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Abstract

We investigate the diffusive relaxation limit and the time-asymptotic stability of the Jin-Xin
model toward viscous conservation laws in R? with d > 1. First, we establish uniform regularity
estimates with respect to both the time and the relaxation parameter £ > 0, for initial data in hybrid
Besov spaces based on general LP-norms. This uniformity enables us to derive O(e) bounds on the
difference between solutions of the viscous conservation law and its associated Jin-Xin approximation,
thus justifying the strong convergence of the Jin-Xin hyperbolic relaxation. Furthermore, under an
additional condition on the initial data, for instance, that the low frequencies belong to LP/? (]Rd)7 we
show that the L? (R%)-norm of the solution to the Jin-Xin model decays at the optimal rate (14-t)~%/??

while the L?(R%)-norm of its difference with the solution of the associated viscous conservation law

decays at the enhanced rate e(1 +t)~4/2P~1/2,

Keywords: Jin-Xin approximation; Hyperbolic relaxation; Diffusion limit; Asymptotic behavior; Par-

tially dissipative systems; Littewood-Paley decomposition

1 Introduction

1.1 Presentation of the model

The return to equilibria of perturbed systems (relaxation phenomenon) occurs in a wide variety of
physical situations, such as the blood flow with friction, non-equilibrium gas dynamics, kinetic theory,
traffic flows, etc., see [34,36,37]. Liu [30] first studied the relaxation of 2 x 2 hyperbolic systems in
one spatial dimension. Then, Chen, Levermore & Liu [8,9] continued this investigation in the context
of weak solutions. In 1995, Jin and Xin [28] introduced relaxation schemes for systems of conservation
laws in arbitrary space dimensions that have been widely employed in numerical analysis and scientific
computing, e.g., cf. [23,24,26]. We will be concentrating on their relaxation procedure here.

We investigate the following diffusely scaled version of the Jin-Xin system (cf. [27,28]):

im 9 (1.1)

€ avi—l—Aia—%u:—(vi—fi(u)), i=1,2,....d,
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where ¢ > 0 and € R? denote the time and space variables, d > 1 is the dimension and € > 0
stands for the relaxation parameter. The unknowns are u = u(t,x) € R™ and v = (v1, v, -+ ,v4) with
v; = vi(t,x) € R™. The nonlinear term f(u) = (f1(u), fo(u), -, fa(v)) with f;(u) : R® — R™ depends
on u smoothly and satisfies f;(0) = 0y, fi(0) = 0 with £ = 1,...,d. The constant coefficient matrices A;
are taken as A; = a;I,, with a; > 0 and I,, the unit matrix.

As ¢ — 0, the dynamics of System (1.1) is formally governed by the viscous conservation law

0, = 0

d

axl u), (1.2)

=1

and Darcy’s law

P = A+ ). (13)
An explicit example of (1.2) is the two-dimensional Burgers equations

0 3} 3}
pT + 8—171( D2a —(ugu) — Au =0, (1.4)

uu) +

where u = (u1,u2) € R%. System (1.4) is similar to the pressureless incompressible Navier-Stokes equa-

tions used to model unsaturated flows [13]. The Jin-Xin approximation of (1.4) reads

L
8tu 8$1 ! 8 2U2 o
52gvl + —u=—(v1 —uju) (1.5)
8t 8$1 ’
0
EQEUQ + 8—211, = (’Ug - UQU)

The key point of the approximation (1.5) is that it modifies the nature of the system under study. Indeed,
(1.4) is parabolic while (1.5) is purely hyperbolic. Therefore, if the approximation is valid in a sufficiently
strong sense, this procedure justifies the use of hyperbolic approaches to study parabolic equations. For
instance, the reader may refer to [28] for details concerning the relevance of the Jin-Xin approximation
for numerical analysis. Here, our goal is to extend the validity of the diffusive Jin-Xin approximation in
the context of strong solutions being perturbations of small initial data.

There has been a lot of studies devoted to the mathematical analysis for the Jin-Xin relaxation system
in the one-dimensional setting. Chern [12] investigated the long-time effect of relaxation and proved that
the corresponding solution tends to a diffusion wave asymptotically-in-time in terms of the Chapman-
Enskog expansion. Natalini [33] and Bianchini [3] justified the relaxation convergence of the Jin-Xin
approximation of hyperbolic conservation laws. Jin and Liu [27] studied the relaxation limit of Jin-Xin
system under the diffusive scaling for initial data around traveling waves. Bouchut, Guarguaglini &
Natalini [6] considered the diffusive relaxation of BGK type approximations for the Jin-Xin system. Mei
and Rubino [32] got the time-convergence rates of solutions to the initial boundary value problem for the
Jin-Xin system toward traveling waves on the half line. Orive and Zuazua [35] reformulated the system
in a damped wave equation and derived algebraic time-decay rates of solutions on the real line. Huang,
Pan & Wang [25] obtained the nonlinear stability of contact waves for the Jin-Xin model with the decay

rate (1 + t)_%. Bianchini [4] derived the sharp time-decay estimates of solutions to the Jin-Xin system,



in the case f/(0) # 0, which are uniform with respect to e and provided the convergence to a nonlinear
heat equation both asymptotically in time and in the relaxation limit.

For the high-dimensional case, there are fewer results. Crin-Barat and Shou [17] justified the uniform
convergence of the multi-dimensional Jin-Xin system (1.1) toward viscous conservation laws (1.2) ase — 0

with an explicit rate in L2-type Besov spaces.

To the best of our knowledge, the long-time asymptotics of the multi-dimensional Jin-Xin system
(1.19) has not been established in previous references. Moreover, since the Cauchy problem of the limiting
viscous conservation law (1.2) is globally well-posed in general Besov spaces of LP-type, it is relevant to
study the relaxation limit of the Jin-Xin system in a framework adapted to the limiting system. That is

the two problem that we tackle in the present paper.

1.2 Main results

Our main results read as follows. First we state a global well-posedness result for viscous conservation

laws in a LP framework. For the definition of Besov spaces, see Section 2.

Theorem 1.1. Let d>1,n>1 and 1 <p < oco. There exists a generic constant g > 0 such that if uj
Ld_q . d
satisfies uy € By, N By, and

luoll . 4y < 10, (1.6)
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Ld_ . d
then, System (1.2) has a unique global solution u* € C(R*; B}, 'n B} ). Furthermore, it holds that

u”* a_; a +]|u ., +]v" a4 day; <Cludll a_, o«
H ||Z°°(R+ 351 1ﬂB§1) H ||L1(R+ Bg+1ﬂB§’j2) H ”Ll(R*;BElﬂBgfl) H O”B)Z%1 103517 (1.7)

where v* is given by Darcy’s law (1.3), and C > 0 is a constant independent of time.

Next, we establish the global well-posedness of solutions for System (1.1) in a hybrid LP-L? framework.

Theorem 1.2. Assume e >0 andn > 1. Let p satisfy

l<p<4, if d=1,2,
6 .
2d
—— <p< — f d>4
itz =P<g—y Y =%
and set the threshold J. between low and high frequencies:
J. = —[loge] + ko (1.9)
with some generic integer kog. There exists a constant 771 > 0 independent of € such that for initial datum
Ld_q
(ug,vo) satisfying u € By, 6 € B”l, (ul,vl) € B2 1 and
Xpo Elluol® a4 +wolt s 4y, +(1 +€)|IUO||h g +el +€)||’Uo||h <, (1.10)
;1 ;1 ;,1m ;1 2 1 2,1
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then, System (1.1) admits a unique global strong solution (u,v) satisfying u® € C(R"’;Bzf’)l 1), vt €
. d . d
C(RJF;B;J), (u, v") € C(RJF;B;)I) and
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where C > 0 s a constant independent of time and €.

Then, thanks to the uniform bounds obtained in Theorem 1.2 we justify the strong relaxation limit
of System (1.1) with an explicit converge rate in the L? framework.

Theorem 1.3. Ford > 1 and € > 0, let (u,v) be the solution of System (1.1) associated to the initial
datum (ug,vo) given by Theorem 1.2, u* be the solution of System (1.2) associated to the initial datum

uy given by Theorem 1.1, and v* be given by Darcy’s law (1.3). Assume further that

p=2, if d=1,

2<p<4, if d=2,3, (1.12)
2d
2<p< —— f d>4
<psg—5 i dz4
and
ellvsll a is uniformly bounded. (1.13)
B,

Then, the following convergence estimates hold:

[lu — | i

a_, +llv—2* a < Cllug—ugll a_, +Ce,
ety TR e < Ol (1.14)

Pl

where C' > 0 is a constant independent of time and €.

Finally, we exhibit sharp decay estimates for the solution of (1.1) and for its difference with the

solution of (1.2) when u and u* are associated to the same initial data.

Theorem 1.4. Ford > 1 and 0 < e < 1, let (u,v) be the global solution to (1.1) subject to the initial
datum (ug,vg) given by Theorem 1.2. In addition to (1.10), assume further that p satisfies (1.12) and

d d
| (ué, ev)|| g is uniformly bounded with — — < oy < — — 1. (1.15)
i P p
Then, for all t > 0,
d
w,ev)(t)| 5o < C(L+1)"200700) 5 <o< = 1.16
ge, <C(1 ”
P,

where C' > 0 s a constant independent of time and €.
Moreover, let u* be the global solution of System (1.2) supplemented with the initial datum ug given
by Theorem 1.1. Then, for all t > 0, the difference u — u* satisfies

d
(=) (@) o, < Ce(1+ )"zl g <o < S 21 (1.17)
P p



1.3

Comments on our main results

Some remarks on Theorems 1.2-1.4 are in order:

1.

The low-frequency regularity properties (1.11) of u correspond to (1.7) verified by the solution u*
of the limiting system (1.2). As the relaxation parameter ¢ — 0, the low-frequency region |£| <
27c ~ e71 will cover the whole frequencies and the high-frequency regime disappears. This reveals,

qualitatively, the diffusive relaxation process from the Jin-Xin system to viscous conservation laws.

. In Theorem 1.2, we derive uniform regularity estimates for the solution to System (1.19) in LP-L?

hybrid Besov spaces i.e. the low frequencies in LP-based spaces and the high-frequency ones in
L2-based spaces. Note that in (1.10), the norm of vy and the high-frequency norm of ug can be
arbitrarily large as long as ¢ is suitably small. Due to the dispersive structure in the high-frequency
regime, the well-posedness of the hyperbolic system (1.19) cannot be entirely justified in LP-based
spaces for p # 2 (see Brenner [7]).

Compared with the work [17], Theorem 1.2 not only exhibits a more general LP-type functional
setting but also lower regularity assumptions on v. Moreover, the restriction 0 < ¢ < 1 required
in [17] can be relaxed to the full range £ > 0 so as to describe the so-called overdamping phenomenon
for the Jin-Xin system (see Figure 1).

Theorem 1.3 provides a rigorous justification of the strong relaxation limit from System (1.1) to
System (1.2) for ill-prepared initial data, namely, u§ — ug as € — 0 without further smallness or

decay-in-¢ assumption on u§ or ve.
0

By virtue of Theorem 1.4, the solution of System (1.2) can be viewed as both the relaxation
limit and the time-asymptotic profile of the solution of System (1.1). The time-decay rates in
(1.16) are optimal in the sense at they are the same as those are obtainable for the heat equation.
In the case —d/p < o1 < 0, due to the embedding BSJ < LP(RY) and LY(RY) — B9 with

p,o0

q= d_dgol € [p/2,p), Theorem 1.4 implies that under the stronger condition (u§,ev§) € LI(R9),

the solution (u,v) satisfies
(u, e0) ()| e S (1 + )72 ),

Moreover, for 2 < p < d such that % — 1> 0, the difference u — u* verifies

Nl=

1w —u*)(E)er S el +8)~ G375,

Additionally, in our computations (see (5.21)), the high frequencies of the solutions undergo faster
time-decay rates than the rates obtained for the full solution in (1.17) due to the damping effect of
the solution in this regime.

. d . d
In Theorem 1.3-1.4, we require 2 < p < 2d due to B3, — By, and the technical limitation when
. d . d
using product laws. In the case p < 2, by B, < B3, one can establish similar estimates as in

(1.13)-(1.17) for L?-type norms.

Different from the Green function method used for instance in [4] concerning the 1-d case, our proof
of Theorem 1.4 relies on a pure energy argument with explicit dependence of the parameter £ and

may be of interest in the mathematical analysis of other relaxation problems.



1.4 Strategies of proofs
1.4.1 Spectral behavior of the solution

In order to understand the behavior of the solution to (1.1) with respect to €, we analyse the eigenvalues
of the associated linearized system of (1.1) as follows. Taking the Fourier transform of the linearisation
of (1.19) with respect to @, we obtain

( ( 0 —il& —it&y - —itéy
ey €1 —i%algl _ai? 0 . 0
o [ete | =Awe) | et |, A 2 |—-itale 0 % - 0
A~ ~ ,1 .1
EVq EVq _zgadgd 0 0 R —=

Then, we compute the eigenvalues of the matrix 1&(5) from the determinant

~

d
1., 1 1
det(A() = Ma) = (A + ) TV + A+ 5 D ailal’) =0.
=1

Solving this equation, we obtain

1|1 4
MM=—z5+7|75—4 il&i|%,
d 252+25 g2 ;Cﬂﬂ

d
1 1 1

A1 = ——= — — | = =4S ailéi]2.

il 2e2 2e'\| 2 ;CL'“

The eigenvalues have following properties:

1

e In the low-frequency region |¢| < 71, all the eigenvalues are real, and we have Ay ~ —|£|? and

Ad+1 ~ —e 2. This implies that the parabolic effect and the damping effect coexist.

e In the high-frequency region |¢| > 7!, the complex conjugated eigenvalues \; (i = d,d + 1) have

1.2
5€~ < as real parts.

The above spectral analysis reveals that it is suitable to split the frequencies into a low-frequency region
|€] < e~ ! and a high-frequency region |¢| > ¢! so as to study (1.1). On the other hand, since no dispersive

effects are present in the low-frequency region [£] < =1

, as all the eigenvalues in low frequencies are purely
real, a LP-based functional framework is feasible in this regime.

Such choice of a threshold J. satisfying 27< ~ ¢~ ! allows us to tackle the so-called overdamping
phenomena [40] that is usually a major obstacle to study the relaxation limit. The overdamping phe-
nomena refers to the fact that as the friction coefficient e =1 gets larger, the decay rates do not necessarily
increase and achieve the maximum at a optimal threshold (cf. Figure 1 below). Here, decomposing
the frequency-space with a suitably chosen threshold enables to capture perfectly the e-dependency of
solutions.
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Figure 1: Overdamping phenomenon for System (1.1).

1.4.2 Effective unknowns and relaxation limit

To achieve our results, we first introduce an effective unknown

9 u =+ v, 1=1,2,...,d, (1.18)
8:@»

which allows to capture the sharp dissipative effects observed in spectral behaviors for low frequencies.

z= (21,22, ,2q4) Wwith z = A;

In fact, in order to decouple System (1.1), we rewrite (1.1) in terms of (u, z) as

d d

0 0 0 0
=t = (1.19)

B 1 ERaN B o X o 1

Note that the high-order linear terms in the right-hand-side of (1.19) can be absorbed if the threshold
J. takes the form (1.9) for a suitably small kg independent of €. Such unknown (1.18) is different
from the previous work [17] and allows us to improve the regularity assumptions by avoiding difficult
terms. Meanwhile, the high-frequency analysis is based on the construction of a Lyapunov functional as
in [17] but with additional parameter weights. To overcome the major difficulty caused by the quadratic
nonlinear term f(u) in our functional setting, some new composition estimates are established in hybrid
Besov spaces with explicit dependence on the threshold (refer to Lemmas 6.10 and 6.11).

In order to obtain the convergence estimate (1.14), we introduce another effective unknown

Z = (Zl, Lo,y ,Zd) with Z; £ Alaiu +v; — fz(u) (120)
Ty

Then, we are able to rewrite the equation (1.1); of u as

u—zax ‘ Za Z+Za (1.21)

Note that (1.19) can be viewed as the structure of the viscous conservation law (1.2) coupled with the

d
reminder — > a%iZi. Indeed, from (1.2) and (1.21), the difference du = u — u* solves

=1

-(filu) = fi(u™)). (1.22)

HM&

Oudu = Z oz, 33:

EN{



To analyze (1.22) and derive O(e) bounds in low frequencies, we establish the following key decay-in-¢

estimate:

+ X0, (1.23)

1
Al a4 Sellvgll
e LY(RyBL,) B

d
P
p,1
which comes essentially from the damped structure of Z (refer to Proposition 4.1). Meanwhile, the
convergence rate for high frequencies follows directly from the bounds in (1.11) combined with Bernstein-
type estimates.

1.4.3 Large-time asymptotics

Finally, we explain the main ideas concerning the time asymptotics obtained in Theorem 1.3. Since
the solution of System (1.1) are purely damped in the high-frequency regime and that the component Z
is also damped in the low-frequency region, the slow variable that will dictate the decay is u’. To that
matter, multiplying (1.21) by t* with any given a > 1 and using maximal regularity estimates and real
interpolation, we have

[

N o+l
LtOO(Bpp,l) L

t
5/ | dr
%(B;),l ) 0 BY

p,1 (124)

_l¢d_
<temEl °’“Huellz:o<35}m>+0(1)||Ta“e”21<3%”>'
t(Bp1

Under the assumption (1.15), the time-weighted estimate (1.24) allows us to establish the low-frequency
evolution of the B;ll—norm:

1
1z gy + <12y i) S b 208l g0, + X (1.25)

P,

This approach is based on the previous works [15,18,29,38] but requires more elaborate weighted estimates
with respect to the relaxation parameter € (see Proposition 5.1). Moreover, we observe that when du/;—o,
the spatial derivative of Z; in (1.22) and the Bg}l—norm convergence of Z in (1.25) implies the additional
estimate of the difference du:

1 1
100 e g1ty S 12 e i) S 6,205z + Foo (1.26)

Compared to the Bgfoo—evolution of u’ in (1.25), the key ingredient (1.26) not only provides lower-
order regularity that leads to faster decay rates but also yields a O(g) bound in time-decay estimates.
Performing similar time-weighted energy estimates on the difference equation (1.22) and taking advantage
of (1.26) enable to establish the enhanced decay estimates (1.17).

1.5 Outline of the paper

The rest of this paper is organized as follows. In Section 2, we briefly recall the Littlewood-Paley
decomposition, Besov spaces and Chemin-Lerner spaces. In Section 3, we establish uniform a-priori
estimates and prove Theorem 1.2. The rigorous justification of the relaxation limit from System (1.1) to
System (1.2) is performed in Section 4. Section 5 is devoted to the proof of the sharp decay estimates in

Theorem 1.3. Some technical lemmas and the proof of Theorem 1.1 are relegated to the appendix.



2 Preliminary

We list some notations that are used frequently throughout the paper.
Notations. For simplicity, C' denotes some positive constant that is independent of ¢ and time. A < B
(A 2 B) means that both A < CB (A > CB), while A ~ B means that both A < B and A > B. For a
Banach space X, p € [1,00] and T' > 0, the notation L (0, T’; X) or L%.(X') designates the set of measurable
functions f : [0,7] — X with ¢ — || f(¢)||x in L?(0,T), endowed with the norm ||- ||L9(X)Aé - x M e o,y
and C([0,T]; X) denotes the set of continuous functions f : [0,7] — X. Let F(f) = f and F~1(f) = f

be the Fourier transform of f and its inverse.

Then, we recall the Littlewood-Paley decomposition and the definitions of Besov spaces. The reader
can refer to Chapters 2 and 3 in [2] for more details. Choose a smooth radial non-increasing function x (&)
compactly supported in B(0, %) and satisfying x(£) =1 in B(0, 3). Then, ¢(§) £ x(£/2) — x(§) satisfies

4 3 8

Iy = a2 <l < 2,
}Eezso@ ) =1, SuppcpC{§€R |4_|§|_3}
J

For any j € Z, define the homogeneous dyadic block
Ajut FHp27)F(u) = 279h(27:) x u, h& F o

We also define the low-frequency cut-off operator

$2 % A
J'<i—1
Let S} stand for the set of tempered distributions z on R¢ such that S’jz — 0 uniformly as j — oo (i.e.,
modulo polynomials). One has
u:ZAju inS, VYues, AjAju=0, if |j—1>2.
JEL
With the help of those dyadic blocks, we give the definitions of homogeneous Besov spaces and mixed
space-time Besov spaces as follow. For s € R and 1 < p,r < oo, the homogeneous Besov space B;T is
defined by

By, 2 {ues; : llullg, =2 A ullo}jezllir < oo},

r

For T >0,se€Rand 1< p,r,q < oo, we recall a class of mixed space-time Besov spaces EQ(O, T; B;,r)
introduced by Chemin-Lerner [10]:

Le(0,T:B;,) 2 {ue L0, T:8) + Nullze s, 2 N2 A ull g om bzl < o0}
By Minkowski’s inequality, it holds
||U||Z§(B’;m) < (Z)HUHL@T(B;’T) if r > (<)p,

where || - ||L§.(BS ) is the usual Lebesgue-Besov norm.
2
In order to restrict Besov norms to the low frequency part and the high-frequency part, we write
|- ||}]; and || - H%S to denote Besov semi-norms with respect to the threshold J. defining as (1.9), that
. q1,1 92,1

is,

1
™

<1

lulltye 2 (S0 (2990 8gullee) )" and fullyy 2 (03 (2 NAuls) )T 20

J<Je j>J.—1



One can deduce that for all og > 0,

[ EB;%’T < 200J5||u||2 and  ||ul

35190
Bagi,r

]Zf?;ll,r < 2700Ja+00||u||f]l.3;%,t00' (2.2)

We also introduce the low-high-frequency decomposition u = u* + u” with

ut & Z Aju=S;u and uhéZAju:(Id—SJa)u.

J<Je—1 j2Je

It is easy to check that

¢ oo ¢ 0 . ¢ R h
el < 27 ullypscos 6, < llully,  and bl <lully, o (23)

3 Uniform a priori estimates and global well-posedness

In this section, we give the key a-priori estimates leading to the global existence of solutions for (1.1).

Proposition 3.1. Let p satisfy (1.8). For any & > 0 and given time T > 0, let (u,v) be a solution to
System (1.1) satisfying, for 0 <t < T,
llull Loo(poey < 1.

Then, for all 0 <t < T, it holds that
Xp(t) < C(Xp0 + Xp(1)?), (3.1)
where X,(t) is defined by

11
(1) = Jull® 4, + (=4 )l

L (B7, mBﬁl) - Hunézi(gfflmef) Tt 6)HUH}ZLS"(%%,I) € € Li(B7,) (3.2)
Pl g g el Nl Dl
L (BP,NBY, LUBE,NBP, ) (B3, € +(B31)
The proof of Proposition 3.1 is divided into two cases: the low and high frequencies.
3.1 Low-frequency analysis
Let z be the effective unknown defined by (1.18) and set z|;=0 = 2o = (21,0, , 2d4,0) With 2o £

Aia%iUO + vo,;. Recall that (u, z) satisfies (1.19). By virtue of Lemma 6.8 for (1.19),, there exists a
generic constant C7 > 0 such that

‘ ‘ ‘ ‘
bl as o Al a e SC(lulta, s R s an ) (33)
Le(BP, nBF, LBP, nBP,) B, nBP, LYBF nBP )
As for z, according to (2.2) and Lemma 6.9 for (1.19),, one has
¢ ¢
Ellel a0 a2 . al
L (B, NB!, LYBP,NBP, )
<Oo(Slall’y gy +E2 Nl g +EPER 4 L) (34
BP NBF| LiBF, nB?, LY(BP,NBP,

+Co|l f ()]
L

1 ‘% ‘%+1 ’
t(Bp,lﬂBp,l )

10



where C5 is a universal constant. Then, substituting (3.3) into (3.4), we deduce

52”‘2”{ .4 ‘d+1 + ||Z||e 4 4y
L?(B;l pl ) LI(Bp OB” )
S 0262”2:0”@_% 4%+1 + 01025222‘]5”’& ||é d_4 _g (3.5)
B, NB, B 1 mB
+C(CL+ D22 2| w0 a, Ol f(u )IIZ 4 -
t(BpanBY, ) LUBYNBY, )

Here the threshold J. takes the form (1.9) such that €27 = 2Fo. Therefore, one is able to choose the
integer ko such that

1
2%k « 3.6
205(C1 + 1) (36)
Combining (3.3), (3.5) and (3.6) together, we obtain
||’U,||{ L4y a + ||u||€~ L4y dyo + 52”‘2”{ .4 diq + ||Z||{ d diq

L(Byy NByy) t(Byy NBg, LE(BpanByy ) (BB, ) (3.7)

Sluoll® s o +ll20l° 0 ap + @IS & 4y,

o1 0B B NBY, Ll(Bplme1 )

Next, we bound the nonlinear term f(u). Due to p > max{1 it holds, by composition estimates

in Lemma 6.9 with (s,0) = (d/p,d/2), that

7%}3

t
IF@I s/ (0l g+l g Yl g+ @7 g+ el Yl )dr
LY(BY,) 0 Bpa B3y Bl B, B3, B3, (3.8)
) .
J4 h L h
Sl o)+ (s ) el 2l
LY (BY ) B31) p,l he

LR

Similarly, by Lemma 6.9 with (s,0) = (d/p + 1,d/2) and (3.10) one has

t
@I, & [ (Il g+ Tl? gl +2% Pl o+l )l )ar
LYBP, ) 0 BP, ; BP 3

t B3y By B B3, 2,1
Wl 4 4n) e el 3.9
( LZ(Bg ﬁBpg;l) :H) (Bzgl) 39
1 2
L L (P
Ltoo(Bpp,l )E Lt(BZl L ( 21)

From the interpolation inequalities in Lemma 6.3 there holds that

1 1
2
b, o s (el a ) (e e an) S X,
L2(B;IQB§1 ) L;?O(B;i1 OB;I) Ll(BP OB;I )

' L1 1 (3.10)
1+ 2)|ul S(l—i—a u||” )2(—+—uh )2§Xt
(Dl g S (el o ) (Gl g ) S %0
Combining (3.7), (3.8), (3.9) and (3.10) together, we have
lull®  ay o Al sy an, TR 4, FlEIL s 4y,
b ;7,1 m]3);7,1) : ;7,1 ;',1 s ;,10 ;',1 t(B;,lme,l
; ) . ) (3.11)
Sluoll’ azy o +elz0ll’ a4y, + X0
p1 N8y By1NBy,

11



To recover the information on v, one deduces from (1.18) and (2.2) that

0
+ HZ” 4 dyq
Ll(BplﬁB’p1 )

(3.12)

lol© & o, Slul® 4 4
Lisr,nBr, ) Lisry B

vl . a, SRt L .+ pin
L°°(Bp’ ﬂB’il ) Lt°° B:l ﬂB:l) L°°(B o1 )

Sl oy o +E20210 o .- (3.13)
L;?O B;l ﬁB;l) LOO(BP Bp1

p,1

From (3.11), (3.12) and (3.13) we obtain
H/U‘Hé~ ,d_q .4 +HU‘H€~ Ldyy L dyo —’—‘€2HvHé~ .4 dyy +||'U||€ d diq
&(By, NBY, LiBy, NBYy ) L (B NBY ) LYBY NBY, ) (3.14)
’ .
‘d+1 + HZHLI(BZL OBZ+1)

+ez)t . < Xpo + Ap(t)%.
Ltoo(Bpp,lm p,1

3.2 High-frequency analysis

For any j > J. — 1, we localize System (1.1) as follows

d 4y
—Aju + Z —Aj’Ui =0,
ot = O (3.15)

3 %A UZ—FA 681AJ’UJ+AJUZ:AJJCZ(’UJ), = 1,2,...,d.

Multiplying (3.15), by Aju and integrating by parts, we have

2dt|\AuHL2 Z/Avl- —Aju do = 0.

A ;v; and summing over 1 < ¢ < d, we get

(3.16)

Meanwhile, taking the inner product of (3.15), w1th

Z o dtHA vill22 +Z/ A i A U dm+Z—||A il|2 2
(3.17)
= Z A fz ) Aj’Ui dx.
=1 @i
Adding (3.16) and (3.17) together yields
1d <& 1o 1 =1 [ .
s> (18gults + S 1AmlE:) + Z Al =3 [ A Apde. (319
= =1 "' i=1 "
To derive the dissipation for u, we perform the following cross estimate
d
1d . 0] 0
;a—za dAjUi-a Aju dx + 22” AuHLg
"9 . o
— A d Ajv; - —Ajud 3.19
;az Rdax ;8 iUk G2+ 22 Rd v Oz; g o ( )
d
1 1 ‘ 0 .
= ? a,_,L e Ajfz(u) . a—xZAJU dCB

12



For any j > J. — 1, the linear combination of (3.18) and (3.19) leads to
d

272 C 3}
T 2t )+ HQ < Z —||A fi(u ||L2(_||Ajv||L2 +— ”8 Ajulz2), (3.20)
where the Lyapunov functional £3(t) and its dissipation rate #3(t) are defined by

£30) 2 514, u||Lz+Z “lleAguillgs +27 Qﬂcz
d

M) 2 Y Al + 2 <Z(n Al
=1

. o .
Aj’Ui . B_,TZAJU dcc,

g2 0 . g . 1 0 .
S LA S A de+ — [ Ao —Ajud )

Rd 8:51 v ; al'k ik * + Rd v 6:101- i *

for ¢ > 0 suitably small. By Bernstein’s inequality and Young’s inequality, we deduce

) 1 .
L5 ~ 1A (wev)llze,  HIE) 2 14 (w,ev)|7e. (3.21)
Thus, it follows from (3.20) and (3.21) that

d
L2
dt J( )

ML= L;(t).

Z IA; fi(u
as vy — 0, we reach

(3.22)
Dividing (3.22) by 1/ + 1p, integrating the resulting inequality over [0, ¢] and then, taking the limit

d
. 1
1A (u,e0)l| 2 + =5 1Ay (u, e0) |l 222y S 1Ay (o, 2v0) 2 + = Y A5 fi(w) | £ar2),
which yields

(1 + o)l (u, ev)™

—_
—_

g +(—+—)||(u7€v)||h
Lebi) € € BE) (3.23)
1 :
S+ )lwoew)l” 4 + 1+ DIF@I"
B3 € Lt(B2,l)
The nonlinear term f(u) is analyzed as follows. Owing to 2/ ~ e~!, Lemma 6.11 with (s, o) = (d/2,d/p+
1) and (3.10), we have
t
I, g % [ (ORI g + Tl Dty +27% @l g+l )l ., )
th,1) 0 BY, B3, B3, Bpl B3, BY,
2
3.24
S (e, 44) (IS IR (VIR TSNP TP
BE) 21) Le(By, ) € L (B$y) Ly(B),
S A7
Similarly, one gets
Lt g 5L Ol 2l el Yl )ar
e psdy ey s, eh B, By s B
Sl ||U||h L H(lulll  a el g )l
( Le(B),) Ly (B2 1>)6 LiBE) ( LB ) L?(Bz%n) nsr)
SEAON

(3.25)
13



It thus holds by (3.23), (3.24) and (3.25) that

11 ,
2+ e,

d
t(BZ2,1)

(1 + o)l (u,ev)ll”
Foo

< Xy + X, (1) _
w53 S Apo + Ap(t) (3.26)

The combination of estimates (3.14) and (3.26) gives rise to (3.1), and concludes the proof of Proposition
3.1.

3.3 Proof of global existence and uniqueness

In order to prove Theorem 1.2, we first need to justify the existence and uniqueness of local-in-time
solutions for System (1.1). Define the space
d

E(T) = {(u,v) : uf € C([OvT*]vB;il_l)v 'UZ € C([OvT*];Bf,l)a (uhavh) € C([OaT*]an,l)}

and its associated norm

[w,v) ey 2 Jull® o, & +@+)|ul™ o +2vl° o 4, +e@+e)|vl" 4 .
By NBJL) LE(B3,) Le(BF nBP, Lo (BZ,)
We also denote the space of initial data by
A 0o prTl 0 P hoohy - B9
Eo = {(ug,v0) : ug € By, vy € By, (ug,vy) € 3271},

equipped with the norm ||(ug, vo)|| g, = X, 0 with X, o defined in (1.10).

Theorem 3.1. (Local well-posedness) Let p satisfy (1.8), and the threshold J. be given by (1.9). Assume
(uo,v0) € Eo. Then, there exists a time T\ > 0 such that System (1.1) associated to the initial datum
(up,vo) admits a unique strong solution (u,v) € E(T).

With Theorem 3.1 in hand, we can conclude the proof of Theorem 1.2.
Proof of Theorem 1.2. Under the assumption (1.10), Theorem 3.1 implies the existence and

uniqueness of the solution (u,v) to System (1.1) on [0, Timax) with a maximal time Tinax > 0. In light of
the uniform a-priori estimate (3.1) obtained in Proposition 3.1 and a standard bootstrap argument, one
can justify Tiax = 0o and verify that the global solution (u,v) fulfills the property (1.11). O

Proof of Theorem 3.1. The proof of Theorem 3.1 is divided into the following four steps.

e Step 1: Construction of the approximate sequence.

For k = 1,2, .., define the regularized initial data
X(Lex) Y Aj(uo,vo), ifp>2,
[7I<k
Z Aj(UQ,'UO), 1fp< 27

l7]<k

(ug, vg) =

where y(z) € S(RY) satisfies x(0) = 1 and Supp F(x)(¢) € B(0,1), and Ly > 0 is a constant which
satisfies klim L, = 0 and will be chosen later.
—00

We claim that (uf,v§) belongs to H*0(R?) for s > [%] +1 and fixed k£ > 0. Indeed, in the case p > 2,

. d
one deduces from Bernstein’s inequality and the embedding B, ; < L that

(g, v6) oo (may S 2°°° [1(ug, v6) 122 S 25 (L) 2 [l (wo, wo) || oo < 0.

14



As for the case p < 2, due to Bernstein’s inequality and Sobolev embeddings, one also has (ug, v
W50+%—%7P(Rd) <y F50 (Rd)

6) €
Then, we explain that there exists a suitable large integer ko such that for all k > ko, (ug,v§) has the
following uniform bound

1 (ug, v§) | 5o S Nl (w0, vo) | &,

(3.27)
We only justify (3.27) when p > 2 as the case p < 2 is clear. Recalling the invariance of the norm B

by spatial dilation (see, e.g., [2, Proposition 2.18]), we have ||x(% )|| 4 ~ x|l .« < 1. Thus, for p > 2
p Blﬁl
the classical product law (6.2) and Bernstein’s inequality ensure that
kit ¢ h
lugll” a SlIxIl .2 lluoll 4 S lluoll® a + lluoll” 4
BP, BP, BP, BY B

1 2,1

Employing the hybrid product law (6.4), we also have

lugl® s < Alxll 2 +lxl, 2 )(lluoll 4 ¥
0 322,1 B;:,l 322,1 B’;,l 322

h ¢ h
+ lluoll® 4 ) S lluoll’, « + [luol|

-
1 B22,1
Similarly, one can obtain the desired bounds for v% in (3.27). Then, it suffices to show

Bl

lim lug —uol® 4_, =0 (3.28)
k—o0 Bpp,l
In fact, inspired by [1][Lemma 4.2] we decompose
—up =

ka—leuo—i— ZAuO
l7|<k 7| >k+1
For any n > 0, one can find a suitable large integer kf = kg(n) such that for all £ > k),

> A uo|| >
|7]|>k+1

G0 A uol| e < 1.
J<—k+1, j<J.
On the other hand, Since Supp F(x(Lx-)) C B(0,L*) and

8
Supp F(O_ Ajug) C {¢ e RY: 2"“<|§|< 22,
i<k 3

we have F(uf) C {¢ € R?: 327F < |¢] < H2%} for Ly, < 227% so Ajuk = 0if |j/| > k + 3. Hence, from
the definition of y it follows that

i<k Bya

IALkz) = 1) > Ajuoll” a_, S2HNATw) = 1) D A, U0||

Q
1iI<k P
S 28N L) =1l 4 [luoll 4 =0 as
B2, BY
fixed k > kg and any sg

as long as we choose a suitable constant Lj. Therefore, we have (3.28) and complete the proof of (3.27)
According to the classical local well-posedness theorem for hyperbolic systems (see, e.g., [19,31]), for
> [d
=12

[£] + 1, there exists a time T}, such that the Cauchy problem of System (1.19)
associated with the initial datum (uf,v§) has a unique solution (u*,v*) € C([0, T]; H*° (R%)).

e Step 2: Uniform estimates

15



Performing similar computations as in Section 3 and using(3.27), for all k > ko and 0 < t < T}, we

have
1
1(u®, o) ey S (w0, vo)llge + IF @ 0 ayy + @+ IF@HIE 4 (3.29)
Ly(BY,nB), ) € Ly (B31)
Then, Lemmas 6.9 and 6.11 guarantee that
1
IF@NE o 4y, STA+IF@OHIS .
L%(Bgin,lmep,l € L?O(B;fl
1 2 1 2
STa+) (b a0 ) +Ta+ ) (e )
c LE(B),) € L3 (B3))
T 1
T P " Ly
Lge p,1 L Bz,l)
and ) )
et STl s ) (e )
L%(B22,1) & Bil) L?O(B22,1)
T 1
S (174 PR S 7 L 174
€ ©(Bry LE=(B3y) ©(Bp1)
Consequently, one can find a generic constant C, > 0 such that
1
1, o)Ly < Coll(uo, o)l + O+ 2P0y, K2 o (3.30)
We define the time
1
A
= 3.31
202(1+ 1)2E, (8:31)
and the time set
1= {te 0,1 [k v")ls < 20 (uo, w05, §- (3.32)

It is clear that T\ < Tj. Due to the time continuity of (u*,v*) on [0,T}), I* is a nonempty closed subset
of [0, 7] for every k > ko. By (3.30) and the definition (3.32) we have

I(u®, v*) | pry < 2C:ll(uo,v0) 0s  tE€I*, k2 ko

Again, using the time continuity of (u*,v*), one can show that there exists a ball B(t,7,) for a suitably
small constant 7, > 0 such that [0,7] N B(t,n.) C I*, which implies that I* is also an open subset
of [0,T]. Hence, we have I* = [0,T], and the approximate sequence (u*, v*) satisfies the estimate

[ (w*, v*) || g,y < 2Cs||(uo,v0)|| 5, Which is uniform with respect to k > ko.

e Step 3: Convergence of the approximate sequence

The uniform estimate established in Step 2 implies that there exists (u,v) such that as k — oo, it

holds up to a subsequence that

(u*, v*) = (u,v) in  L°°(0,T,; L= (R%)).

16



In order to justify the convergence of f(u*) in (1.19),, one needs to show the strong compactness of

{uF} >k, in a suitable sense. From (1.19), and the uniform estimate of v* we have

O™ | 1 S el PR [ S (w0, v0)ll By
LOO(OxT?Bx::xX{;f},l ' L°°(07T4de,1 LW(O*T?BEI) 7 ’

L—
Gathering this and the compact embedding Br‘r‘l‘;;{{é’g} . <= L}, .(R%), one infers from the Aubin-Lions

lemma and the Cantor diagonal argument that, as k — oo, for any bounded set K C R¢,
uF - wu  in LY0,T.; LY(K)),
which implies that

I (@) = f)llro,rsm(x0))

< Sl[zpl] ||f/(u =+ T(uk - U)HLOO(O,T*;L”(Rd))”uk - UJH|L1(O,T*;L1(K)) — 0.
T7¢€|0,

Therefore, (u,v) indeed solves System (1.19) in the sense of distributions. Finally, we justify the time

continuity of the solution. Taking advantage of (1.19),, for any 0 < t1,t, < T, we have

lu(tr) = u* ()] 2 S Joll* La |t —tal.
BY, L<(0,T.;BY )
This implies that u* € C([0, T.J; Bp%;l) A similar argument leads to v* € C([0, T.]; B;)%l) To deal with
the high-frequency part, we consider the decomposition (u,v)" = Sy, (u,v)" + (Id — S, ) (u, v)" for some
integer Ny. From (1.19) and the given bounds on (u, v), one can show that the high-frequency part satisfies
(u,v)" € C([0, T.; Bf;l) It thus follows that Sy, (u,v)" € C([0,T.]; 32%1) due to Bernstein’s inequality.
On the other hand, following similar arguments as in Subsection 3.2, we have (u,v)" € ZOO(O, T,; 32%1),

and therefore

i- .
11d = Sno)(wo)lI* 4 S > 22 sup |Aj(u,v) e
LR (B3 s max{Jo,No}—1 te[0,T]

can be arbitrarily small as long as Ny is chosen to be large enough. Consequently, we have (u,v)" €
. g
C([0, To; B3 y)-

e Step 4: Proof of the uniqueness

For given time T > 0, let (u1,v1) and (u2,v2) two solutions of System (1.1) in the space F(T') with the

same data (ug,vo). Then, (U, V) = (u1 — uz,v1 — vg) satisfies

3

0 0 .
EQEV; +Aia—in—|— Vi = (fz(ul) — fl(UQ)), i=1,2,...,d.

) L
&U+;%Vi—0,

e Case l: p> 2.

Arguing similarly as in Subsections 3.1-3.2, for ¢ € (0,77, one can infer that

1
1ol o, AU oy, 4@V o + =TV,
L& (BY LBy L (B3, € Ly(B3,)
t p,1 t\Zp,1 ’ ’ (333)
S ua) = Flu) | o+ 1f () = flu)l® 4
L{(B}, Li(B3,)

17



. d
We now bound the nonlinear part of (3.33). Since p > 2, we have ui,us € L*>°(0,T; B ) by virtue of
Bernstein’s inequality. It follows from Corollary 6.7 that

) =~ FI s <[, o ool s dr
B P " (3.34)

< [ g (G, + 10, ) ar
0 BY \€ B B3

To bound the nonlinear term in the high-frequency region, we rewrite f;(u1) — fi(uz) = Z;l:l Ujb;

. A 1 af
with b; ; = [, Ty
composition estimates in Lemmas 6.10 and 6.11 it yields

1 (ur) = £ (u2)l|"

(uz + 7(u1 — uz)) dr. Therefore, together with the product law in Lemma 6.5 and the

d
L1(3221)
d
/ (w1 anunu +3 bl s 0N g +IUN ) dr (3.35)
pl ij 21 ij p,1 2,1 p,1

1 T
S+ [ (lwwly + Il ) (I, + 101, )
0 Bﬁl B3, B:l B3,
Inserting (3.34) and (3.35) into (3.33) and employing Gronwall’s inequality yield (u1,v1) = (ug,v2) for
a.e. (t,x) €[0,T] x RY.

e Case 2: p < 2.

. d
As p < 2, it is clear that Bp 1 < B3;. Therefore, we only need to prove the uniqueness in the L?

framework. The L? energy method from Subsections 3.1-3.2 leads to

L PN (7 LI, st
21 (3.36)

t 21 ) (pl

S 1 (ur) = flu2)ll

+ell(Uev)It 4 ||(U€V)||h
L (B ) €

nsiy

The composition estimate in Corollary 6.7 gives

1) = Sl gy % [ sl g 101, ar
21 2 2 (337)

< —[lU* Ull*y ) d
< [ Ml g GGy 401 ) dn

2,1

Hence, Gronwall’s inequality implies the uniqueness in the case p < 2. O

4 Strong relaxation limit

In this section, we prove Theorem 1.3. For clarity, we divide the proof into two steps. First, we

establish additional regularity estimates of the effective unknown Z.

Proposition 4.1. Let (u,v) be the solution to System (1.1) obtained in Theorem 1.2. If p is given by
(1.12), then

i, a4 +|u < X0,
L I L I @1)
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where X, is given by (1.10).

Moreover, under the additional assumption (1.13), we have

1
AL, g+ I SN+ (1.2
where Z is defined by (1.20).
Proof. Thanks to (1.11), (2.2) and Bernstein’s inequality, it holds that
[l g g Sl ey o A+l 4 S Ao,
Le(R+;BF, NBF)) Loe(RH;BP, NBP,) Loo(R+3B2,)
ol ot SIS, g+ il ) S o

where we used that p > 2 and 27¢ < e71. Consequently, we get (4.1).
Next, to establish the low-frequency estimate (4.2) of Z, we observe that Z has a damping effect in

B 1 0 X9
TR Zk_Ak@xk(Zax . )‘A’“a_m_z;a_xizl
. = (4.3)
) d 9,

Applying the low-frequency cut-off operator S 7. to (4.3), making use of Lemma 6.9 and the fact that
27: <71 we obtain

1
7t izt A ¢
N2, _ gt + N2 g SN2y +ell ,Bjr% PO, e
(4.4)
+ an( i) I .
k; ) L1 (RH; B”l)
Here Zo = (Zoi,- -+ , Zo.a) With Zo & Ay %uo +wvo,i + fr(uo). Using the classical composition estimate
in Lemma 6.6, the first term on the r.h.s of (4.4) is controlled by
el Zol’ s S elluoll’ gy +ellvoll’ 4 +ellfuo)ll’ 4,
B:l B;)J Pp BPJ
< ¢ ¢ ¢
Slholl s +elolls + 15l ¢ w5)
Sluoll’ 4 +lluol” y +ellvoll’ 4 -
BP sz Pp,l
From (1.11), (2.2), (3.9) and 27 < 71, one gets
¢
gllu +e
L U,
p’é . ) (4.6)
Slull”  ap @I 4, S &,
LYRT:BY, ) LYRTBY, )
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By virtue of (2.2), (4.1), Lemma 6.4, Lemma 6.6 and —g < % — 1 due to 2 < p < 2d, one also has

0 a
ol (5 feu ) I = ||—fk< ol
Wi LY (R+; Bpl) L' (Rt; B o )
8
Sl fe@ll_ P I (4.7)
Ou, oo (R+; BP (Rt B,f’m )
Sl o (01 g Il ) S
Lm(RJr?Bpp,l) LY(R+; :1 HRF; 821)
Inserting (4.5), (4.6) and (4.7) into (4.4), we obtain (4.2). O

We are now ready to prove Theorem 1.3.
Proof of Theorem 1.3. Let the assumptions (1.8), (1.10) and (1.13) be in force. To derive the
convergence rate, we shall estimate the difference of the solutions (u,v) and u* to System (1.1) and (1.2),
respectively. Defining (§u, dv) = (u — u*,v — v*) and using (1.19), we have

d

0

atéu_zaxl 81:1 ):_;833
)

9 ‘

O (fi(u) — filu™)).

(4.8)
Zi, i=1,2,..,d

with Z = ((Z1, Za,- - , Z4) defined in (1.20). In the high-frequency region, due to 277/ < ¢, the uniform
bounds (1.7) and (4.1) give directly

16w oy Sell(w )] o Sellugll a4+ o),
Loo(RT;BP, ) o (RT;BP, BP, nBP, 19)
1 .
ool Se(Cholt I ) Sellul g s + o).
LY(R+;B7 ) € L'®RHBE)) LYR+BE, ) B,y NBy,
In the low-frequency region, applying Lemma 6.8 to (4.8)1, we deduce
N
II&/IIZ 4o +||5u€||~ gs1, S lluo —ugll 4o +||Zé||~ o () = F@)) I
o (R+;B), LY(RHBL, ) BP, R+;B) ) LY (R*;B; )
which, together with (2.3) and the key uniform bound || Z*|| _ e Sein (4.2), leads to
L®+Br,)
ou’ 4, + ||ouf < |luo — u +e+
Il o, 190 S o = bl g e L@ = SO, e (ao)

It follows from (1.7), (3.10),, (4.1), the interpolation in Lemma 6.2 and the composition estimate (6.5)
in Corollary 6.7 that

[1f(w) = Fu?)] 4

LY(R+;BP )
< N ) loull, 4
L2(R+; B”l) L2(RT;BP )
< |[(w,u ( out ull? +el|ut||? )
S (0 e F g el )y
S (oot ldll g o Y0 e )
BP, me‘fl Loo(RHBP, ) LY(R+;BP))
2
+ (Ao + sl g )
BY, nNBY,
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Inserting (4.11) into (4.10) and using that both &}, ¢ and ||uf|| .a_, .« are suitably small, we obtain
B?, nB?
p,1 p,1
ou’ 4 A |lout ay Sllug—udl| o, +e.
I8N, gy IO e S o=l (1.12)

Thanks to (4.2), (4.8),, (4.11) and (4.12), we recover the information on dv in low frequencies as follows

6ol a S oul|
LI®R+;BE ) Li(

s T [1f (u) = f(u®)

¢
s +1Z7]].
R+;B L

Il 4 4
L1(R+;BY,) YR+:B) )

(4.13)
Sllwo —ugll oy +e.
B,

Hence, by (4.9), (4.12) and (4.13), we obtain (1.14) which concludes the proof of Theorem 1.3.

5 Uniform time asymptotics

5.1 Time-decay of the solution

Proposition 5.1. Assume that p satisfy (1.12) and (ug,vo) satisfies (1.10) and (1.15). Let (u,v) be the
global solution to System (1.1) subject to the initial datum (ug,vo) obtained in Theorem 1.2. Then, it
holds that

(w20 Ollgg, S A+07 4Dy, <o (5.1)

for Dy = (b, =0) 51 + Xio-

The proof of Proposition 5.1 is divided into the following four steps.

o Step 1: Estimates of the solution in Bg}oo.

We first establish the uniform evolution of the Bg}oo-regularity.

Lemma 5.1. Let p be given by (1.12), and (u,v) be the global solution to (1.1) satisfying (1.11) for
€ (0,1). In addition to (1.10), assume further that (1.15) holds. Then, we have

1
||UZHZoo(R+;BZ}OO) + ||UZH51(R+;B;};2) + EHZE||Zoo(R+;BZ}OO) + EHZE||21(R+;B;}OO) S Dpo (5.2)

with Z defined by (1.20) and Dy = H(ué,avé)HBZ}w + Xp0.

Proof. We recall that (u, Z) satisfies (1.21) and (4.3). Applying the low-frequency cut-off operator S,
to (1.21) and (4.3) yields

o d ) 9 d 9 d
P . A 4
ot ; Ox; (Alaxiu ) ; Ox; Zit ; 0 ZSJEfZ(u)’
d d
90 1 9 9 4 0 0 _ 9 9
T (Z} G i )) = A i ; i (5.3)
d d
) .0 o -
g SJE(; axsz(“D _”z_:ls‘fs(ﬁf’“(“)axz”ﬂ)’ k=12, .d
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Applying Lemma 6.8 to (5.3), yields
¢ ‘ ¢ N 7L
gy 0 e iy S bl + 21202 gy + 1) g s

In addition, one deduces from applying Lemma 6.9 to (5.3), that

EHZgHEoo(RJr;BZ}OO) + E||Z€HL1 R+: BZIOO) ~ ‘SHZO”B”1 +52J5Hu ||L1(R+ Bf’1+2) +52J5||Z HLI R+; B

+E||f( )HLI R+; Bf’1+2 + Z E”_fk _U ||L1(R+ BIL.)’
k,i,7=1
where Zy = (Zoi,- -, Zo.a) With Zop = Ak%uo +voi + fr(ug). Since 27¢ < 2k~ with kg small

enough, we have

Hu ||Loo (R+;BgL, + Hué”Ll R+: B"IJr2 +5||Z ||Loo(R+ ;B! ) + - ||Z HLI R+;BIL,
(5.4)
¢ ¢
< Ibllspe, + 128 spe + 1@ g + 3 el i)l
k,i,j=1

Now, we bound the terms on r.h.s of (5.4). We denote by f; the smooth function such that f;(u) = f;(u)u
and ﬁ(O) = 0. Due to the facts that 2 < p < 2d, —g <o < % —1,e <1 and 2’ ~ &', one deduces
from (2.2), (6.3) and Lemma 6.6 that

~ d_
il gz, S Ifiwo)ll 4 Nluoll gz, < (”uO”;% + ”UO”;% )(luollges +e* Ul”“o”;g )-
p,1 p,1 2,1 2,1
This implies that
‘ ’ ‘ ‘
28l s, < ellvfll g, + el Vbl o, + el fwollbe < N0 cvdllsp, + Xpo  (55)

It also holds from (1.11), (2.2), Lemma 6.6 and (6.3) with 2 < p < 2d that

N @iz S IV T @rsy

S Z I Ol g 8 70 ERe 72
< 14 . pfl o1 h
||u||~2(R+ BP )(||u ||L2(]R+ Bty T ||u||L2(R+ ngl))7
which, together with the uniform bound (1.11) and Corollary 6.3, yields
TN sy S Ao Uz gy + I e i) + Ao (5.6)
Similarly, the last term on r.h.s of (5.4) is estimated as follows
0 Vi 0
EHQJC ( ) ||L1(R+ ;By. E||_fk( ) ( ) ||L1(]R+ Byl )+5|| ( )a_( ) ||L1 (R+;BpL.)
< - oo ¢ -
< 5||“||L°°<R+;Bp}m)||V“||Zl . +E”“”zm ||VU||L1(R+ BIL)
<€( P [Ep +5%_auh )vf
|| ||L (Rt;Bplo) ” ||Z°°(]R+ 3251) || ” 1(R+;B§fl)
+ull 4 e o
> (RF; Bpl) LY(R+;B7 1)
< XILOHU ||Loo(R+ BZL.) + X (5.7)
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where one used ¢ < 1. Hence, it follows by (5.4)-(5.7) that
¢ ¢ ¢ ¢
| HEOO(RJr;B;’}OO) + Jlu HZI(R+;BZ}£2) +ellZ ||Z°°(R+;B;f}m) + EHZ ||Z1(R+;B;}m)
¢ ¢
< Xpo+ & ,O(HU ||Z°°(R+;BZ}OO) + ||u HD(R*;B’Z}J%)’
which, combined with the smallness of X}, o, gives (5.2). The proof of Lemma 5.1 is complete.

o Step 2: Time-weighted estimates in the low-frequency region

Inspired by [18,29,38], we perform time-weighted energy estimates for (u, Z). Let a > 1 be any given

constant. Multiplying (5.3) by ¢, we obtain
d d d

o ) ) 0
0= L () o BT LS

ot

—

1=

B 0 /<. 9 )
8t(tazk) 1 (taZk) — at® IZk +Aka (Z o (A 7, (ta f)))

8171@281:1 (tZ5) + 4" Ar g (Za Srfilu )_taZSJE( )ai

3,7=1

fork=1,2,---,d.

By similar arguments as in Subsection 3.1, one deduces from Lemmas 6.8-6.9 to (5.8) and 27¢

with 2F0 <« 1 that

1
[ uflh o A s, wellT 2 |l Z0
L B)L) ZICENS Le@ly) € LHBLY

t t
5/ T || 4 dT+€/ Mz 4
P P
0 pl 0 pl

o .
(e 4 i1
+ I f(u)l\Z (Bd“>+ E el —fk( ) xivjllztl(B .

k,i,j=1

< 2kog—1

The key ingredient for the gain of decay rate is to control the first term on r.h.s of (5.19) by time-space

interpolation arguments. Let 6 = m

interpolation inequality in Lemma 6.2 yields

t t
a—1y,,¢ < a—1 20 . 0 14 1-6
|t R | g )27 ar

p,00

0
S (ta—%(%—ol)||u€”L§O(leoo ) |7t 0

442
t( pl )
1 1,4
< o, l _toz—g(f—(n) 0 s
ST, g R I g
for some small constant x > 0 to be chosen. One also has
t
e [tz e se(e itz Y iz
0 By L Bf,ﬁ LYBE,)
0(pa—1(d-1- £ ¢ 1=
582 (ta Ul)”Z HL?"(Bgloo) (—HTO‘Z ||~1 )
' L (Bpl)
1 1,d
é —L(a_
H OtZ H~ +Eta 2(;7 UI)EHZ HLOO(B ),

Ll(Bpl)
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such that d/p = 010 + (d/p + 2)(1 — 6). Then, applying the

(5.10)
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where we used € < 1 and
’UI)HZZHZ?(B;’}& .

l < 770) l . <
12711 g)w2 N2 g g,y S €
ith (s,0) = (d/p+1,d/2),

Lo (B,

Concerning the estimation of nonlinear terms, from (1.11) and Lemma 6.9 with (s, o)

we have
I f @y,
t(B;f,l )
t
S [ (Il g+l Ol g+ 2% g+ Tl g el ) dr
- B;il B22,1 B;rl pl 21 322,1
Shroufll o %l el s
(57 ) tewdy nsrt (5.12)
1
Pl el Sl
°°(B:1 )€ Li(B3, LtOO(BQ,l) L (B 1)
1
+lrul® s Il ).
7 %(3221)

S XpolllToul. 4
L (Bys) L(B34)
Due to p > 2 and d/p — 1 > —d/p, one infers from (1.11), (2.3), (6.3), Lemma 6.6 and Bernstein’s

inequality that
0 o 9] a
a_ Y o ¢ < a_ Y T ¢
R R LRk LA RS
Sheval g ol g
LE(BrE) LiBEY) (5.13)

< (= UZIL o Al Al s el )

Ly (B;I) L(Bsh) }(351 Li(Bsy)
S XpollTou®l o+l )
Ly (Byy) Ly*(B3,)

. -regularity in

Inserting (5.10)-(5.13) into (5.9) and making use of the evolution of the low-frequency B

Lemma 5.1, we obtain
lroull g el +€||T“ZZII 4 IIT“ZZIL
Le(By1) LBy, g 351) L(Bpl)
1
=l QUII’L 4 —|| “Z£||~ ) (5.14)
Li(BZ, l(Bpl)

S (XGpo+m)(Imoufl__ g + ol
L (Byy L?"(Bzz,l)

).

1o 1,
S e e gy + 12 e g,

o Step 3: Time-weighted estimates in the high-frequency region

We perform similar computations as in Subsection 3.2. Multiplying (1.1) with ¢* leads to

g(ta )_’_ii(ﬁa ‘)_ ta—l
ot u 2 8%‘ Vi) =« u

0
T (tau) +v; = Ezﬁailvi
K3

+ ( fi(w)),

0
2

8t(
(t ’U,,t ’Ui)ltzo = (0,0)

“u;) + A;
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Repeating the same argument as in (3.15)-(3.23), we get

1 ¢ 1
I e)ll” 4 + Sl wen)|” 4 S / T H(we)|* g dr+—|rfW)] 4 . (5.15)
Ly (B3,) &2 L{(B3,) 0 31 € Li(BF,)
Let 0 be given in Step 2. It is easy to deduce

t t
/ T (u, e0)||" 4 dTS/ T (I e0)]® 4 ) (I (ue0)| 4 )0 dr
0 B3, 0 B2 2

2,1 2,1

< (G (0, 0 "

; V@)t T (56
Lge(B 21) L}(BZ 1)
K« h 1 a—3(¢-1-0y) h
S Sl wen)|? g+t T (u,ev)|1 :
€ Li(B3,) K 1(32 1)
Thanks to the composition estimate in Lemma 6.11, there holds that
1
7% f (u )Ilh lull® o Al g )= lrullt
Ly(B 21) ( Lg(BE)) ( 221))5 Li(B3,)
+ (Jlul +€|IUI|h o )l
( Lrmi ) <B§1>) AT (5.17)
1
< a, = h )
S Bo(Irullly, yae + Sl Ly ).
where we used that
1
(el SlroafllS a4+’ S ueIL + gl
IEN Gl T 5% GIEN
Hence, from (5.15)-(5.17) we have
o 1
I @eo)lt 4+l @en)l,
L7 ( 2, 1) t B2,1) (5 18)
14 1 a, (lh 1 a—i(d—-1-0y) h .
St 20 (Pl o+ leul g )+ E et
t(Bf,l ) € Li(B3,) K ©(B7 1)
o Step 4: Time-decay rates
Adding (5.14) and (5.18) together, we derive
1
lroufll o Il a, ellT 20 4 (172 .
L (B 1) LiByy ) Ly (By,) & Li(By 1)
1
+ |7 (u, ev) || + — U, EV
el o gl
1
S@o+m (Il g +lrtul g sl g ez )
L (Byy L?"(B221) e Li(B3,) LBy,
1
af—(—fdl 4 4
+~t (W gy + 20 g + Do SO 1)).
Choosing the constant x small enough and noticing that &), o satisfies (1.10), we arrive at
1
[[7* 1/||~ R [ P A I e a2 I
L (Bg L) LiB, ) L (By, Li(Byy)
1 o (5.19)
a h | e h < OL*—(;*O'I)
+||T (ujgv)||Z§°(B§1)+52”T (U,E’U)||~1 -4 NXP,Ot 2 )

t 2,1
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where we have used the uniform bound (1.11) and the low-frequency evolution (5.2). In addition, thanks

to Z; = Ajm—u+v; — fi(u) (5.19) and Lemma 6.6, we recover the time-weighted estimate of v’ as follows

ox;
elrvfll, s SEIZ o I e el @
Ly (B 1) L (B 1) (B 1) L (B 1) (5.20)
Selr 2zt g+l a wellrtullt g S et TRGT,
L (BY ) L (B ) L (B3 1)
Dividing (5.19) and (5.20) by t* and making use of (1.11), we have
') Ol 2 +el(wev)]” g S Dpo(l+0)72E7, t>0, (5.21)

p,1 2,1

which, together with the real interpolation between (5.2) and (5.21), implies

I
I
q

o — (7'1
1= T
II(UZ,Mz)(lﬁ)llgv1 S, v ) (Ol for 1 e0) (@) 70
P, p,00 Bp
p,1
d
<Dpo(l+8) 2D 450, g <o< -
p

Therefore, we obtain

d_g
(e, e0) Ol , S N0’ ) Dl , +2 7w e0)OI" 4

2,1

<SDyo(l+1)7207) 150, oy<0o<

SR

The proof of Proposition 5.1 is complete.

5.2 Improved decay of the difference

Similarly to Lemma 5.1, we first establish the evolution of the lower-order Bg}og Lregularity of the
difference.

Lemma 5.2. Let (u,v) be the global solution to (1.1) subject to the initial datum (ug,vo), and u* be
the global solution to (1.2) with the initial datum wg. Then, under the assumptions (1.10) and (1.15), it
holds that

||5u||Z°O(R+;BZ} 5 SeDpyo (5.22)
wzth D;D,O = ||(u€, E'Ué)”B;f}oo —+ Xp,O'

Proof. We recall that the difference du = u—u* solve (1.22). Applying the low-frequency cutoff operator
S, to (1.22) and taking advantage of Lemma 6.8, we deduce

160 gty + 10005, e, + D00l sy -
SIZIG e, pry + 1@ = F@NEs 5o
Recalling that (5.2) holds, we have the key observation:
||Z||L1 Ry B”l )y~ EDZ%O' (524)
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In light of (1.7), (4.1), (2.2) and Corollary 6.7, the nonlinear term in (5.23) can be estimated as follows

*\ (| £ *
176 = S0 ey SN [0l gy S Boolbulzae, iy (525

+:Dp 1

According to (1.7), (1.11) and p > 2, the high frequencies of du also satisfies

160l g s, + [0
d_ 5.26
<ot “1“||<u,u>||’z o)t . <Dy, (5.26)
TR y;B7,) L2(Ry3B7))

where we noted % — o1 > 1. Combining (5.23)-(5.25) together and using the smallness of X}, o, we end
up with (5.22). O

Finally, to complete the proof of Theorem 1.4, we prove enhanced time-decay for the difference.

Proposition 5.2. Let p be given by (1.12). Assume that (ug,vo) satisfies (1.10) and (1.15). Let (u,v)
be the global solution to (1.1) subject to the initial datum (ug,vo), and u* be the global solution to (1.2)
subject to the initial datum ug. Then, it holds that

d
I =u)Dllgy, S+HTT Dy, o1 <o -1
P,

with Dp,o = || (uf, €v6)ll gz + Xpo
Proof. Remember that (u,v) satisfies the heat-like decay estimates (5.1). Following the low-frequency
analysis of Proposition 5.1, we have
* —i(o0—01) d
I ®lls;, S A+ Dpo, >0, o1 <o <, (5.27)
P,

Hence, using Bernstein inequality, the decay estimates (5.1) and (5.27) enable us to derive the enhanced
decay of du in high-frequency:

da

d
||5u(t)||’%;,l < gr”n(u,u*)(t)||’;3 Se(l4+t) 20t t 150, 0y <o< 0 1. (5.28)

SRS

1
In order to derive decay in low frequencies, from (1.22) we have
d

0 0
O (t*ou’) — Z (to‘ £ (A; ax_éug)) = a(t* ou)
=1 i i

-3 (i) - 3 (8. (0 - )

(5.29)

where o > 1 is a given constant. Since dult—o = 0, using (5.32) and applying Lemma 6.8 to (5.29), it
follows that

Irooufll s +llrSulll g Hlroul g
L (Bpl ) L3(BE,) LY(BF, )
. (5.30)
5/ o 1II&/II 4 ldT+IIT“ZfII g+ ) = fF@DIE .
0 pl (Bp ) Lrl,(Bf,l)
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Let 6 € (0,1) be given by d/p — 1 =60(o1 — 1)+ (1 — 0)(d/p + 1). In view of real interpolation, the key

estimate (5.22) guarantees that

t t
- - —0
/Ora Houtl g dfg/ 70U G [19ul ;gﬂ dr

p,1 0 p,1
0
S (3G oul o ) Noul? (5.31)
" Li(By )
< kil|du i+ —tom3EoIp
1” ”Z}(B;fl) P p,0

for some constant k; to be chosen later. To control the second term on the r.h.s of (5.29),, from (5.16)

and (5.19), we have

Iz Szl o+l
1 1 1

LBy ,)
<3G -oIp

g Fellmollt 4 Fellrf(u )Ilh
3221) L%(BZQ,I) 1(B 1) (532)

d

P
LB},
p,0-

The estimates (1.7) and (4.1) as well as Corollary 6.7 ensure that

7(f(u) — f(u* a S (u,u a4 |[ou a S Dyolldu d .
([ (f (u) = f( ))HE(BEJ [ (u, w?)| zst,) loul_, 253 ) p.oll ”23(351) (5.33)
From (5.30)-(5.33), one infers, for some suitably small x; > 0, that
TY0u 4, +[|[T%u a +||[7%u i, S et*2 (=)D, 0.
Iroul o 00 g I (530

Since @ > 1 is any given constant, dividing two sides of (5.34) by ¢* and using the bounds (1.7) and
(4.1), one has
_l(d_,
[5u@ll 41 S0 +072E7Dy0, > 0. (5.35)

p,1

By virtue of the real interpolation between (5.22) and (5.35), we get

Q.

—1-0c o—o1+1

d_s
1ou@®ll g, < ll0ult )|| oy Csu@)l n Y Se(l 46T D, (5.36)
, B
for t > 0 and —% <o< % — 1. By (5.35) and (5.36), the proof of Proposition 5.2 is concluded. O

Proof of Theorem 1./. Under the assumptions of Theorem 1.4, we conclude from Propositions 5.1 and
5.2 that (u,v) satisfies the time-decay estimates (1.16), and the difference u — u* verifies the enhanced

time-decay estimates (1.17). O

6 Appendix

6.1 Some analysis tools in Besov spaces

We state some properties of Besov spaces and related estimates which we repeatedly used in the paper.

The first lemma is devoted to the classical Bernstein’s inequalities.

28



Lemma 6.1 ( [2]). Let 0 < r < R,1 < p < q < oo and k € N. Then, for any function v € LP and

A1 > 0, it holds
d k ]C-‘rd(
Supp F(u) C{ € R | [§] < MR} = [[D%ulls S A ||u||LP=

Supp F(u) C {€ € RT | Mir <[] < MR} = || D*ullpe ~ At |lul 1o
The next lemma states the classical interpolation inequalities.

Lemma 6.2 ( [2,38]). Let 1 < p,r,r1,r2 < 00.
o Ifue Bp N st;,rz and s # § then, u € Bes-’_(1 o) for all 6 € (0,1) and
[ull goera-os S ||U||9 Ml -

01 6 1-6
U’ZthF_r1+_r2'

. IfueB ﬁBsoo and s < §, then, uEBeSJr1 e)sforallﬁe(o 1) and

: iy < 0 1:9.
||u||B§,Sl+(1 0)5 X 9(1—9)(5—S)HUHB;,OOHUHBE’QQ

The following interpolation inequalities for high and low frequencies is also used in this paper
Corollary 6.3. Let sy < s3, ¢,r € [1,+00], 0 € (0,1) and 1 < ay < o < gy < 00 such that L = 0%4—%,

then
¢ ¢ o B
lull g scaovay < (el gy ) (lalo o))

0 1-6
lull e sca-oay < (Il gy ) (lalioogses,)

The following lemma pertains to classical product laws.

Lemma 6.4. [2,16] Let s >0, 1 < p,r < 0o, then, we have

labll g < llallze=[1bll 5, + 110z (6.1)
For d>1 and —min{d/p,d/p'} < s <d/p for 1/p+1/p’ =1, the following inequality holds
5y, S lall g bl 62
p,1
Finally, if d > 1 and —min{d/p,d/p'} < s < d/p for 1/p+1/p’ = 1, then, we have
(6.3)

”b”B’;m

5, < lal

4
By
We also show a new product law to handle some nonlinear terms in the proof of the uniqueness

Lemma 6.5. Let s1 >0, 2 <p < 4. Then, it holds that

lalle, + 1181 4 lall® 4 + [ o
, BP BP B:

p,1 P,

(6.4)

lall ...
p,1

Sl

labllgg,, < llall 5 I\bll’g;3l+|\b|\3gl
P P,

29



Proof. We use Bony’s paraproduct decomposition for two tempered distributions a and b:

ab=T,b+ Rla,b] + Tra with T,b2 > Sy 1aA;b and Rla,b] = Y Ajuadjb.
= 13" —3"<1
First, we bound T,b. It is clear that
||Tab||j§§}1 < > 29185 aalApbll s+ Y 27Y)[A, S aalAgb| e

j=J—1 ji>J—1
li—3"1<1 li—3j'|<4

. d
The embedding BJ ;| — L™ leads to

Z 259185 _1aA;A;b|| e < ||Sj—1al L Z 2| Ajbll 2 S ||a||3g ||b||3;}1-
jzJ-1 j>J-1 Pl
=4’ <1
Note that
3 251j||[Aj,Sj«,la]AjfbHN5( S o ) )251j I[A;, Sj_1a]Ajb|| e
‘jsz/‘f<14 j'>J-1 J—5<5'<J-2
J=I1 1=

By the commutator estimate in [2, Lemma 2.97], we have

Z 2519 ||[Ay, Sjr—1a]Ajib] 12 < Z (29[| Ajob L2) (277 [V Sjr—1al| 1<)
j'zJ-1 j'>J-1

< . h <
< IVallpo 00, < Nl

B;ll ~ ||b||hé§11'

d
P
p,1
Similarly, as % > pdue to 2 < p <4, one has

ST 2[Ay, S 1a) Ay bl
J—5<j/'<J—2

< olsi=$)7 3 (257 | A b|[Lr) (25 D9 | VS _yal 2 )
J—5<5/<J—2 L

_d _d
S A fall 4y, 2D fal
prl B_2P_ 1 prl prl
p—2"
Hence, it follows that
h < h ¢ ¢
ITubllgy S Nl g Dl + 61 g g
p,1 p,1 p;1

The term ||Tba||%,s1 can be treated similarly. Finally, classical remainder estimates (see [2, Theorem
2,1
2.85]) implies
I Rla, Bl < IRIa" B, + I1Rla", b,
< h ¢
Sl Nk, + 100, g Nl .

2p_ p,1
p72‘1

lafl

Sl

d
P
P,

< h
S0l s llallsen + 100 llall ., g g

d da
P 3
p,1 p,1 p,1

This completes the proof of Lemma 6.5. o

Next, we introduce classical estimates for the composition of functions.
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Lemma 6.6 ( [2,22]). Assume d > 1 and F(m) be a smooth function such that F(0) = 0. For any s > 0,
p,r € [1,00] and real-valued function m in B;T N L, F(u) belongs to B and fulfills

[ (m)]|

where Cp, > 0 denotes a constant dependent of ||m| -, F', s, p, r and d.

,T

B;’T < OmHm”B;,Tv

We have the following corollary.

Corollary 6.7. Assume that F(m) is a smooth function satisfying F'(0) = 0. Let 1 < p < oo. For any
couple (my1,mg) of functions in B;l N L, there exists a constant Cyyy m, > 0 depending on F" and

[[(m1,m2)|| L such that

o Let —min{g,d(l - %)} <s< % and 1 < r < oo. Then, we have

1 (ma) = F(ma)ll gy < Climayma)ll g ma —mall, - (6.5)
p,1
e In the limiting case r = oo, for any — min{g, d(1— %)} <s 4, it holds that
1F ) = Fma)lg, _ < Clloma,ma)ll g s —mal g, (6.6)
p,1

Proof. From )
F(mq) — F(msg) = (my — mg)/ F'(my + 7(me —my)) dr,
0
and (6.2), Lemma 6.6 and the embedding Bp1 — L*>(R%), we have

[F(ma) = F(ma)llg, S llma —mallgy — sup [|f'(m1+7(ma —m))|

d
P TG[O,l] Bpp,l

S lhms = el s,
P,

This yields (6.5). In order to prove (6.6), one can follow a similar argument replacing (6.2) by (6.3). O

We now consider the following Cauchy problem of the parabolic equations:

Oru — Z 8:10Z 8:10Z =5

(0, ) = up(x),

where the unknown is v = u(z,t) € R™.

t>0, xcR? (6.7)

Lemma 6.8. Lete >0, d,n > 1, s1,820 € R, 1 < p1,p2,p1,p2 < 00 and T > 0 be given time, and J

942
be the threshold between low and high frequencies. Assume u§ € B;i 15 B;Z L, Ffe Lp1 (Bp1 1 +”1)

—24+-2
and F" € Lp2 (Bp2 1 7). Ifu is a solution to the Cauchy problem (6.7), then, for all p1 € [p1,00] and
2 € [p2, 0], u satisfies
¢ ¢ ¢
< s
L (A L ey
T p1,1 T P11
and
h h h
u < C( U oS + F )7
bl e, <Ol 0PI, e

where C' > 0 s a constant independent of T and €.
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Proof. Note that from (6.7), Aju can be represented by

d
t 2 (A;52) . ¢ O (A;52)(t—7) .
’Eal alAj’U,o—f— 612:8 o AjF(T)dT.
0

As in [2, Lemma 2.4], one can show the localized semigroup estimate

1 . t ~ T .
1A ju(®)ll e S e8| A jug| 1o + / e~ 2 DA F (7)o dr
0

for some constant a > 0. Setting p = p; and applying Young’s inequality, we get

. 1— e—ap1T2 1— e—ap T2 i
. = 1
185l 5 (555 )7 Aol + ( o ) 1AF 1 5 1
with —- p =1+ p_1 — p_1 Summing the above inequalities over j < J., we have
¢ ¢
lal e Sl +IFIE s
T p1,1 t P11
The second estimate is similar. O

We also study the Cauchy problem of the damped equation
1

Oru+ Zu=F,
€

u(0, ) = up(x),

By direct computations, we have the following lemma.

t>0, xeR% (6.8)

Lemma 6.9. Let d,n > 1, s € R, s1,50 € R, 1 < pl,pg,pl,pg < o0 and T > 0 be given time, and
Je be the threshold between low and high frequencies. Assume u§ € B;i L, oul e B;Z ., Fte Lp1 (B;i 1)
and F" € Lp1 (B;; 1) If u is a solution to the Cauchy problem (6.8), then, for all p1 € [p1,00] and

P2 € [p2, 0], it holds that

£
&7 ully O (luoller |+ I

Lpl(le 1) S LPl B 1 ))

and
e Bl ra < CIwollhs + € A NF N s )

where C > 0 is a constant independent of T and €.

6.2 New estimates of composition functions in hybrid Besov spaces

We develop some new composition estimates for functions in LP? — L? hybrid Besov spaces which
generalize the previous related estimates in [11,18,39] and play a key role in our nonlinear analysis. We

denote by J the general threshold between low and high frequencies (not necessarily defined by (1.9)).

Lemma 6.10. Let s >0, 0 € R, and p > max{1, dQ—fQ}. Then, for any smooth function F(m) satisfying
F(0) = F'(0) =0, there is a constant Cy, > 0 depending only on |m|/p=, s, o and d such that

IF@m)|%. < Co(mf) a +[m)" 4 )Imll%.
P 2
p,1 prl BQJ p,1 (6 9)
+ 207 E DT 2 Im| a4 )"
BP

Mm%, -
o 2,1

da
B2
2
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Proof. As in [2, Theorem 2.61], we use F(0) = F’(0) = 0 to decompose F(m) as

F(m) = Z F(Sgr41m) — F(Spm) = Z ApmMy = Apym(Sy_ym + Apm) My, (6.10)
k'€Z k'€Z
with

A

—_— 1 . . 1 . .

M e / M,’C,(T(Sk/_lm—i-Ak/m)) dr and My :/ F’(S’k/m—i-TAk/m) dr.
0 0

Thanks to Bernstein’s inequality and Leibniz’s formula, we have

||Ak(Ak/ka/S’k/—lm)||LP1 + ||Ak(Ak/ka/Ak/m)||Lpl

/ : (6.11)
< 20BN A m]| 2 ml| s (1 4+ ([ )]
withp%—i—p%z}% and 8 € N,
In order to justify (6.9), we decompose the low-frequency region as
Qe = {(k,K) | K <k<J}, Qm = {(k,K) | k<K <J}, Qu = {(k, k) | k< J <K'}
Applying (6.11) with 5| = [s] + 1 and (p',p*,p®) = (00, p, 00), we obtain
D25 | Ag(Apm(Sk—am + Apm) M) 1o
1977)
< (14 [l o) il 3 25 | Ao 37 20K (1D (6.12)
K <J >k
s]+1 ¢ h ¢
S 0t Il (il g ol iy,
Similarly, it follows by (6.11) with |3] = 0 and (p!,p?,p®) = (00, p, 00) that
> 25 Ap(Apm (S —1m + Apm) M) || s
o K's|| A k—k ¢ h ¢ (6-13)
Slmllze Y 2% | Apmlize Y 207K < (|Im g +llmll g Jmll. -
K<J k<K' P 21
We analyze the part of the region €, as follows.
e Case 1: max{l, d2—f2} <p<2ands<o.
By (6.11) with |3] = 0 and (p*, p?,p?) = (p, 22_—pp,2), we have
> 2 Ar(Arm (S -im + Am) M) | s
Qon e i N (614)
<lmll ge 3 2 Awmllze 3 2600 < | o i,
k>J K>k

Noticing that g <d- g < % due to max{1, dz—f2} < p < 2, we conclude from the low-high frequency

decomposition, (2.2) and embedding inequalities that

< < 1 h < o(E—2441)Jy), ¢ (d—-4yg h
IImIIL%NIImIIB;gNIIm IIB§1+IImIIB;%N22 P ;1+22 v IImII.Q% (6.15)

SRS

Therefore, by (2.2), (6.14), (6.15) and the fact that s < o, we obtain

. . . . —_ s—o 27i
0 2 Au(Awm(Spm + MmNz S 207D @ |+ g )l

Qep, p,1 2,1
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e Case2: p>2and s<o.

In this case, one deduces from Bernstein’s inequality, (2.2) and (6.11) with |3| = 0 and (p*, p?,p®) =
(2,00,2) that
> 2 Ap(Apm(Sp—1m + Apm)My)| o
Qe
< 25-5)7 Z 25| Ap (Apm(Sy—1m + Apm) M) 12
Qep
S 2875 m| ]
2,1
< ols—o+4—2)J 5|, ¢ h h
52 P2l gy (Im]” g )lIml e
B;,I 32%1 2,1

e Case 3: s > 0.

By the low-frequency cut-off and calculations in Cases 1-2, it holds that
> 2| Ap(Apm (S 1m + Apm) My )| o
Qen
S 207 Y AL (ApmMi Spim)||ze £ 20772 @ m| g, liml” g ), -
Q B;’l B3, 21
Lh ’ ’
Gathering the above three cases, we derive
> 2 Ap(Apm (S —1m + Apm) My )| o
Qe

< Q(S*UJF;’%)J(QJHmZH d_y + ||m||h4 )Hm”h‘a
Bp BQ 2,1

p,1 2,1

(6.16)

for all s > 0, 0 € R and p > max{1, d2—J"fl2}. Adding (6.12), (6.13) and (6.16) together, we arrive at

Yo 2 A(Apm(Skam + Apm) M) Lo
k<J, k'€Z

S (L I gee) B ([l

d
P
BPu

h ¢ (s—o+2—2)J (5], ¢ h h
il g Yl + 207D @l g g

2,1 p,1 2,1
Similar computations yield
Y 2IAk(Apm(Sk—1m + Apm) M) e
k<J, k'€L

S (L [l o) (|

oyd_d
g Flmll® g Ylimll, +2077 2@+ il )l
Bpp,l 322,1 Pl B;J,l B22,1 21
These above two estimates, combined with (6.10), implies (6.9). O

Lemma 6.11. Let s >0, 0 e R, 1 < p <4 ford=1and1 <p < min{4,d2—_d2} for d > 2. For
any smooth function F(m) satisfying F(0) = F'(0) = 0, there is a constant Cy, > 0 depending only on
lm||Lee, s, o and d such that

IEG)I, < Con (Il

a +||m h m hs
s, Il liml,

1
(s—o+4—2)J 15T ¢ h £ (617)
+ 2D @ty il Yl ).
BP B2 p,1

p,1 2,1
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Proof. As in Lemma 6.10, we decompose the high-frequency region as

Qun 2L, K | K >k>TY, Qum 2 {(k,K) |k>K >J}, Qe {(k,K) | k>J >k}

Recall that F(m) satisfies (6.10). By applying (6.11) with |3| = 0 and (p', p?,p?) = (2, 00,2), we have

Z 2ks||Ak(Ak/m(Sk/,1m + Ak/m)Mk’)HLQ

o ks | A k—k' ¢ h h (6.18)
Slmlie Y 2" Apmllze Y 2075 < (Imf)l o+ [mll" 4 )lImll,
k'>J k' >k Bp,l B3, ’
Next, we apply (6.11) with |3| = [s] + 1 and (p', p?,p?®) = (2, 00,2) to obtain
> 2 Ap(Apm(Sp1m + Agm) M) 2
Qpm
< Ut Il e S 2 Apmllge 3 o610 (6.19)
K>k > K>k

S (L Il g) B ([l

h h
b lllg ol

2,1

For the region ¢, we consider the following three cases.

° Casel:2§p<4f0rd:1,2§p§min{d2—f2,4}ford22andsZU.

Applying (6.11) with |8] = [s] + 1 and (p',p?,p%) = (2, %,p), we have

Z 2ks||Ak(Ak/m(Sk/,1m + Ak/m)Mk/)||L2
Qpe

St Imllz=)FHmil s, 3 25 Apmilss 3 20707
k'<J k>E'

S (Ul o)1 1267 ]y i,
P p,1

Since p satisfies p2TP2 > p > 2 and %d —

% > 4 _ 1 the low-high frequency decomposition together with
P
embedding inequalities and (2.2) implies

2
sl B

Imll 2o Slmlgo. S lImel 2y +ml" s S 26720 ml)| a, +27 G2 ),
Lp—2 _2p p{’l 2 B;l 2

Pl p,1
Therefore, one has

Z 2ks||Ak(Ak/m(Sk/,1m + Ak/m)Mk’)”L2
Qpe

(6.20)
d_d
/S (1 + ||m||Lm)[s]+l2(s—a+5—§)J(2J||m€

p,1

h £
oo+ mll g Yimtsy )

e Case2: 1<p<2ands>o.

In this case, one has s + % — %l > o. Taking advantage of Bernstein’s inequality and (6.11) with
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B8] = [s+ £ — 4]+ 1 and (p',p?,p*) = (p,00,p), we have

Z 2ks||Ak(Ak/m(Sk/,1m + Ak/m)Mk/)HLz

Qpe
sHd_dy A o4 . . —~
SO 2R DAL (Apm(Sk—am + Apem) My )| o
Qpe

spd_d Mgt d _dy A k) (st d_d _[gyrd_dj_

SO S R L P DR Al 1 VL 1 D At A S
k'<J k>E'

syd_d s—otd_dy,

S (L [[ml| o) T3 2 2C7H DT T | gy 4 (lm]” 4 )l
B:l 322,1 Pl

e Case 3: s < 0.

In this case, the high-frequency cut-off together with the above estimates in Cases 1-2 implies

Z 2ks||Ak (Ak/m(sk/,lm + Ak'm)Mk’)HLQ

5 2(5_0)‘] Z 21”||Ak(Ak’ka’Sk’—lm)”L2
_o4-d_4dy,
< G277l g (" ) [l
BP B2 p,1

p,1 2,1

From the estimates in the above three cases, there holds that

Z 2ks||Ak(Ak/m(Sk/_1m + Ak’m)Mk’)”L2

e (6.21)

< Cr2C7 DT || A+ Jm" ) lml.
BP B2 p,1

p 21
for all s,0 and p given in Proposition 6.11.
Adding (6.18), (6.19) and (6.21) together, we end up with (6.17) which completes the proof of Propo-
sition 6.11.
O

6.3 Proof of Theorem 1.1

In this subsection we give the proof of Theorem 1.1 on the global well-posedness of the Cauchy problem
for the viscous conservation law (1.2).
Proof of Theorem 1.1. Since the local well-posedness can be shown by standard linearization iteration
process, we omit the proof of local well-posedness for brevity and focus on giving the necessary a-priori
estimates. By virtue of Lemma 6.8 to (1.2), we have

K[

4_q
L&(By

a +[u d d Sllug
oty TN g g Sl

_ ey a +|f(u” 4 dig -

1 41t 1/ )||Z}(B§IQB§1+1) (6.22)

Now, we assume [[u*| g~y S 1. For i =1,2,...,d, due to f;(0) = aifi(()) = 0, there exists a smooth
Uk

function f;(u) such that f;(u) = f;(u)u and f;(0) = 0. Thus, making use of (6.2) and Lemma 6.6, we

deduce for any 1 < p < oo that

[ fi(u®)

s SIF@I, o el o STl

L I ) L
LY(BL,) L2(BP))  L3(BE) L2(B7,) (6.23)
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. d
Similarly, it holds by (6.1), Lemma 6.6 and the embedding B}, < L>(R?) that

i(u” a0 S fi(w)ll ull, aa T, g
I1fi( )”Zg(éffl) 1fi )l Bsh ) lall 5 1 (u I h I ”B(le)
, , (6.24)
S lull lull -

da
L¥(Byy) Li(Bgy )

Inserting (6.23)-(6.24) into (6.22) and taking advantage of the interpolation in Lemma 6.2, we obtain

u” d_ a +[ju d d
L L BT
S lugll  az g—i—(u* i, .a +|u” d a )
Sl s+ (Wt I g g
Thence, by a standard bootstrap argument, one can prove
u* e, 4 +||u d o S|ugll a_y o« forall t>0.
” HZ,?"(B;IIOB;’I) ” Hzl(B +1QB§’:F2) ~ ” OHB;1 QB;I (6.25)

This, together with the local well-posedness, shows the global existence of a solution v* to the Cauchy
problem of System (1.2) associated to the initial datum u§. The property u* € C’(R+;B§;1 N Bp%l)
follows a similar argument as in [20, p.42]. With the aid of (1.3), (6.23), (6.24) and (6.25) , we recover
the information on v* as follows

ay SHul|_ gy ap FHIf@ . a0 ey Slugll ao, L4
L%(prlmengl)NH ||Z%(sz:rlﬁ]3§1+2) ”f( )HZ%(szlmBzrl)NH 0”351 0351
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