∞), the energy inequality holds:ˆ
Rd

ρ(t)|u(t)|2 dx+ ν

ˆ t

0

ˆ
Rd

|∇u(s)|2 dx ds ≤
ˆ
Rd

ρ0|u0|2 dx.(1.8)

In [7], Crippa demonstrated that weak solutions of transport equations with divergence-free L1
loc ve-

locity field can be modified on a time-set of measure zero such that it belongs to Cw∗([0,∞);L∞(Rd)).
Based on this observation, we assume that the density of a Leray-Hopf weak solution satisfies ρ ∈
Cw∗([0,∞);L∞(Rd)) in the rest of the manuscript.

Next, we recall the following existence result for weak solutions, see [24, Theorem 2.1].

Theorem 1.2 ([24]). Let (ρ0, u0) satisfy (1.7). There exists a global weak solution of (1.1) with initial
data (ρ0, u0) satisfying the energy inequality (1.8). Furthermore, for all 0 ≤ c0 ≤ C0 < ∞, the Lebesgue
measure of

{x ∈ Rd | c0 ≤ ρ(t, x) ≤ C0}(1.9)
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is independent of t.

Regarding the notion of strong solutions, we rely on the results obtained by Paicu, Zhang and Zhang
in [27, Theorem 1.1] and Chen, Zhang and Zhao in [6]. Before recalling their results, we introduce the
following quantities: for η > d/2− 1 and σ(t) = min{1, t},

Aη
1(t; ρ, u) :=

1

2
sup

s∈[0,t]

σ(s)1−η

ˆ
Rd

|∇u(s, x)|2 dx+

ˆ t

0

σ(s)1−η

ˆ
Rd

ρ|∂tu|2 + |∇2u|2 + |∇P |2 dxds,

Aη
2(t; ρ, u) :=

1

2
sup

s∈[0,t]

σ(s)2−η

ˆ
Rd

ρ|∂tu|2 + |∇2u|2 + |∇P |2 dx+

ˆ t

0

σ(s)2−η

ˆ
Rd

|∂t∇u|2 dxds,

and

Sη(0, T ) := {(ρ, u) | for every t ∈ [0, T ), there exists a C > 0 s.t. Aη
1(t; ρ, u), A

η
2(t; ρ, u) ≤ C} .

Combining the results obtained in [27] and [6] leads to the following statement.

Theorem 1.3 ([27, 6]). Let (ρ0, u0) as in (1.7).
(1) Let d = 2 and η > 0. For u0 ∈ Hη(R2), the system (1.1) admits a unique global-in-time solution

(ρ, u) ∈ Sη(0,∞).
(2) Let d = 3 and η = 1. For u0 ∈ H1(R3), the system (1.1) admits a unique local-in-time solution

(ρ, u) ∈ S1(0, T ∗) for the maximal time T ∗ = T ∗(∥u0∥1) > 0. Furthermore, there exists an
absolute constant ε∗ > 0 such that, for every u0 ∈ H1(R3) satisfying the smallness condition

∥u0∥1/22 ∥∇u0∥1/22 ≤ ε∗,

we have T ∗ = ∞.
(3) Let d = 3 and η > 1/2. There exists an absolute constant ε∗ > 0 such that, for every u0 ∈ Hη(R3)

satisfying

∥u0∥Ḣ1/2 ≤ ε∗,

the system (1.1) admits a unique global-in-time solution (ρ, u) ∈ Sη(0,∞).

In each case, the solution (ρ, u) satisfies the energy equality:

A0(t; ρ, u) :=

ˆ
Rd

ρ(t)|u(t)|2 dx+ ν

ˆ t

0

ˆ
Rd

|∇u(s)|2 dxds =
ˆ
Rd

ρ0|u0|2 dx,

for every t ∈ (0, T ∗), where T ∗ denotes the maximal time of existence of the solution.
Moreover, the density stays away from vacuum: there exist c0, C0 > 0 such that for almost every

(t, x) ∈ [0, T ∗)× Rd,

c0 ≤ ρ(t, x) ≤ C0,(1.10)

and, for every t ∈ [0, T ∗], we have

(1.11)
ˆ t

0

∥∇u∥∞ dt <∞.

Motivated by Theorem 1.3, our definition of strong solutions is as follows.

Definition 1.4 (Strong solutions). Let 0 < T ≤ ∞ and (ρ0, u0) satisfy (1.7). We say that a Leray-Hopf
solution (ρ, u) of (1.1) is a strong solution of (1.1) on (0, T ) if there exists an η > d/2 − 1 such that
(ρ, u) ∈ Sη(0, T ). Furthermore, we define the maximal time 0 < T ∗ ≤ ∞ of the strong solution (ρ, u) by

T ∗ := sup{T ∈ (0,∞)|(ρ, u) ∈ Sη(0, T )}.

1.3. Main results. We are now ready to state our main result, which aims to close the gap between the
Leray-Hopf weak solutions from Definition 1.1 and the strong solutions from Definition 1.4.

Theorem 1.5 (Weak-strong uniqueness). Let d = 2, 3 and (ρ1, u1) be a Leray-Hopf weak solution of (1.1)
associated with the initial data (ρ0, u0) satisfying (1.7). If there exists (ρ2, u2) a strong solution of (1.1)
on (0, T ∗) with the same initial data (ρ0, u0), then (ρ2, u2) = (ρ1, u1) for almost every (t, x) ∈ [0, T ∗)×Rd,
where 0 < T ∗ ≤ ∞ denotes the maximal time of existence of the strong solution.
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Remark 1.6. Compared to previous results on weak-strong uniqueness for (1.1), our result covers larger
classes of strong solutions. More precisely, the existence of our strong solutions holds for u0 ∈ Hη with
η > d

2 − 1 whereas η > 2 (for d = 3) and η ≥ 1 are needed in [19] and [28], respectively.
In addition, our result is valid in the three-dimensional setting, whereas [28, Proposition 4.2] is re-

stricted to weak solutions lying additionally in critical spaces: u1 ∈ L4((0, T );L6(R3)). Our improvements
can be attributed to the different approach we employ: the relative energy method, and the fact that we
deal with initial densities far from vacuum, in contrast with [19, 28] where nonnegative initial densities
are considered.

Remark 1.7. In [15], the authors suggest a way to derive a weak-strong uniqueness result. For the strong
solutions we consider, it is not direct that they verify the conditions given in [15, Theorem 1.7] to derive
a weak-strong uniqueness result, see Section 1.5 for more details. Nevertheless, it is worth highlighting
that employing [15, Theorem 1.7] would result in a weak-strong uniqueness result in 3d allowing initial
vacuum states.

The absence of vacuum formation is a key point in our analysis and as it is a result of independent
interest, we state it as follows.

Theorem 1.8 (No Vacuum Formation). Let (ρ0, u0) ∈ L∞(Rd) × L2
σ(Rd;Rd) and assume that there

exists two constants c0, C0 such that, for almost every x ∈ Rd,

0 < c0 ≤ ρ0(x) ≤ C0.

Let (ρ, u) be a weak solution of (1.1) in the sense of Definition (1.1) with the initial data (ρ0, u0). Then,
for almost every (t, x) ∈ [0,∞)× Rd,

0 < c0 ≤ ρ(t, x) ≤ C0.

Remark 1.9. In contrast with Theorem 1.2, where Lions proved the absence of vacuum formation for a
particular weak solution, Theorem 1.8 shows that this property holds for any weak solution of (1.1) in
the sense of Definition 1.1.

1.4. Strategy of proof of Theorem 1.5. Our proof is based on the relative energy method, which
has multiple applications in fluid mechanics, as highlighted in [30] by Wiedemann. For applications to
hyperbolic conservation laws see [8] by Dafermos. We also borrow tools from the works of Li [23] and
Danchin and Wang [15]. Let us briefly describe our approach. Let (ρ1, u1, P1) and (ρ2, u2, P2) be two
regular solutions of (1.1) with respect to the same initial data (ρ0, u0). While we assume the solutions
to be regular enough here, a major part of our proof consists in showing, with approximation arguments,
that the computations hold when (ρ1, u1) is a weak solution and (ρ2, u2) a strong solution. We define

δρ = ρ1 − ρ2, δu = u1 − u2 and δP = P1 − P2.

The error unknown (δρ, δu, δP ) satisfies the following equations
∂tδρ+ div(δρu2) = − div(ρ1δu),

ρ1 (∂tδu+ (u1 · ∇)δu)−∆δu+∇δP = −δρu̇2 − ρ1(δu · ∇)u2,

δρ(0) = 0, δu(0) = 0,

(1.12)

where we used the material derivative notation

u̇2 := ∂tu2 + (u2 · ∇)u2.

Our proof is based on the relative energy method which boils down to bounding the relative energy:

Erel(t) :=
1

2

ˆ
Rd

ρ1(t) |δu(t)|2 dx, t > 0.

Multiplying the second equation of (1.12) by δu, for sufficiently regular solutions, and integrating in time
and space, we obtain

Erel(t) + ν

ˆ t

0

ˆ
Rd

|∇δu|2 dx ds = −
ˆ t

0

ˆ
Rd

δρu̇2 · δudx ds−
ˆ t

0

ˆ
Rd

ρ1(δu · ∇)u2 · δudxds(1.13)

= −
ˆ t

0

ˆ
Rd

δρu̇2 · δudx ds−
ˆ t

0

ˆ
Rd

ρ1δu⊗ δu : ∇u2 dx ds.
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We emphasize here that obtaining (1.13) in our weak-strong setting is not straightforward. The difficulty
is that it is not clear how to bound

∂tu1 and ∂t(ρ1u1),

in order to apply Lions–Magenes lemma. In particular, applying the Leray projector to the equation only
allows to recover

∂tP(ρ1u1) ∈ L4/d(0, T ; Ḣ−1(Rd)).

Therefore, in our weak-strong framework, one cannot justify the following computations, which were used
in [15, 23] to derive (1.13),

ˆ t

0

ˆ
Rd

ρ1∂tδu · δudx ds =
ˆ t

0

ˆ
Rd

ρ1∂t
1

2
|δu|2 dx ds

=

ˆ
Rd

ρ1(t)
1

2
|δu(t)|2 dx−

ˆ t

0

ˆ
Rd

∂tρ1
1

2
|δu|2 dx ds

=

ˆ
Rd

ρ1(t)
1

2
|δu(t)|2 dx−

ˆ t

0

ˆ
Rd

ρ1(u1 · ∇)δu · δudxds.

In Lemma 4.1, we show that (1.13) holds for (ρ1, u1) a Leray-Hopf solution, avoiding the above computa-
tions. To do so, employing approximation arguments, we establish in Section 3 that the strong solutions
are admissible test functions for both the weak formulation of the transport and momentum equation.

Once (1.13) at hand, we aim to control the right-hand side terms to apply Grönwall’s inequality and
conclude Erel ≡ 0. Under the condition that

∇u2 ∈ L1
loc(0,∞;L∞(Rd)),(1.14)

the estimate of the second r.h.s. of (1.13) is straightforward and we have

−
ˆ t

0

ˆ
Rd

ρ1δu⊗ δu : ∇u2 dxds ≤
ˆ t

0

∥∇u2(t)∥∞Erel(s) ds.

Controlling the term ˆ t

0

ˆ
Rd

δρu̇2 · δudx ds(1.15)

is more difficult as it is not quadratic in √
ρ1δu, which is problematic to apply a Grönwall argument.

To control this term, we derive stability estimates for δρ in well-chosen norms. The key observation
is that the strong solution u2 satisfies the Lipschitz bound (1.14), which implies that there exists a flow
X : [0,∞)×Rd → Rd generated by u2. Assuming that ρ1δu is smooth, from the first equation of (1.12),
we have the following representation formula, see [5, Proposition 6],

δρ(t,X(t, x)) = −
ˆ t

0

div ((ρ1δu)(τ,X(τ, x)) dτ.(1.16)

Using (1.16), approximation arguments and commutator estimates, for p, q > 1 such that 1/p+ 1/q = 1,
we bound (1.15) as

−
ˆ t

0

ˆ
Rd

δρu̇2 · δudxds ≤ C

ˆ t

0

ˆ s

0

ˆ
Rd

(div (ρ1δu))(τ,X(τ, x)) u̇2 · δudτ dxds(1.17)

≤ C

ˆ t

0

ˆ s

0

∥(ρ1δu)(τ)∥p dτ ∥∇(u̇2(s) · δu(s))∥q ds,

where C is a constant depending on the flow and its derivatives. In some sense, (1.17) can be understood
as a W−1,p stability estimate for δρ.

Then, using Gagliardo-Nirenberg inequality, we derive Lp bounds for ρ1δu, which ensures that (1.15)
can be bounded by

C

ˆ t

0

f(s) ∥δu(s)∥22 ds,
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where the constant C and the function f can be controlled by norms of the strong solution u2. Since we
exclude the vacuum formation in Section 2, for every s > 0, we obtain

1

C
∥δu(s)∥22 ≤

∥∥∥√ρ1(s)δu(s)∥∥∥2
2
,

which allows us to conclude the weak-strong uniqueness using Grönwall’s inequality.

1.5. Comparison with existing literature. Let us briefly compare our approach with existing litera-
ture. A widely used technique to show the uniqueness of solutions of (1.1) is the transition to Lagrangian
coordinates, see [2, 6, 11, 12, 27]. This gives a new system of equations which is equivalent to (1.1) under
high regularity assumptions on the velocity fields u1 and u2, for instance, if ui satisfies

∇ui ∈ L1
loc(0,∞;L∞(Rd)) for i = 1, 2.

Therefore, the approaches based on such a transformation can only provide uniqueness results for classes
of solutions more regular than the one we deal with. Here, we rely on the so-called relative energy method
to work in a low-regularity framework. This method allows us to show that: if the existence of strong
solutions is known, then it is unique among a large class of weak solutions.

As described above, the goal is to apply Grönwall’s inequality to the equation satisfied by the relative
energy (1.13). Similar approaches were already employed in [23] and [15]. Let us describe the main
differences.

In [23], the approach developed by Li cannot be used in our weak-strong setting as it is restricted to
weakly differentiable initial densities. The reason for this is that the control of the product term in (1.15)
is done by deriving L3/2 stability estimates for the transport equation in (1.12), requiring a control on
∇ρ0. In [15], Danchin and Wang derived an estimate for the transport equation in Ḣ−1(Rd). For d = 2,
this requires the control of ˆ t

0

(
∥tu̇2(t)∥2∞ +

∥∥t∇2u̇2(t)
∥∥q
p

)
dt,

1

p
+

1

q
=

3

2
,(1.18)

and, if d = 3, ˆ t

0

(
∥tu̇2(t)∥2∞ +

∥∥t∇2u̇2(t)
∥∥
3

)
dt,(1.19)

quantities that are unlikely to be bounded for the strong solutions we are considering.

1.6. Outline of the paper. The rest of the paper is dedicated to the proof of Theorem 1.5. It is
structured as follows: In Section 2, we show the absence of vacuum formation for every Leray-Hopf weak
solution. Section 3 is dedicated to showing that the strong solutions (as defined in Definition 1.4) are
admissible test functions for our weak solutions. In Section 4, we employ the relative energy method to
justify our weak-strong uniqueness result. Some technical lemmas are relegated to the appendix.

2. No vacuum formation

In this section, we analyze the weak solutions of the continuity equation in dimensions d = 2, 3:{
∂tρ+ div(ρu) = 0, t ∈ (0, T ), x ∈ Rd

ρ(0, x) = ρ0(x), x ∈ Rd,
(2.1)

where 0 < T ≤ ∞, ρ : [0, T ) × Rd → R is the unknown and u : [0, T ) × Rd → Rd is a given velocity field
such that div u = 0. We analyze two different scenarios:

(1) The velocity field has the regularity of a Leray-Hopf weak solution in the sense of Definition 1.1.
(2) The velocity has the regularity of a strong solution, i.e. there exists an η > d/2 − 1 such that

u ∈ Sη(0, T ).
In case (2), we benefit from numerous favorable properties as u is regular, allowing us to apply standard
theory. In case (1), we need a suitable adaptation of the DiPerna-Lions theory. We will see that in both
cases there exists a flow associated with the velocity field and that the formation of vacuum is excluded.
This observation is crucial in our analysis to be able to employ the relative energy method.
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2.1. Flows and weak solutions. First, we assume that u is a strong solution of (1.1). This implies that
u ∈ Sη(0, T ) and by Lemma B.2, we have u ∈ L1

loc((0, T );W
1,∞(Rd)). With this regularity property in

hand, the existence and uniqueness of the flow associated to u is clear, namely the map X : [0, T )×Rd →
Rd, which solves, for every x ∈ Rd, the system of ordinary differential equations:{

Ẋ(t, x) = u(t,X(t, x)), t ∈ (0,∞),

X(0, x) = x.
(2.2)

As a consequence of the Picard-Lindelöf/Cauchy-Lipschitz theorem from the theory of ordinary differ-
ential equations, we have the following properties.

Lemma 2.1. Let u ∈ Sη(0, T ). Then the flow map X : [0, T )×Rd → Rd is well-defined and bi-Lipschitz,
i.e. X(t, ·) : Rd → Rd is an invertible Lipschitz mapping for every t ∈ (0, T ) and its inverse mapping
X−1(t, ·) : Rd → Rd is Lipschitz continuous as well. Moreover, for every t ∈ [0, T ), we have

exp

(
−
ˆ t

0

∥∇u(s)∥∞ ds

)
≤ ∥X(t)∥Lip ≤ exp

(ˆ t

0

∥∇u(s)∥∞ ds

)
,(2.3)

and for every t ∈ [0, T ) and every x ∈ Rd, we have

JX(t, x) = detDX(t, x) = 1.(2.4)

When dealing with weak solutions, we need to relax the assumptions on u, as the Leray-Hopf weak
solutions do not satisfy a Lipschitz bound. From the result of DiPerna and Lions [18, Theorem III.2], it
is known that one can also show the existence and uniqueness of a flow under the following assumptions:

u ∈ L1(0, T ;W 1,1
loc (R

d)),
u

1 + |x|
∈ L1(0, T ;L1(Rd) + L∞(Rd)) and div u = 0.(2.5)

In Lemma A.2, we show that the Leray-Hopf weak solutions satisfy (2.5) so one can employ a characteristic
formulation for the continuity equation to show that there is no formation of vacuum. This is presented
in the next result.

Proposition 2.2. Let u ∈ L1
loc(0, T ;W

1,1
loc (Rd)) with div u = 0 for almost every t ∈ (0, T ). If

u

1 + |x|
∈ L1(0, T ;L1(Rd) + L∞(Rd)),(2.6)

then (2.1) admits a unique weak solution ρ ∈ L∞((0, T )×Rd) which, for almost every (t, x) ∈ (0, T )×Rd,
is given by

ρ(t, x) = ρ0(X
−1(t, x)),

where X is the flow associated to u defined in (2.2).

Proof. The result is a direct consequence of [18, Prop. II.1], [18, Cor. II.1] and [18, Thm. III.1]. □

Remark 2.3. The incompressibility condition div u = 0 implies that X(t, ·) and X−1(t, ·) are measure-
preserving diffeomorphisms and, in particular, we have (2.4). As a consequence, for α ∈ {−1, 1}, one
has ˆ T

0

f(t,Xα(t, x)) dxdt =

ˆ T

0

f(t, x) dxdt

for every f ∈ L1((0, T )× Rd).

Remark 2.4. A key idea of the theory developed in [18] is to show that every weak solution ρ of (2.1) is
renormalized, i.e. for every β ∈ C1(Rd), it holds, in the sense of distributions,

∂tβ(ρ) + div(β(ρ) · u) = 0.

This is done by developing commutator estimates, for instance, from [24, Lemma 2.3, p.43], for v ∈
H1(Rd;Rd) and g ∈ L∞(Rd), there exists a constant C > 0 independent of ε such that

∥div(gvε − div(gεv))∥L2(Rd) ≤ C ∥v∥W 1,2(Rd) ∥g∥L∞(Rd) ,(2.7)

and

lim
ε→0

∥div((gv)ε − gεv)∥L2(Rd) → 0,(2.8)
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where fε denotes the mollification in space of a time-space function f in L1
loc((0, T )× Rd).

With these results in hand, if we show that a Leray-Hopf weak solution satisfies (2.6), then the
characteristic formulation allows us to exclude the formation of vacuum. This step is done in Lemma A.2
and leads to the main result of this section.

Theorem 2.5 (No Vacuum Formation). Let (ρ0, u0) ∈ L∞(Rd)× L2
σ(Rd;Rd) and assume that

0 < c0 ≤ ρ0 ≤ C0.

Let (ρ, u) be a Leray-Hopf weak solution of (1.1) in the sense of Definition (1.1) with the initial data
(ρ0, u0). Then, for almost every (t, x) ∈ [0,∞)× Rd,

0 < c0 ≤ ρ(t, x) ≤ C0 and u ∈ L∞((0,∞);L2(Rd)).

Proof. First, we have that ρ is the unique solution of (2.1) in L∞((0, T )×Rd) if u satisfies the conditions
stated in (2.5). Under this assumption, by Proposition 2.2, we obtain that ρ satisfies

ρ(t, ·) = ρ0(X
−1(t, ·)), t > 0.(2.9)

From (2.9), it follows directly that there is no formation of vacuum. Concerning the conditions in (2.5),

u ∈ L1
loc(0, T ;W

1,1
loc (R

d)) and div u = 0

follow from the definition of weak solutions and the condition
u

1 + |x|
∈ L1(0, T ;L1(Rd) + L∞(Rd))

is satisfied thanks to Lemma A.2. □

3. Admissible test functions for the continuity and momentum equation

In this section, we show that the strong solutions are admissible test functions for the weak formulation.
Throughout the section, let q > 1 and 0 < T ≤ ∞. We define the spaces

X2,q,T :=W 1,q(0, T ;L2
σ(R2)) ∩ Lq(0, T ;H2(R2)),

X3,q,T :=W 1,q(0, T ;L2
σ(R3)) ∩ Lq(0, T ;H2(R3)) ∩ L4(0, T ;L6(R3)).

In both cases d = 2, 3,

Xd,q,T ↪→ C([0, T );L2
σ(Rd)) and Xd,q,T ↪→ L2(0, T ; Ḣ1(Rd)).

Furthermore, we define the space

Bq,T =
{
φ ∈ Xd,q,T : φ ∈ H1(ε, ε−1 ∧ T ;H1(Rd)), ε > 0

}
.

Let 0 < t1 < t2 < T and let φ ∈ Bq,T . From the paper of Masuda [25], we know that there exists a
sequence {φn}n∈N ⊂ C∞([t1, t2];C

∞
c,σ(Rd)) such that

∥φn − φ∥H1(t1,t2;H1(Rd)) →
n→∞

0,

and, in particular, for every τ ∈ [t1, t2], we have

∥φn(τ)− φ(τ)∥H1(Rd) →
n→∞

0.

The following lemma shows the convergence of the approximations of nonlinear terms.

Lemma 3.1. Let φ ∈ Bq,T , 0 < t1 < t2 < T and {φn}n∈N be as above. Suppose that

u ∈ L∞(0, T ;L2
σ(Rd)) and ∇u ∈ L2(0, T ;L2(Rd)).

We have

∂tφ · φ, ∂tφ · u, u⊗ φ : ∇φ, u⊗ u : ∇φ ∈ L1((0, t2)× Rd),

and the following convergence results hold in L1((t1, t2)× Rd):

∂tφn · φn →
n→∞

∂tφ · φ, ∂tφn · u →
n→∞

∂tφ · u,

u⊗ φn : ∇φn →
n→∞

u⊗ φ : ∇φ, u⊗ u : ∇φn →
n→∞

u⊗ u : ∇φ.

Next, we investigate the weak continuity of ρu when (ρ, u) is a Leray-Hopf weak solution.
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Lemma 3.2. Let (ρ0, u0) ∈ L∞(Rd) × L2
σ(Rd) and (ρ, u) be a Leray-Hopf weak solution with respect to

(ρ0, u0). There exists a set Iw ⊂ [0,∞) with λ([0,∞) \ Iw) = 0 and 0 ∈ Iw such that

(i) For every φ ∈ H1
σ(Rd;Rd) and t, s ∈ Iw, we have

ˆ
Rd

ρ(t)u(t) · φdx−
ˆ
Rd

ρ(s)u(s) · φdx

=

ˆ t

s

ˆ
Rd

ρu⊗ u : ∇φdxdτ − ν

ˆ t

s

ˆ
Rd

∇u : ∇φdxdτ.

(3.1)

(ii) ρu ∈ Cw(Iw;L
2
σ(Rd)).

Proof. Let (φn)n∈N ⊂ C∞
0,σ(Rd) be a dense sequence in H1

σ(Rd) and In be the set of Lebesgue points of
the mapping

t 7→
ˆ
Rd

ρ(t)u(t)φn dx.

By Lebesgue’s differentiation theorem, we have λ([0,∞)\In) = 0 for every n ∈ N where λ is the Lebesgue
measure. Defining

Iw =
⋂
n∈N

In ∪ {0},

one has λ([0,∞)\ Iw) = 0. In the next step, we justify (3.1) for every n ∈ N. Note that it suffices to show
is it true for every t ∈ Iω, with t > 0 and s = 0. The general case follows by subtraction. Let ψ : R → R
be a smooth, decreasing function and assume that ψ ≡ 1 on (−∞, 0) and ψ ≡ 0 on (1,∞). For every
ε > 0 and every n ∈ N, set

φε,n(τ, x) = ψ

(
t− τ

ε

)
φn(x).

Then φε,n is an admissible test function for (ρ, u). Using Lebesgue’s differentiation theorem and the
dominated convergence theorem one concludes that, for every n ∈ N,ˆ

Rd

ρ(t)u(t) · φn dx−
ˆ
Rd

ρ0u0 · φn dx

=

ˆ t

0

ˆ
Rd

ρu⊗ u : ∇φn dx dτ − ν

ˆ t

0

ˆ
Rd

∇u∇φn dxdτ.

The equality in (3.1), for general φ ∈ H1
σ(Rd;Rd), follows by passing to the limit n → ∞ and the fact

that ρu ∈ L∞(0,∞;L2(Rd)). This proves (i).
In order to show (ii), recall that, for every φ ∈ H1(Rd;Rd), we have

ρu⊗ u : ∇φ, ∇u : ∇φ ∈ L1
loc((0, T )× Rd).

From (3.1), we deduce that, for every t ∈ Iw and every φ ∈ H1
σ(Rd;Rd),

lim
Iw∋s→t

ˆ
Rd

ρ(s)u(s) · φdx =

ˆ
Rd

ρ(t)u(t) · φdx.(3.2)

Since ρu ∈ L∞(0,∞;L2
σ(Rd)) and H1

σ(Rd) is dense in L2
σ(Rd), we deduce that (3.2) is true for every

φ ∈ L2
σ(Rd) which concludes the proof. □

The next lemma shows that functions in Bq,T can be used as test functions for (1.1).

Lemma 3.3. Let (ρ, u) be a weak Leray-Hopf solution of (1.1) with respect to initial (ρ0, u0) ∈ L∞(Rd)×
L2
σ(Rd)) and let φ ∈ Bq,T . For every t ∈ (0, T ), we have

1

2

ˆ
Rd

ρ(t)|φ(t)|2 dx− 1

2

ˆ
Rd

ρ(0)|φ(0)|2 dx =

ˆ t

0

ˆ
Rd

ρ∂tφ · φ+ ρu⊗ φ : ∇φdxdτ,(3.3)
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and, for almost every t ∈ (0, T ),

−
ˆ t

0

ˆ
Rd

ρ∂tφ · u+ ρu⊗ u : ∇φdx ds+

ˆ
Rd

ρ(t)u(t) · φ(t) dx

=− ν

ˆ t

0

ˆ
Rd

⟨∇u,∇φ⟩ ds+
ˆ
Rd

ρ0u0 · φ(0) dx.
(3.4)

Proof. We start with the verification of (3.3). Fix 0 < s < t < ∞ and let ψ ∈ C∞((0,∞)) be a cut-off
function with ψ ≡ 1 on [s, t] and ψ ≡ 0 on (0, s/2) ∪ (2t,∞). Clearly, ψ · φ ∈ H1(0, 2t;H1(Rd)) and we
can find a sequence {φn} ⊂ C∞([0, 2t];C∞(Rd)) such that φn → ψφ in H1(0, 2t;H1(Rd)). In particular,
φn → φ in H1(s, t;H1(Rd)) and due to the embedding H1(s, t;H1(Rd)) ↪→ C1/2([s, t];H1(Rd)), for every
τ ∈ [s, t], we have

φn(τ) →
n→∞

φ(τ) in L2(Rd).(3.5)

Since ρ ∈ Cw∗([0,∞);L∞(Rd)), Lebesgue’s differentiation theorem implies that, for every n ∈ N,

1

2

ˆ
Rd

ρ(t)|φn(t)|2 dx− 1

2

ˆ
Rd

ρ(s)|φn(s)|2 dx =

ˆ t

s

ˆ
Rd

ρ∂tφn · φn + ρu⊗ φn : ∇φn dxdτ.(3.6)

Note that we used the identity
1

2
u · ∇|φn|2 = u⊗ φn : ∇φn.

Thanks to (3.5), the terms on the left-hand side of (3.6) converge to

1

2

ˆ
Rd

ρ(t)|φ(t)|2 dx− 1

2

ˆ
Rd

ρ(s)|φ(s)|2 dx.

With Lemma 3.1, we haveˆ t

s

ˆ
Rd

ρ∂tφn · φn dx+ ρu⊗ φn : ∇φn dxdτ →
n→∞

ˆ t

s

ˆ
Rd

ρ∂tφ · φ+ ρu⊗ φ : ∇φdx dτ.

This gives (3.3) for every t, s > 0.
It remains to prove the statement for s = 0. Observe that

lim
s→0

1

2

ˆ
Rd

ρ(s)|φ(s)|2 dx =
1

2

ˆ
Rd

ρ0|φ(0)|2 dx

since
W 1,p(0,∞;L2(Rd)) ↪→ C([0, T );L2(Rd)) and ρ ∈ Cw∗([0, T );L∞(Rd)).

The claim follows now from the fact that ∂tφ · φ, ρu⊗ φ : ∇φ ∈ L1((0, t)× Rd).
We briefly discuss the proof of (3.4). For every φ ∈ Bq,T , we define

Φφ : [0, T ) → R, t 7→
ˆ
Rd

ρ(t)u(t) · φ(t) dx.

Since φ ∈ C([0, T );L2
σ(Rd)), Lemma 3.2 implies that Φφ|Iw is continuous. Hence, for every t ∈ Iw \ {0}

lim
ε→0

1

2ε

ˆ t+ε

t−ε

Φφ(τ) dτ = Φφ(t).(3.7)

Let φ ∈ Bq,T , t, s ∈ Iw \ {0} and ψ, {φn}n∈N be as above. As for the continuity equation, using (3.7), we
have

−
ˆ t

0

ˆ
Rd

ρ1∂tφn · u+ ρu⊗ u : ∇φn dxds+

ˆ
Rd

ρ(t)u(t) · φn(t) dx

=− ν

ˆ t

0

ˆ
Rd

∇u : ∇φn ds+

ˆ
Rd

ρ(s)u(s) · φn(s) dx.

(3.8)

With Lemma 3.1, we see that (3.8) remains true when n → ∞ for every t, s ∈ Iw \ {0}. Let (sn)n∈N ⊂
Iw \ {0} with sn →

n→∞
0. Note that (3.8) is true with sn and φ. Hence, using that Φφ(sn) →

n→∞
Φφ(0) and

Lemma 3.1 completes the proof. □
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Now that we have shown that Bq,T is a good admissible set, we show that the strong solutions we
consider belong to this set.

Lemma 3.4. Let (ρ0, u0) ∈ L∞(Rd)×L2
σ(Rd) and let T > 0. Suppose that (ρ1, u1) is a weak Leray-Hopf

solution with respect to the initial data (ρ0, u0) and that (ρ2, u2) is a strong solution of (1.1) on (0, T )
with respect to the same initial data (ρ0, u0). Then there exists a q > 1 such that u2 ∈ Bq,T and (3.3)-
(3.4) hold for φ = u2 and (ρ, u) = (ρ1, u1).

Proof. The proof follows from employing Lemma 3.3 thanks to the extra regularity properties on the
strong solution that we derive in Lemma B.2. □

4. Weak-strong uniqueness result

In this section, we prove Theorem 1.5. Let (ρ1, u1) be a Leray-Hopf weak solution with respect to the
initial data (ρ0, u0), and let (ρ2, u2) be a strong solution of (1.1) as in Definition 1.4 with respect to the
same initial data (ρ0, u0) with maximal existence interval (0, T ∗).

4.1. Relative energy method. The main goal of this section is the verification of (1.13), more precisely,
we prove Lemma 4.1 below. To this end, we introduce the notation

δρ = ρ1 − ρ2, δu = u1 − u2 and u̇2 = ∂tu2 + (u2 · ∇)u2.

In this section, we fix (ρ1, u1) and (ρ2, u2) such that ρ1, ρ2 ∈ Cw∗([0, T ∗);L∞(Rd)) and u2 ∈
C([0, T ∗);L2(Rd)).

Lemma 4.1. We have
1

2

∥∥∥√ρ1(t)δu(t)∥∥∥2
2
+ ν

ˆ t

0

∥∇δu∥22 ds ≤ −
ˆ t

0

ˆ
Rd

δρu̇2 · δu+ ρ1δu⊗ δu : ∇u2 dxds(4.1)

for almost every t ∈ (0, T ∗).

Proof. For t > 0, consider the functional

Erel(t) :=
1

2

ˆ
Rd

ρ1(t) |u1(t)− u2(t)|2 dx =
1

2

∥∥∥√ρ1(t)δu(t)∥∥∥2
2
.

Using the energy inequality (1.8), for every t ∈ (0, T ∗), we have

Erel(t) =
1

2

∥∥∥√ρ1(t)u1(t)∥∥∥2
2
− ⟨ρ1(t)u1(t), u2(t)⟩2 +

1

2

∥∥∥√ρ1(t)u2(t)∥∥∥2
2

=
1

2

∥∥∥√ρ1(t)u1(t)∥∥∥2
2
− ⟨ρ1(t)u1(t), u2(t)⟩2 +

1

2

∥∥∥√ρ2(t)u2(t)∥∥∥2
2
+

1

2
⟨δρ(t)u2(t), u2(t)⟩(4.2)

≤∥√ρ0u0∥22 − ν

ˆ t

0

(
∥∇u1∥22 + ∥∇u2∥22

)
ds− ⟨ρ1(t)u1(t), u2(t)⟩2 +

1

2
⟨δρ(t)u2(t), u2(t)⟩2 .

Thanks to Lemma 3.4, we infer that, for every t ∈ (0, T ∗) and i = 1, 2,

1

2

ˆ
Rd

ρi(t)|u2(t)|2 dx− 1

2

ˆ
Rd

ρ0|u2(0)|2 dx =

ˆ t

0

ˆ
Rd

ρi∂tu2 · u2 dxds+
ˆ t

0

ˆ
Rd

ρiui ⊗ u2 : ∇u2 dxds.

Subtraction yields

1

2

ˆ
Rd

δρ(t)|u2(t)|2 dx =

ˆ t

0

ˆ
Rd

δρ∂tu2 · u2 + δρu2 ⊗ u2 : ∇u2 + ρ1δu⊗ u2 : ∇u2 dxds.(4.3)

Furthermore, Lemma 3.4 implies that, for almost every t ∈ (0, T ∗),

−
ˆ t

0

ˆ
Rd

ρ1∂tu2 · u1 + ρ1u1 ⊗ u1 : ∇u2 dx ds+
ˆ
Rd

ρ1(t)u1(t) · u2(t) dx(4.4)

=− ν

ˆ t

0

ˆ
Rd

∇u1 : ∇u2 dxds+
ˆ
Rd

ρ0|u0|2 dx.

Using (4.3)-(4.4) in (4.2), for almost every t ∈ (0, T ∗), we have

Erel(t) ≤∥√ρ0u0∥22 − ν

ˆ t

0

(
∥∇u1∥22 + ν ∥∇u2∥22

)
ds+ ν

ˆ t

0

∇u1 : ∇u2 dxds
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− ∥√ρ0u0∥22 −
ˆ t

0

ˆ
Rd

ρ1∂tu2 · u1 + ρ1u1 ⊗ u1 : ∇u2 dxds

+

ˆ t

0

ˆ
Rd

δρ∂tu2 · u2 + δρu2 ⊗ u2 : ∇u2 + ρ1δu⊗ u2 : ∇u2 dxds.

Using the identity

(v · ∇)v · u = v ⊗ u : ∇v, u, v ∈ H1(Rd),

multiplying the momentum equation of u2 by u1 and integrating by parts, for every t ∈ (0, T ∗), we obtainˆ t

0

ˆ
Rd

ρ2∂tu2 · u1 + ρ2u2 ⊗ u1 : ∇u2 dx ds = −ν
ˆ t

0

ˆ
Rd

∇u1 : ∇u2 dxds.

Hence, for almost every t ∈ (0, T ∗),

Erel(t) ≤− ν

ˆ t

0

∥∇δu∥22 ds+

ˆ t

0

ˆ
Rd

ρ2∂tu2 · u1 + ρ2u2 ⊗ u1 : ∇u2 dxds

−
ˆ t

0

ˆ
Rd

ρ1∂tu2 · u1 + ρ1u1 ⊗ u1 : ∇u2 dxds

+

ˆ t

0

ˆ
Rd

δρ∂tu2 · u2 + δρu2 ⊗ u2 : ∇u2 + ρ1δu⊗ u2 : ∇u2 dx ds.

The identities

−δρ∂tu2 · δu = ρ2∂tu2 · u1 − ρ1∂tu2 · u1 + δρ∂tu2 · u2
and

−δρ(u2 · ∇)u2 · δu− ρ1δu⊗ δu : ∇u2 =− δρu2 ⊗ δu : ∇u2 − ρ1δu⊗ δu : ∇u2
= ρ2u2 ⊗ u1 : ∇u2 − ρ1u1 ⊗ u1 : ∇u2

+ δρu2 ⊗ u2 : ∇u2 + ρ1δu⊗ u2 : ∇u2,
yield, for almost every t ∈ (0, T ∗),

Erel(t) ≤ −ν
ˆ t

0

∥∇δu∥22 ds−
ˆ t

0

ˆ
Rd

δρu̇2 · δu+ ρ1δu⊗ δu : ∇u2 dx ds

□

4.2. Stability estimate. We now bound the r.h.s. of (4.1). One key point is the following W−1,p-
stability estimate.

Proposition 4.2. Let T ∈ (0, T ∗). For every β > 0, there exists a constant C = C(β, T ) > 0 such that,
for every t ∈ (0, T ),∣∣∣∣ˆ t

0

ˆ
Rd

δρu̇2 · δudxds
∣∣∣∣ ≤ C

ˆ t

0

σ(s)1/2+β

(ˆ s

0

τ−2β ∥ρ1δu(τ)∥2p dτ

)1/2

∥∇(u̇2 · δu)∥q ds,(4.5)

where p = 4 if d = 2 and p = 3 if d = 3, and q denotes the conjugate index of p.

Proof. Fix T ∈ (0, T ∗). We divide the proof in several steps.
Step 1. (Regularization) For a fixed ε > 0 and i = 1, 2, we have

∂t(ρi)ε + div((ρi)εui) = div((ρi)εui − (ρiui)ε) =: Ri,ε.

Here and in the following fε denotes the mollification in space of a function f ∈ L1
loc((0, T ) × Rd).

Subtraction yields

∂t(δρ)ε + div((δρ)εu2) = −div((ρ1)εδu) + δRε,(4.6)

where δRε = R1,ε −R2,ε. Recall that there exists a C > 0 such that, almost everywhere,

−C ≤ δρ(t, x) ≤ C,

since δρ ∈ Cw∗([0, T ];L∞(Rd)) and that for every t ∈ (0, T ) and almost everywhere on Rd, we have

(δρ(t))ε → δρ(t).(4.7)
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Step 2. (Truncation at zero) We introduce a family of smooth, non-decreasing cut-off functions
φN : [0,∞) → R parametrized by N ∈ N such that φN = 0 for 0 ≤ t ≤ 1/N2 and φN = 1 for t ≥ 1/N.
Since u̇2 · δu ∈ L1((0, T )× Rd) and

|(δρ(t))ε(φN u̇2) · δu| ≤ C|u̇2 · δu|,
the dominated convergence theorem yieldsˆ t

0

ˆ
Rd

δρu̇2 · δudxds = lim
N→∞

lim
ε→0

ˆ t

0

ˆ
Rd

(δρ)ε(φN u̇2) · δudx ds.

Since (δρ)ε solves the transport equation (4.6), denoting with X : [0, T ∗)× Rd → Rd the flow associated
to u2, using [5, Proposition 6], for every x ∈ Rd and every s ∈ (0, T ), we have

(δρ)ε(s,X(s, x)) =

ˆ s

0

[− div((ρ1)εδu) + δRε]|(τ,X(τ,x)) dτ.

With a change of variables, for every t ∈ (0, T ), we obtainˆ t

0

ˆ
Rd

δρu̇2 · δu dx ds

= lim
N→∞

lim
ε→0

ˆ t

0

ˆ
Rd

ˆ s

0

(− div((ρ1)εδu) + δRε)|(τ,X(τ,x))(φN u̇2 · δu)|(s,X(s,x)) dτ dx ds(4.8)

Step 3. (Fubini’s theorem) In the next step, we exchange the order of integration. To this aim, it is
necessary to show that the mapping defined by

(s, τ, x) 7→ (−div((ρ1)εδu) + δRε)|(τ,X(τ,x))(φN u̇2 · δu)|(s,X(s,x)) =: I1(τ, x)I2(s, x)

is in L1((0, T )× (0, T )× Rd). Using Hölder’s inequality in time and space, we getˆ T

0

ˆ t

0

ˆ
Rd

|I1(τ, x)I2(s, x)| dx dτ ds ≤
ˆ T

0

ˆ T

0

∥I1(τ)∥2 ∥I2(s)∥2 dτ ds

≤ T

(ˆ T

0

∥I1(τ)∥2 dτ

) 1
2
(ˆ T

0

∥I2(s)∥2 ds

) 1
2

With the transformation rule from Remark 2.3, Remark 2.4 Hölder’s inequality in space and time, and
the inequalities

|div((ρ1(τ))εδu(τ))| ≤
C

ε
|δu(τ)| and ∥Ri,ε(τ)∥2 ≤ C ∥ρi(τ)∥∞ ∥ui(τ)∥H1 ,

we estimate I1 asˆ T

0

∥I1(τ)∥2 dτ ≤ 2

ˆ T

0

(
C2

ε2
∥δu(τ)∥22 + ∥δRε(τ)∥22

)
dτ

≤ 2

ˆ T

0

C2

ε2
∥δu(τ)∥22 +

∑
i=1,2

∥ρi(τ)∥2∞ ∥ui(τ)∥2H1

 dτ.

Since δu ∈ L2(0, T ;H1(Rd)), by Theorem 1.8, we concludeˆ T

0

∥I1(τ)∥2 dτ <∞.

For the second term, we work differently for d = 2 and d = 3. In the case d = 2, employing Hölder’s
inequality, Gagliardo-Nirenberg inequality and the definition of φN , we obtain
ˆ T

0

(ˆ
R2

|I2(s, x)|2 dx
) 1

2

ds =

ˆ T

N−2

(ˆ
Rd

|φN u̇2 · δu|2 dx

)1/2

ds

≤
ˆ T

N−2

∥u̇2∥4 ∥δu∥4 ds

≤
ˆ T

N−2

∥u̇2∥1/22 ∥∇u̇2∥1/22 ∥δu∥1/22 ∥∇δu∥1/22 ds
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≤ T 1/2

(ˆ T

N−2

∥u̇2∥2 ∥∇u̇2∥2 ∥δu∥2 ∥∇δu∥2 ds

)1/2

≤ T 1/2N2−η

(ˆ T

N−2

σ(s)2−η ∥u̇2∥2 ∥∇u̇2∥2 ∥δu∥2 ∥∇δu∥2 ds

)1/2

≤ T 1/2N2−η

(ˆ T

0

σ(s)4−2η ∥u̇2(s)∥22 ∥∇u̇2(s)∥
2
2 ds

) 1
4

×

(ˆ T

0

∥δu(s)∥22 ∥∇δu(s)∥
2
2 ds

) 1
4

≤ T 1/2N2−η

(
sup

s∈[0,t]

σ(s)2−η ∥u̇2(s)∥22

) 1
4
(ˆ T

0

σ(s)2−η ∥∇u̇2(s)∥22 ds

) 1
4

×
(
∥δu∥∞,2 ∥∇δu∥2,2

)1/2
In the fourth step of the previous computation, we can introduce an arbitrary powers of σ(s) under the
integral since we are integrating away from zero. In the three-dimensional case, we omit the precise
computation of the time weight. Using the interpolation inequality

∥f∥4 ≤ ∥f∥1/42 ∥f∥3/46 ≤ ∥f∥1/42 ∥∇f∥3/42 , f ∈ H1(R3),

we have
ˆ T

0

∥I2(s)∥22 ds ≤
ˆ T

N−2

∥u̇2∥4 ∥δu∥4 ds

≤
ˆ T

N−2

∥u̇2∥1/42 ∥∇u̇2∥3/42 ∥δu∥1/42 ∥∇δu∥3/42 ds

≤

(ˆ T

N−2

∥u̇2∥22 ds

) 1
8
(ˆ T

N−2

∥∇u̇2∥22 ds

) 3
8

×

(ˆ T

0

∥δu∥22 ds

) 1
8
(ˆ T

0

∥∇δu∥22 ds

) 3
8

≤ C

(ˆ T

0

σ(s)1−η ∥u̇2∥22 ds

) 1
8
(ˆ T

0

σ(s)2−η ∥∇u̇2∥22 ds

) 3
8

× ∥δu∥1/4∞,2 ∥∇δu∥
3/4
2,2 .

In both cases, using Lemma B.2, we conclude
ˆ T

0

∥I2(s)∥22 ds <∞.

Then, for every t ∈ (0, T ), employing Fubini’s Theorem, we rewrite (4.8) as
ˆ t

0

ˆ
Rd

δρu̇2 · δudxds

= lim
N→∞

lim
ε→0

ˆ t

0

ˆ s

0

ˆ
Rd

(−div((ρ1)εδu) + δRε)|(τ,X(τ,x))(φN u̇2 · δu)|(s,X(s,x)) dxdτ ds

= lim
N→∞

lim
ε→0

ˆ t

0

ˆ s

0

ˆ
Rd

(−div((ρ1)εδu) + δRε)|(τ,x)(φN u̇2 · δu)|(s,X(s,X−1(τ,x)) dxdτ ds

=: lim
N→∞

lim
ε→0

I2
ε,N (t) + I1

ε,N (t)

(4.9)
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where for every t ∈ (0, T )

I1
ε,N (t) =

ˆ t

0

ˆ s

0

ˆ
Rd

δRε|(τ,x)φN u̇2 · δu|(s,X(s,X−1(τ,x)) dxdτ ds,

I2
ε,N (t) =

ˆ t

0

ˆ s

0

ˆ
Rd

−div((ρ1)εδu)|(τ,x)φN u̇2 · δu|(s,X(s,X−1(τ,x)) dx dτ ds.

Step 4.(Commutator estimate) We aim to show that

sup
t∈(0,T )

∣∣I1
ε,N (t)

∣∣→ 0 as ε→ 0, N → ∞.(4.10)

Using Hölder’s inequality in space and time yields, for every t ∈ (0, T ),

|I1
ε,N (t)| ≤

ˆ T

0

ˆ s

0

∥δRε(τ)∥2 ∥(φN u̇2 · δu)(s)∥2 dτ ds

≤
ˆ T

N−2

(ˆ s

0

∥δRε(τ)∥22 dτ

)1/2

σ(s)1/2 ∥(u̇2 · δu)(s)∥2 ds

≤

(ˆ T

0

∥δRε(τ)∥22 dτ

)1/2 ˆ T

N−2

σ(s)1/2 ∥(u̇2 · δu)(s)∥2 ds.

In order to conclude (4.10), we claim that for every γ > 0 there exists an ε0 > 0 such that, for every
ε ∈ (0, ε0) and every N ∈ N,

sup
t∈(0,T )

∣∣I1
ε,N (t)

∣∣ ≤ γ.

Since (ˆ T

0

∥δRε(τ)∥22 dτ

)1/2

≤ ∥R1,ε∥L2(0,T ;L2) + ∥R2,ε∥L2(0,T ;L2) →
ε→0

0,

it suffices to show that ˆ T

N−2

σ(s)1/2 ∥(u̇2 · δu)(s)∥2 ds

is bounded uniformly in N.
In the case d = 2, using Gagliardo-Nirenberg inequality, we haveˆ T

N−2

σ(s)
1
2 ∥(u̇2 · δu)(s)∥2 ds ≤

ˆ T

N−2

σ(s)−
1
4+

η
2 σ(s)

1
4−

η
4 σ(s)

1
2−

η
4 ∥(u̇2 · δu)(s)∥2 ds

≤

(ˆ T

N−2

σ(s)
1
2−

η
2 σ(s)1−

η
2 ∥u̇2∥2 ∥∇u̇2∥2 ds

) 1
2

×

(ˆ T

N−2

σ(s)−
1
2+η ∥δu∥2 ∥∇δu∥2 ds

) 1
2

:= T
1
2

1 × T
1
2

2 .

For the first term, we use Cauchy-Schwarz inequality and the bounds of Lemma B.2 to get

T1 ≤

(ˆ T

N−2

σ(s)1−η ∥u̇2∥22 ds

) 1
2
(ˆ T

N−2

σ(s)2−η ∥∇u̇2∥22 ds

) 1
2

≤ C.

For the second term, using again Cauchy-Schwarz inequality, we obtain

T2 ≤

(ˆ T

N−2

σ(s)−1+2η ∥δu∥22 ds

) 1
2
(ˆ T

N−2

∥∇δu∥22 ds

) 1
2

≤ ∥δu∥∞,2 ∥∇δu∥2,2

(ˆ T

N−2

σ(s)−1+2η ds

) 1
2
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which is uniformly bounded in N as η > 0. In the three-dimensional case, we have
ˆ T

N−2

σ(s)
1
2 ∥(u̇2 · δu)(s)∥2 ds ≤

ˆ T

N−2

σ(s)
1
8−

η
8 σ(s)

3
4−

3η
8 σ(s)−

3
8+

η
2 ∥(u̇2 · δu)(s)∥2 ds

≤

(ˆ T

N−2

σ(s)
1
4−

η
4 σ(s)

3
2−

3η
4 ∥u̇2∥1/22 ∥∇u̇2∥3/22 ds

) 1
2

×

(ˆ T

N−2

σ(s)−
3
4+η ∥δu∥1/22 ∥∇δu∥3/22 ds

) 1
2

:= T
1
2

3 × T
1
2
4

For the first term, we use Hölder’s inequality and the bounds of Lemma B.2 to get

T3 ≤
(ˆ t

N−2

σ(s)1−η ∥u̇2∥22 ds

) 1
4
(ˆ t

N−2

σ(s)2−η ∥∇u̇2∥22 ds

) 3
4

≤ C.

For the second term, using again Hölder’s inequality, we get

T4 ≤

(ˆ T

N−2

σ(s)−3+4η ∥δu∥22 ds

) 1
4
(ˆ T

N−2

∥∇δu∥22 ds

) 3
4

≤ ∥δu∥∞,2 ∥∇δu∥2,2

(ˆ t

N−2

σ(s)−3+4η ds

) 1
2

which is uniformly bounded in N as η > 1/2. The claim is now proved.
Step 5: (Analysis of the source terms). In the following, let p = 4 if d = 2 and p = 3 if d = 3. Let q

be the conjugate index of p, i.e. 1/p + 1/q = 1. With the transformation rule and integrating by parts,
we have

|I2
ε,N (t)| ≤

∣∣∣∣ ˆ t

0

ˆ s

0

ˆ
Rd

((ρ1)εδu)(τ, x)DX(s,X−1(τ, x))

·DX−1(τ, x)∇(φN u̇2 · δu)(s,X(s,X−1(τ, x))) dxdτ ds

∣∣∣∣
≤C(T )

ˆ t

0

ˆ s

0

∥(ρ1)εδu∥p dτ ∥∇(φN u̇2 · δu)(s)∥q ds

≤C(T )
ˆ t

0

ˆ s

0

∥(ρ1)εδu∥p dτ ∥∇(u̇2 · δu)(s)∥q ds,

where we used Lemma 2.1 which implies that

C(T ) := sup
τ,s∈(0,T )

∥∥DX(s,X−1(τ, x))DX−1(τ, x)
∥∥
∞ <∞,

and the estimate

∥∇(φN u̇2 · δu)(s)∥q ≤ φN (s) ∥∇(u̇2 · δu)(s)∥q ≤ ∥∇(u̇2 · δu)(s)∥q .

Step 6.(Conclusion) Let γ > 0 be arbitrary and fix ε0 > 0 such that |I1
ε,N (t)| ≤ γ for every ε ∈ (0, ε0),

every N ∈ N and every t ∈ [0, T ]. By (4.9) and the previous estimates, we have∣∣∣∣ˆ t

0

ˆ
Rd

δρu̇2 · δu dx ds
∣∣∣∣ ≤ γ + lim

ε→0
C(T )

ˆ t

0

ˆ s

0

∥(ρ1)εδu∥p dτ ∥∇(u̇2 · δu)(s)∥q ds.

Since (ρ1)ε is uniformly bounded and it is converging pointwise to ρ1 (see (4.7)), and since γ is arbitrary,
for every t ∈ [0, T ], we get∣∣∣∣ˆ t

0

ˆ
Rd

δρu̇2 · δu dx ds
∣∣∣∣ ≤ C(T )

ˆ t

0

ˆ s

0

∥ρ1δu∥p dτ ∥∇(u̇2 · δu)(s)∥q ds.
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Now, we pick β < 1/4 and we modify the right-hand side asˆ t

0

ˆ s

0

∥ρ1δu∥pτ
βτ−β dτ ∥∇(u̇2 · δu)(s)∥q ds

≤
ˆ t

0

(ˆ s

0

∥ρ1δu∥2p τ
−2β dτ

) 1
2
(ˆ s

0

τ2β dτ

) 1
2

∥∇(u̇2 · δu)(s)∥q ds

≤ T 1/2+β

ˆ t

0

σ(s)
1
2+β

(ˆ s

0

∥ρ1δu∥2p τ
−2β dτ

) 1
2

∥∇(u̇2 · δu)(s)∥q ds

which concludes the proof of Proposition 4.2 □

4.3. Proof of Theorem 1.5. Fix some T ∈ (0, T ∗). Thanks to Lemma 4.1, for every t ∈ (0, T ], we have

1

2

∥∥∥√ρ1(t)δu(t)∥∥∥2
2
+ ν

ˆ t

0

∥∇δu∥22 ds = −
ˆ t

0

ˆ
Rd

δρu̇2 · δudxds

−
ˆ t

0

ˆ
Rd

ρ1δu⊗ δu : ∇u2 dxds(4.11)

=: I4(t) + I3(t)

where, for every t ∈ (0, T ),

I3(t) := −
ˆ t

0

ˆ
Rd

ρ1δu⊗ δu : ∇u2 dxds and I4(t) := −
ˆ t

0

ˆ
Rd

δρu̇2 · δudx ds.

With Lemma B.2, we have, for every t ∈ (0, T ),

I3(t) ≤
ˆ t

0

∥∇u2(s)∥∞
∥∥∥√ρ1(s)δu(s)∥∥∥2

2
ds.

To estimate the second term, we separate the cases d = 2 and d = 3. For clarity, we omit to compute the
constants appearing on the right-hand side. Knowing their exact value is not necessary to conclude our
weak-strong uniqueness result.

4.3.1. Proof in the 2d case. Using Proposition 4.2 and the Gagliardo-Nirenberg inequality ∥f∥24 ≤
∥∇f∥2 ∥f∥2, for every t ∈ (0, T ), we get

|I4(t)| ≤
ˆ t

0

(ˆ s

0

τ−2β ∥ρ1(τ)δu(τ)∥24 dτ

)1/2

σ(s)1/2+β ∥∇(u̇2 · δu)∥4/3 ds

≤
(ˆ t

0

σ(s)−2β ∥ρ1(τ)δu(s)∥24 ds

)1/2 ˆ t

0

σ(s)1/2+β ∥∇(u̇2 · δu)∥4/3 ds

≤
(ˆ t

0

σ(s)−4β ∥δu(s)∥22 ds

)1/4 ˆ t

0

σ(s)1/2+β ∥∇(u̇2 · δu)∥4/3 ds ∥∇δu∥1/22,2

≤
(ˆ t

0

σ(s)−4β ∥ρ1(τ)δu(s)∥22 ds

)1/4 ˆ t

0

σ(s)1/2+β ∥∇(u̇2 · δu)∥4/3 ds ∥∇δu∥1/22,2 ,

where, in the last step, we used that the density is bounded from below. Then, using that

∥∇(u̇2 · δu)∥4/3 = ∥∇u̇2δu+∇δu u̇2∥4/3
≤ ∥∇u̇2∥2 ∥δu∥

1/2
2 ∥∇δu∥1/2L2 + ∥∇δu∥2 ∥u̇2∥

1/2
2 ∥∇u̇2∥1/2L2 ,

we haveˆ t

0

σ(s)1/2+β ∥∇(u̇2 · δu)∥4/3 ds ≤
ˆ t

0

σ(s)1/2+β+α ∥∇u̇2∥2 σ(s)
−α ∥δu∥1/22 ∥∇δu∥1/2 ds

+

ˆ t

0

σ(s)1/2+β−ε ∥∇δu∥2 ∥u̇2∥
1/2
2 ∥∇u̇2∥1/2 ds

≤
(ˆ t

0

σ(s)1+2β+2α ∥∇u̇2∥22 ds

) 1
4
(ˆ t

0

σ(s)−4α ∥δu∥22 ds

) 1
4

∥∇δu∥
1
2
2,2
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+

(ˆ t

0

σ(s)4β1 ∥u̇2∥22 ds

) 1
4
(ˆ t

0

σ(s)4β2 ∥∇u̇2∥22 ds

) 1
4

∥∇δu∥2,2,

for a suitable α ∈ (0, 1/4), ε > 0, and β1, β2 > 0 verifying β1+β2 = 1/2+β−ε. We choose the parameters
such that

4β1 = 1− η, 4β2 = 2− η, α = β =
1

4
− η

4
and ε =

η

4
.

Lemma B.2 implies that there is C = C(T ) > 0 such that, for every t ∈ (0, T ],ˆ t

0

σ(s)1−η ∥u̇2∥22 ds+

ˆ t

0

σ(s)2−η ∥∇u̇2∥22 ≤ C.

We ignore the factor tε which is bounded on (0, T ). Hence
ˆ t

0

σ(s)1/2+β ∥∇(u̇2 · δu)∥4/3 ds ≤
(ˆ t

0

σ(s)−(1−η) ∥δu∥22 ds

) 1
4

∥∇δu∥1/22,2 + ∥∇δu∥2,2

≤
(ˆ t

0

σ(s)−(1−η) ∥√ρ1δu∥22 ds

) 1
4

∥∇δu∥1/22,2 + ∥∇δu∥2,2 ,

where we used that ρ−1
1 ∈ L∞(Rd) in the last line. Gathering the above estimates, for almost every

t ∈ (0, T ], we have

|I4(t)| ≤
(ˆ t

0

σ(s)−(1−η) ∥√ρ1δu∥22 ds

) 1
2

∥∇δu∥
1
2
2,2

+

(ˆ t

0

σ(s)−(1−η) ∥√ρ1δu∥22 ds

) 1
4

∥∇δu∥
3
2
2,2

≤
ˆ t

0

σ(s)−(1−η) ∥√ρ1δu∥22 ds+
ν

2

ˆ t

0

∥∇δu∥22,2 ds

The bounds on I3 and I4 yield, for almost every t ∈ (0, T ],

1

2
∥√ρ1δu∥22 +

ν

2

ˆ t

0

∥∇δu∥22 ds ≤
ˆ t

0

(
∥∇u∥∞ + σ(s)−(1−η)

)
∥√ρ1δu∥22 ds.

Since

t 7→ ∥∇u(t)∥∞ + σ(t)−(1−η) ∈ L1(0, T ),

we deduce with Grönwall’s inequality that, for almost every t ∈ (0, T ),

∥δu(t)∥22 ≤ C
∥∥∥√ρ1(t)δu(t)∥∥∥2

2
≤ C

∥∥∥√ρ1(0)δu(0)∥∥∥2
2
= 0,

which implies that u1 = u2 almost everywhere in [0, T ] × R2. Since T > 0 was arbitrary, we have that
u1 = u2 almost everywhere in [0, T ∗)× R2. □

4.3.2. Proof in the 3d case. The proof follows the 2d case but with the embedding ∥f∥4 ≤ ∥∇f∥3/42 ∥f∥1/42 .
We have

|I4(t)| ≤
(ˆ t

0

σ(s)−2β ∥ρ1(τ)δu(s)∥23 ds

)1/2

C

ˆ t

0

σ(s)1/2+β ∥∇(u̇2 · δu)∥3/2 ds

≤
(ˆ t

0

σ(s)−2β ∥ρ1δu(s)∥2 ∥δu(s)∥6 ds

)1/2 ˆ t

0

σ(s)1/2+β ∥∇(u̇2 · δu)∥3/2 ds

≤
(ˆ t

0

σ(s)−4β ∥ρ1δu(s)∥22 ds

)1/4(ˆ t

0

∥∇δu(s)∥22 ds

)1/4 ˆ t

0

σ(s)1/2+β ∥∇(u̇2 · δu)∥3/2 ds,

where, in the second step, we used the interpolation inequality ∥f∥3 ≤ ∥f∥1/22 ∥f∥1/26 , in the third step,
that ρ1 is bounded and, in the last step, Hölder’s inequality.

Using the product rule and Sobolev’s and Hölder’s inequality several times yield

∥∇(u̇2 · δu)∥3/2 ≤ ∥∇u̇2∥2 ∥δu∥6 + ∥u̇2∥6 ∥∇δu∥2 ≤ ∥∇u̇2∥2 ∥∇δu∥2 .
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Hence ˆ t

0

σ(s)1/2+β ∥∇(u̇2 · δu)∥3/2 ds ≤
ˆ t

0

σ(s)1/2+β ∥∇u̇2∥2 ∥∇δu∥2 ds

≤
(ˆ t

0

σ(s)1+2β ∥∇u̇2∥2 ds

)1/2(ˆ t

0

∥∇δu∥22 ds

)1/2

.

Choosing β = max(0, 1/2− η/2), we have

β ∈ [0, 1/4) ⇔ 1/2− η/2 < 1/4 ⇔ 1/2 < η.

We conclude that there exists a C = C(T ) > 0 such that
ˆ t

0

σ(s)1−η/2 ∥∇(u̇2 · δu)∥3/2 ds ≤ C

(ˆ t

0

∥∇δu∥22 ds

)1/2

,

which implies

|I4(t)| ≤
(ˆ t

0

σ(s)−2+2η ∥ρ1δu(s)∥22 ds

)1/4(ˆ t

0

∥∇δu(s)∥22 ds

)3/4

≤C
ˆ t

0

σ(s)−2+2η ∥ρ1δu(s)∥22 ds+
ν

2

ˆ t

0

∥∇δu(s)∥22 ds.

The rest of the proof follows exactly the R2 case. This concludes the proof of Theorem 1.5. □

Acknowledgements The authors express their gratitude to Gianluca Crippa, Raphaël Danchin and
Emil Wiedemann for valuable discussions and suggestions on an earlier version of the manuscript.

Fundings T. Crin-Barat is supported by the Alexander von Humboldt-Professorship program and the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under project C07 of the Son-
derforschungsbereich/Transregio 154 “Mathematical Modelling, Simulation and Optimization using the
Example of Gas Networks" (project ID: 239904186). S. Škondrić and A. Violini are supported by the
Deutsche Forschungsgemeinschaft project “Inhomogeneous and compressible fluids: statistical solutions
and dissipative anomalies” within SPP 2410 Hyperbolic Balance Laws in Fluid Mechanics: Complexity,
Scales, Randomness (CoScaRa).

Part of this work was done during A. Violini’s visit to the Chair of Analysis at the Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU) and S. Škondrić’s visit to the Department of Mathematics and
Computer Science at the University of Basel.

Data availability statement Data sharing not applicable to this article as no data sets were generated
or analyzed during the current study.

Declarations

Conflicts of interest The authors have no competing interests to declare that are relevant to the content
of this article.

Appendix A. Decomposition of Leray-Hopf solutions

In this section, we show that the velocity field u of a Leray-Hopf solution satisfies
u

1 + |x|
∈ L1

loc(0, T ;L
1(Rd) + L∞(Rd)).

This allows us to apply the DiPerna-Lions theory to study the evolution of the density in the continuity
equation. We begin with the following decomposition result which is a direct consequence of [26, Theorem
2.2].

Proposition A.1 ([26]). Let u ∈ H1
loc(Rd;Rd) with ∇u ∈ L2(Rd), then u can be decomposed in u = v+w

with

∥∇v∥L∞ ≤ C ∥∇u∥L2 and ∥w∥H1 ≤ C ∥∇u∥L2 .
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Proof. The key idea to prove Proposition A.1 is to consider a space mollifier φ and set

v = u ∗ φ and w = u− v.

Then the estimates for v and w follow from Hölder’s inequality and Poincaré’s inequality. □

Tracking carefully the time dependence, we obtain the following decomposition result for Leray-Hopf
solutions.

Lemma A.2. Let (ρ, u) be a Leray-Hopf solution of (1.1) in the sense of Definition 1.1, i.e. we have

u ∈ L2
loc((0, T )× Rd) and ∇u ∈ L2(0, T ;L2(Rd)).

As in the proof of Proposition A.1, we getˆ T

0

∥∇v∥2L∞ dt and
ˆ T

0

∥w∥2H1 dt <∞,

and, in particular, we have
u

1 + |x|
∈ L1(0, T ;L1(Rd) + L∞(Rd)).

Proof. Using Proposition A.1 and integrating in the time on [0, T ], we haveˆ T

0

∥∇v(t)∥2L∞ dt ≤ C ∥∇u∥22,2 <∞ and
ˆ T

0

∥w(t)∥2H1 dt ≤ C ∥∇u∥22,2 <∞.

The bound on v implies that ˆ T

0

∥∥(1 + |x|)−1v
∥∥
L∞ dt <∞,

and the bound (1 + |x|)−1w ∈ L1(0, T ;L1(Rd) + L∞(Rd)) follows from the following chain of inclusions

H1(Rd) ⊂ L2(Rd) ⊂ L1(Rd) + L∞(Rd).

□

Appendix B. additional decay estimates for strong solutions

We present some additional properties satisfied by our strong solution (ρ, u). Since the density ρ stays
away from zero, we have that the following quantities are bounded (according to Definition 1.4):

sup
s∈[0,T ]

∥u(s)∥2L2 ,

ˆ T

0

∥∇u(s)∥2 ds,

sup
s∈[0,T ]

σ(s)1−η ∥∇u(s)∥2L2 ,

ˆ t

0

σ(s)1−η
(
∥∂tu(s)∥2L2 +

∥∥∇2u(s)
∥∥2
L2

)
ds,

sup
s∈[0,T ]

σ(s)2−η
(
∥∂tu(s)∥2L2 +

∥∥∇2u(s)
∥∥2
L2

)
and

ˆ t

0

σ(s)2−η ∥∂t∇u(s)∥2L2 ds.

(B.1)

Using Gagliardo-Nirenberg inequality, we can obtain additional bounds in other norms. Recall that if
d = 2 we require η > 0, while if d = 3 assume η > 1/2.

Lemma B.1. Let d = 2, 3 and (ρ, u) be a strong solution in the sense of Definition 1.4. We haveˆ T

0

∥u(s)∥2L∞ ds and
ˆ T

0

σ(s)2−η ∥∇u(s)∥4L4 ds.

Proof. For d = 2, using Gagliardo-Nirenberg inequality, we get, omitting the time dependence,
ˆ T

0

∥u∥2L∞ ds ≤
ˆ T

0

∥u∥L2

∥∥∇2u
∥∥
L2 ds ≤

(ˆ T

0

σ(s)η−1 ∥u∥2L2 ds

) 1
2
(ˆ T

0

σ(s)1−η
∥∥∇2u

∥∥2
L2 ds

) 1
2

≤ ∥u∥∞,2

(ˆ T

0

σ(s)η−1

) 1
2
(ˆ T

0

σ(s)1−η
∥∥∇2u

∥∥2
L2 ds

) 1
2

,
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which is bounded thanks to η > 0 and (B.1). For the second term, again by Gagliardo-Nirenberg inequality
and (B.1), we have

ˆ T

0

σ(s)2−η ∥∇u(s)∥4L4 ds ≤
ˆ T

0

σ(s)2−η ∥∇u∥2L2

∥∥∇2u
∥∥2
L2 ds

≤

(
sup

s∈[0,T ]

σ(s)2−η
∥∥∇2u

∥∥2
L2

)
∥∇u∥2L2L2

≤ C.

This concludes the proof in the case d = 2. For d = 3, using Agmon’s inequality, we have ∥u∥2L∞ ≤
C ∥u∥H1 ∥u∥H2 and analyzing only the term of highest order, we have

ˆ T

0

∥∇u∥2
∥∥∇2u

∥∥
2
ds ≤

(ˆ T

0

σ(s)η−1 ∥∇u∥2L2 ds

) 1
2
(ˆ T

0

σ(s)1−η
∥∥∇2u

∥∥2
L2 ds

) 1
2

≤

(
sup

s∈[0,T ]

σ(s)1−η ∥∇u∥22

) 1
2
(ˆ T

0

σ(s)2η−2 ds

) 1
2
(ˆ T

0

σ(s)1−η
∥∥∇2u

∥∥2
2
ds

) 1
2

,

which is finite thanks to η > 1/2 and (B.1). The last estimate is obtained using Gagliardo-Nirenberg
inequality as followsˆ t

0

σ(s)2−η ∥∇u∥4L4 ds ≤ C

ˆ t

0

σ(s)2−η ∥∇u∥L2

∥∥∇2u
∥∥3
L2 ds

≤ C ∥∇u∥4,2

(ˆ t

0

σ(s)8/3−4η/3
∥∥∇2u

∥∥4
L2 ds

) 3
4

≤ C ∥∇u∥4,2

(
sup

s∈[0,t]

σ(s)2−η
∥∥∇2u

∥∥2
L2

) 3
2 (ˆ t

0

σ(s)−4/3+2η/3 ds

) 3
4

≤ C,

where, on the last line, we used −4/3 + 2η/3 > −1 and the fact that by (B.1) and η > 1/2, we have
ˆ t

0

∥∇u∥42 ds ≤

(
sup

s∈[0,t]

σ(s)1−η ∥∇u∥2L2

)2 ˆ t

0

σ(s)2η−2 ds <∞.

□

Lemma B.1 allows us to estimate the material derivative u̇ = ∂tu + (u · ∇)u of the velocity of our
strong solution.

Lemma B.2 (Additional decay properties). Let (ρ, u) a strong solution in the sense of Definition 1.4.
For d = 2, 3, we have

ˆ T

0

σ(s)1−η ∥u̇(s)∥2L2 + σ(s)2−η ∥∇u̇(s)∥2L2 ds ≤ C.

Moreover, since (ρ, u) solves (1.1) as an identity in L2, we have
ˆ T

0

∥∇u(s)∥L∞ ds ≤ C.(B.2)

Proof. Using Lemma B.1 and (B.1) we have
ˆ T

0

σ(s)1−η ∥u̇∥2L2 ds ≤
ˆ T

0

σ(s)1−η
(
∥∂tu∥2L2 + ∥(u · ∇)u∥2L2

)
ds

≤
ˆ T

0

σ(s)1−η
(
∥∂tu∥2L2 + ∥u∥2L∞ ∥∇u∥2L2

)
ds ≤ C.
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For the gradient of the material derivative, using again Lemma B.1 and (B.1), we getˆ T

0

σ(s)2−η ∥∇u̇∥2L2 ds ≤
ˆ T

0

σ(s)2−η
(
∥∂t∇u∥2L2 + ∥∇(u · ∇)u∥2L2

)
ds

≤
ˆ T

0

σ(s)2−η
(
∥∂t∇u∥2L2 + ∥∇u∇u∥2L2 +

∥∥u∇2u
∥∥2
L2

)
ds

≤
ˆ T

0

σ(s)2−η
(
∥∂t∇u∥2L2 + ∥∇u∥4L4 + ∥u∥2L∞

∥∥∇2u
∥∥2
L2

)
ds ≤ C.

To derive (B.2), for d = 2, the proof can be found in [27, Lemma 3.2] and, for d = 3, it comes from a
direct adaptation of [27, Lemma 3.2]. □
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