Partially dissipative systems: hypocoercivity and hyperbolisation

Timothée Crin-Barat

Friedrich-Alexander-Universität (FAU)

IRMAR, 21 Septembre 2023

くぼ ト く ヨ ト く ヨ ト

I First part: Stability of partially dissipative hyperbolic systems

Second part: Hyperbolisation via partial dissipation

(4回) (4回) (4回)

э.

Hypocoercivity for hyperbolic systems

We consider *n*-component hyperbolic systems of the form:

$$\begin{cases} \partial_t U + \sum_{j=1}^d A^j(U) \partial_{x_j} U + BU = 0, \\ U_0(x,t) = U_0(x), \end{cases}$$
(1)

such that t > 0, $x \in \mathbb{R}^d$, the matrices valued maps A are symmetric and B is a positive $n \times n$ matrix.

Three scenarios:

- When B = 0, for small and smooth data \rightarrow local-in-time solutions (Kato, Majda, Serre) that may develop singularities (shock waves) in finite time (Dafermos, Lax).
- When rank(B) = n, existence of global-in-time solutions (Li) that are exponentially damped.
- What can we say about the long-time behaviour in the partially dissipative setting: $0 < \operatorname{rank}(B) < n$?

We focus on the one-dimensional systems of the form

$$\partial_t U + A \partial_x U + B U = 0, \tag{2}$$

・ロト ・ 一下・ ・ ヨト・

= nar

where A is symmetric, B is partially dissipative: $rank(B) = n_2 < n$ where $n_1 + n_2 = n$ and

$$B=egin{pmatrix} 0&0\0&D\end{pmatrix}$$
 with $D>0.$

Additionally, we assume either one of these conditions:

- D is symmetric.
- **(a)** Or *D* is strongly dissipative: for every $X \in \mathbb{R}^{n_2}$, there exists $\kappa > 0$ such that

 $\langle DX, X \rangle \geq \kappa \|X\|^2.$

We focus on the one-dimensional systems of the form

$$\partial_t U + A \partial_x U + B U = 0, \tag{2}$$

・ロト ・ 一下・ ・ ヨト・

э.

where A is symmetric, B is partially dissipative: $rank(B) = n_2 < n$ where $n_1 + n_2 = n$ and

$$B = egin{pmatrix} 0 & 0 \ 0 & D \end{pmatrix}$$
 with $D > 0.$

Additionally, we assume either one of these conditions:

- D is symmetric.
- **(9)** Or *D* is strongly dissipative: for every $X \in \mathbb{R}^{n_2}$, there exists $\kappa > 0$ such that

$$\langle DX, X \rangle \geq \kappa \|X\|^2.$$

Decomposing $U = (U_1, U_2)$, we have

$$\begin{cases} \partial_t U_1 + A_{1,1} \partial_x U_1 + A_{1,2} \partial_x U_2 = 0, \\ \partial_t U_2 + A_{2,1} \partial_x U_1 + A_{2,2} \partial_x U_2 = -DU_2, \end{cases} \text{ where } A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}.$$

Example of applications: • The compressible Euler equations with damping:

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0, \\ \partial_t (\rho u) + \partial_x (\rho u^2) + \partial_x P(\rho) + \rho u = 0, \end{cases}$$

For the pressure law $P(\rho) = A\rho^{\gamma}$, with A > 0 and $\gamma > 1$, we can rewrite System (5) into the symmetric form:

$$\begin{cases} \partial_t c + u \partial_x c + \frac{\gamma - 1}{2} c \partial_x u = 0, \\ \partial_t u + u \partial_x u + \frac{\gamma - 1}{2} c \partial_x c = -u, \end{cases}$$
(3)

where $c = \sqrt{\frac{\partial P(\rho)}{\partial \rho}}$ corresponds to the sound speed.

• *Partial dissipation* occurs in many compressible models including dissipation: Compressible Navier-Stokes equations, Chemotaxis systems, Timoshenko systems, Discrete BGK, Euler-Maxwell equations, etc.

Time-decay rates in the linear setting.

・ 同 ト ・ ヨ ト ・ ヨ ト

Context

Goal: establish time-decay rates for

$$\partial_t U + A \partial_x U + B U = 0.$$

First difficulty: partial dissipation leads to an obvious lack of coercivity:

$$\frac{1}{2}\frac{d}{dt}\|(U_1,U_2)(t)\|_{L^2}^2+\kappa\|U_2(t)\|_{L^2}^2\leq 0, \tag{4}$$

イロト 不得 トイヨト イヨト

2

 \rightarrow no time-decay information on U_1 .

Context

Goal: establish time-decay rates for

$$\partial_t U + A \partial_x U + B U = 0.$$

First difficulty: partial dissipation leads to an obvious lack of coercivity:

$$\frac{1}{2}\frac{d}{dt}\|(U_1,U_2)(t)\|_{L^2}^2+\kappa\|U_2(t)\|_{L^2}^2\leq 0, \tag{4}$$

・ロト ・ 一下・ ・ ヨト・

3

 \rightarrow no time-decay information on U_1 .

Inspiration to tackle this issue: Theories of hypoellipticity (Hörmander) and hypocoercivity (Villani):

"There might be regularizing/stabilizing mechanisms hidden in the interactions between the hyperbolic part A and the dissipative matrix B."

 \rightarrow Let's see what this means in the context of ODEs.

ODE toy-model

Consider the ODE

$$\partial_t U + AU + BU = 0 \tag{5}$$

= nar

such that A is skew-symmetric and B positive symmetric (rank(B) < n). If (A, B) satisfies the Kalman rank condition:

$$\operatorname{rank}(B, BA, BA^2, \dots, BA^{n-1}) = n \tag{K}$$

then the solutions of (5) satisfy

 $||U(t)||_{L^2} \leq C ||U_0||_{L^2} e^{-\lambda t}.$

ODE toy-model

Consider the ODE

$$\partial_t U + AU + BU = 0 \tag{5}$$

such that A is skew-symmetric and B positive symmetric (rank(B) < n). If (A, B) satisfies the Kalman rank condition:

$$\operatorname{rank}(B, BA, BA^2, \dots, BA^{n-1}) = n \tag{K}$$

then the solutions of (5) satisfy

 $||U(t)||_{L^2} \leq C ||U_0||_{L^2} e^{-\lambda t}.$

Sketch of proof: Again, since A is skew-symmetric, we have

$$\frac{1}{2}\frac{d}{dt}\|U(t)\|_{L^{2}}^{2}+\kappa\|U_{2}(t)\|_{L^{2}}^{2}\leq0.$$
(6)

And, using the interactions between A and B,

$$\frac{d}{dt}\left(\sum_{k=1}^{n-1} < BA^{k-1}U, BA^{k}U > \right) + \sum_{k=1}^{n-1} \|BA^{k}U(t)\|_{L^{2}}^{2} \leq C\|U_{2}(t)\|_{L^{2}}^{2} + \dots$$

Under the Kalman rank condition, we have

$$\sum_{k=0}^{n-1} \|BA^k U(t)\|_{L^2}^2 \sim \|U(t)\|_{L^2}^2.$$

Therefore, the following functional is a Lyapunov functional

$$\mathcal{L}(t) = \|U(t)\|_{L^2}^2 + \eta \left(\sum_{k=1}^{n-1} < BA^{k-1}U, BA^kU >_{L^2}
ight)$$

verifying

$$\frac{d}{dt}\mathcal{L}(t) + \|U_2(t)\|_{L^2}^2 + \eta \|U(t)\|_{L^2}^2 \leq \eta \|U_2(t)\|_{L^2}^2$$

ヘロト ヘヨト ヘヨト

э

Under the Kalman rank condition, we have

$$\sum_{k=0}^{n-1} \|BA^k U(t)\|_{L^2}^2 \sim \|U(t)\|_{L^2}^2.$$

Therefore, the following functional is a Lyapunov functional

$$\mathcal{L}(t) = \|U(t)\|_{L^2}^2 + \eta \left(\sum_{k=1}^{n-1} < BA^{k-1}U, BA^kU >_{L^2}\right)$$

verifying

$$\frac{d}{dt}\mathcal{L}(t) + \|U_2(t)\|_{L^2}^2 + \eta \|U(t)\|_{L^2}^2 \le \eta \|U_2(t)\|_{L^2}^2$$

For η small enough, we have

$$\mathcal{L}(t) \sim \|U(t)\|_{L^2}^2$$

and thus

$$rac{d}{dt}\mathcal{L}(t)+\eta\mathcal{L}(t)\leq 0.$$
 \Box

・ 同 ト ・ ヨ ト ・ ヨ ト

Partially dissipative hyperbolic systems

• In the hyperbolic setting, the idea is essentially the same.

Main difficulty: The operators $A\partial_x$ and B are of a different order.

 \rightarrow Need to find a way to make them communicate as in the ODE setting.

A (1) > A (2) > A (2) > A

Partially dissipative hyperbolic systems

• In the hyperbolic setting, the idea is essentially the same.

Main difficulty: The operators $A\partial_x$ and B are of a different order.

ightarrow Need to find a way to make them communicate as in the ODE setting.

Two approaches:

• Fourier-based approach.

Roughly, one can proceed as in the ODE setting by adding frequency weights to the Lyapunov functional.

• Time-weighted Fourier-free approach.

 \rightarrow Not optimal results but a broader range of applications (e.g. numerics, bounded domains, nonlinear dissipation).

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Partially dissipative hyperbolic systems

• In the hyperbolic setting, we follow the same idea.

Main difficulty: The operator $A\partial_x$ and B are of a different order. \rightarrow Find a way to make them communicate as in the ODE setting.

Two approaches:

• Fourier-based approach.

Essentially, one can proceed as in the ODE setting by adding frequency-weights to the Lyapunov functional.

• Time-weighted Fourier-free approach.

 \rightarrow Not optimal results but a broader range of application (e.g. numerics, bounded domains, nonlinear dissipation)

・ロト ・ 一下・ ・ ヨト・

イロン イ団 と イヨン イヨン

∃ < n < 0</p>

Let us look at the damped *p*-system:

$$\begin{cases} \partial_t \rho + \partial_x u = 0, \\ \partial_t u + \partial_x \rho + u = 0. \end{cases}$$
(7)

・ロト ・回ト ・ヨト ・ヨト

2

Again, standard energy estimates lead to

$$\frac{1}{2}\frac{d}{dt}\|(\rho, u)(t)\|_{L^2}^2+\|u(t)\|_{L^2}^2=0.$$

Let us look at the damped *p*-system:

$$\begin{cases} \partial_t \rho + \partial_x u = 0, \\ \partial_t u + \partial_x \rho + u = 0. \end{cases}$$
(7)

Again, standard energy estimates lead to

$$\frac{1}{2}\frac{d}{dt}\|(\rho, u)(t)\|_{L^2}^2+\|u(t)\|_{L^2}^2=0.$$

To overcome the lack of coercivity, we consider the Lyapunov functional:

$$\mathcal{L}_{1}(t) = \|(\rho, u, \partial_{x}\rho, \partial_{x}u)(t)\|_{L^{2}}^{2} + \frac{1}{2}\int_{\mathbb{R}} u\partial_{x}\rho \,dx.$$
(8)

Notice that

$$\mathcal{L}_1(t) \sim \|(
ho, u, \partial_x
ho, \partial_x u)(t)\|_{L^2}^2.$$

Differentiating-in-time (8), we get

$$\frac{d}{dt}\mathcal{L}_{1}(t) + \|(u,\partial_{x}u)(t)\|_{L^{2}}^{2} + \|\partial_{x}\rho(t)\|_{L^{2}}^{2} \leq 0,$$
(9)

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Detailed computations

$$\begin{cases} \partial_t \rho + \partial_x u = 0, \\ \partial_t u + \partial_x \rho + u = 0. \end{cases}$$

Standard H^1 estimates:

$$\frac{d}{dt}\|(\rho,\partial_x\rho,u,\partial_xu)\|_{L^2}^2+\|(u,\partial_xu)\|_{L^2}^2=0$$

Cross estimates:

$$\frac{d}{dt}\int_{\mathbb{R}}u\partial_{x}\rho\ dx+\|\partial_{x}\rho\|_{L^{2}}^{2}=\|\partial_{x}u\|_{L^{2}}^{2}+\int_{\mathbb{R}}u\partial_{x}\rho.$$

Using Young inequality and gathering the estimates, we get

$$\frac{d}{dt}\mathcal{L}_{1}(t) + \|(u,\partial_{x}u)(t)\|_{L^{2}}^{2} + \|\partial_{x}\rho(t)\|_{L^{2}}^{2} \leq 0,$$
(10)

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Second difficulty: how to get decay estimates from here?

Fourier heuristics

We have

$$\frac{d}{dt}\mathcal{L}_{1}(t) + \|(u,\partial_{x}u)(t)\|_{L^{2}}^{2} + \|\partial_{x}\rho(t)\|_{L^{2}}^{2} \leq 0.$$
(11)

Heuristically, in the frequency world, it reads

$$\frac{d}{dt}\mathcal{L}_{1}(t) + \|\min(1,\xi)(\widehat{u},\widehat{\rho})\|_{L^{2}}^{2} \leq 0.$$
(12)

From which it is easy to obtain

- A heat behavior for low frequencies,
- Exponential decay for high frequencies:

$$\|(\rho, u)^{\ell}(t)\|_{L^{\infty}} \leq Ct^{-1/2} \|(\rho_0, u_0)\|_{L^1},$$
(13)

$$\|(\rho, u)^{h}(t)\|_{L^{2}} \leq C e^{-\gamma_{*} t} \|(\rho_{0}, u_{0})\|_{L^{2}},$$
(14)

・ロト ・ 一下・ ・ ヨト・

= nar

where $u^{\ell} = \widehat{u}(t,\xi) \mathbf{1}_{|\xi| \leq 1}$ and $u^{h} = \widehat{u}(t,\xi) \mathbf{1}_{|\xi| \geq 1}$.

How to obtain (12) rigorously?

First approach: Beauchard-Zuazua's method

Consider

$$\mathcal{L}_{\xi}(t) = \left| (\widehat{\rho}, \widehat{u})(\xi, t) \right|^{2} + \frac{1}{2} \min\left(\frac{1}{|\xi|}, |\xi|\right) < \widehat{u} \cdot \widehat{\rho} >_{\mathbb{C}^{n}}.$$
(15)

It gives the desired estimate, pointwise.

Second approach:

Homogeneous Littlewood-Paley decomposition

 \rightarrow Allows to obtain precise decay rates, critical GWP results and to justify the strong relaxation limit.

・ 同 ト ・ ヨ ト ・ ヨ ト

Littlewood-Paley decomposition

イロン イロン イヨン イヨン

Littlewood-Paley decomposition

• We define $\dot{\Delta}_j$ as dyadic blocks such that $f\in \mathcal{S}_h'(\mathbb{R}^d)$

$$f = \sum_{j \in \mathbb{Z}} \dot{\Delta}_j f \quad \text{and} \quad \text{supp}(\widehat{\dot{\Delta}_j f}) \subset \{\xi \in \mathbb{R}^d \text{ t.q. } \frac{3}{4} 2^j \leq |\xi| \leq \frac{8}{3} 2^j \}.$$

・日・ ・ ヨ ・ ・ ヨ ・

Littlewood-Paley decomposition

• We define $\dot{\Delta}_j$ as dyadic blocks such that $f\in \mathcal{S}_h'(\mathbb{R}^d)$

$$f = \sum_{j \in \mathbb{Z}} \dot{\Delta}_j f \text{ and } \operatorname{supp}(\widehat{\dot{\Delta}_j f}) \subset \{ \xi \in \mathbb{R}^d \text{ t.q. } \frac{3}{4} 2^j \leq |\xi| \leq \frac{8}{3} 2^j \}.$$

 The main motivation behind this decomposition is the following Bernstein inequality: ∀k ∈ N, p ∈ [1,∞],

$$c2^{jk}\|\dot{\Delta}_j f\|_{L^p}\leq \|\mathcal{D}^k\dot{\Delta}_j f\|_{L^p}\leq C2^{jk}\|\dot{\Delta}_j f\|_{L^p}.$$

イロト イポト イヨト イヨト

= nav

Littlewood-Paley decomposition

• We define $\dot{\Delta}_j$ as dyadic blocks such that $f\in \mathcal{S}_h'(\mathbb{R}^d)$

$$f = \sum_{j \in \mathbb{Z}} \dot{\Delta}_j f \quad \text{and} \quad \text{supp}(\widehat{\dot{\Delta}_j f}) \subset \{\xi \in \mathbb{R}^d \text{ t.q. } \frac{3}{4} 2^j \leq |\xi| \leq \frac{8}{3} 2^j \}.$$

 The main motivation behind this decomposition is the following Bernstein inequality: ∀k ∈ N, p ∈ [1,∞],

$$c2^{jk}\|\dot{\Delta}_j f\|_{L^p}\leq \|D^k\dot{\Delta}_j f\|_{L^p}\leq C2^{jk}\|\dot{\Delta}_j f\|_{L^p}.$$

• The homogeneous Besov semi-norms are defined as follows:

$$\|f\|_{\dot{B}^s_{p,1}} \triangleq \sum_{j\in\mathbb{Z}} 2^{js} \|\dot{\Delta}_j f\|_{L^p}.$$

• We have $\dot{B}^0_{p,1} \subset L^p$, $\dot{B}^1_{2,1} \hookrightarrow \dot{H}^1$.

Littlewood-Paley decomposition

• We define $\dot{\Delta}_j$ as dyadic blocks such that $f\in \mathcal{S}_h'(\mathbb{R}^d)$

$$f = \sum_{j \in \mathbb{Z}} \dot{\Delta}_j f \quad \text{and} \quad \text{supp}(\widehat{\dot{\Delta}_j f}) \subset \{\xi \in \mathbb{R}^d \text{ t.q. } \frac{3}{4} 2^j \leq |\xi| \leq \frac{8}{3} 2^j \}.$$

 The main motivation behind this decomposition is the following Bernstein inequality: ∀k ∈ N, p ∈ [1,∞],

$$c2^{jk}\|\dot{\Delta}_j f\|_{L^p}\leq \|D^k\dot{\Delta}_j f\|_{L^p}\leq C2^{jk}\|\dot{\Delta}_j f\|_{L^p}.$$

• The homogeneous Besov semi-norms are defined as follows:

$$\|f\|_{\dot{B}^s_{p,1}} \triangleq \sum_{j\in\mathbb{Z}} 2^{js} \|\dot{\Delta}_j f\|_{L^p}.$$

- We have $\dot{B}^0_{p,1} \subset L^p$, $\dot{B}^1_{2,1} \hookrightarrow \dot{H}^1$.
- For a threshold $J_0 \in \mathbb{Z}$ and $s, s' \in \mathbb{R}$, we define:
- High-frequency norms: $\|f\|_{\dot{B}^{5}_{2,1}}^{h} \triangleq \sum_{j>h} 2^{js} \|\dot{\Delta}_{j}f\|_{L^{2}},$
- Low-frequency norms: $\|f\|_{\dot{B}^{s'}_{p,1}}^{\ell} \triangleq \sum_{j \leq J_0} 2^{js'} \|\dot{\Delta}_j f\|_{L^p}.$

글 > : < 글 >

Back to the damped *p*-system:

$$\begin{cases} \partial_t \rho + \partial_x u = 0, \\ \partial_t u + \partial_x \rho + u = 0.. \end{cases}$$
(16)

Applying the localisation operator $\dot{\Delta}_j$ to (16) and denoting $\dot{\Delta}_j f = f_j$, we have

$$\begin{cases} \partial_t \rho_j + \partial_x u_j = 0, \\ \partial_t u_j + \partial_x \rho_j + u_j = 0. \end{cases}$$
(17)

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ ▶ ● ○ ○ ○ ○

Back to the damped *p*-system:

$$\begin{cases} \partial_t \rho + \partial_x u = 0, \\ \partial_t u + \partial_x \rho + u = 0.. \end{cases}$$
(16)

Applying the localisation operator $\dot{\Delta}_j$ to (16) and denoting $\dot{\Delta}_j f = f_j$, we have

$$\begin{cases} \partial_t \rho_j + \partial_x u_j = 0, \\ \partial_t u_j + \partial_x \rho_j + u_j = 0. \end{cases}$$
(17)

Differentiating in time $\mathcal{L}_j(t) = \|(\rho_j, u_j, \partial_x \rho_j, \partial_x u_j)(t)\|_{L^2}^2 + \frac{1}{2} \int_{\mathbb{R}} u_j \partial_x \rho_j dx$, we get

$$\frac{d}{dt}\mathcal{L}_{j}(t) + \|(u_{j},\partial_{x}u_{j})\|_{L^{2}}^{2} + \|\partial_{x}\rho_{j}\|_{L^{2}}^{2} \leq 0.$$
(18)

Using Bernstein inequality, we have

$$\frac{d}{dt}\mathcal{L}_{j}(t) + \min(1, 2^{2j}) \|(u_{j}, \rho_{j})\|_{L^{2}}^{2} \leq 0,$$
(19)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ のへで

where $2^{2j} \sim |\xi|^2$.

We are going to use the following lemma.

Lemma

Let $p \ge 1$ and $X : [0, T] \to \mathbb{R}^+$ be a continuous function such that X^p is a.e. differentiable. We assume that there exist a constant $b \ge 0$ and a measurable function $A : [0, T] \to \mathbb{R}^+$ such that

$$\frac{1}{p}\frac{d}{dt}X^p + bX^p \leq AX^{p-1} \quad \text{a.e. on } [0,T].$$

Then, for all $t \in [0, T]$, we have

$$X(t)+b\int_0^t X\leq X_0+\int_0^t A.$$

Applying this lemma to

$$\frac{d}{dt}\mathcal{L}_{j}(t) + \min(1, 2^{2j}) \|(u_{j}, \rho_{j})\|_{L^{2}}^{2} \leq 0,$$
(20)

since $\mathcal{L}_j \sim \|(u_j, \rho_j)\|_{L^2}^2$, we obtain

$$\sqrt{\mathcal{L}_{j}(t)} + \min(1, 2^{2j}) \int_{0}^{t} \|(u_{j}, \rho_{j})\|_{L^{2}} \leq 0.$$
(21)

Using that $\sqrt{\mathcal{L}_j(t)} \sim \|(u_j, \rho_j)\|_{L^2}$, we get

$$\|(u_j,\rho_j)(t)\|_{L^2} + \min(1,2^{2j}) \int_0^t \|(u_j,\rho_j)\|_{L^2} \le 0.$$
 (22)

From here, we distinguish two cases.

イロン イ団 と イヨン イヨン

∃ < n < 0</p>

Using that $\sqrt{\mathcal{L}_j(t)} \sim \|(u_j, \rho_j)\|_{L^2}$, we get

$$\|(u_j,\rho_j)(t)\|_{L^2}+\min(1,2^{2j})\int_0^t\|(u_j,\rho_j)\|_{L^2}\leq 0.$$
 (22)

From here, we distinguish two cases.

• For high frequencies: $j \ge 0 \implies \min(1, 2^{2j}) = 1$. Multiplying (22) by 2^{js} for $s \in \mathbb{R}$ and summing on $j \ge 0$, we obtain

$$\|(u,\rho)(t)\|^{h}_{\dot{B}^{s}_{2,1}}+\|(u,\rho)\|^{h}_{L^{1}_{T}(\dot{B}^{s}_{2,1})}\leq 0.$$

Using that $\sqrt{\mathcal{L}_j(t)} \sim \|(u_j, \rho_j)\|_{L^2}$, we get

$$\|(u_j,\rho_j)(t)\|_{L^2} + \min(1,2^{2j}) \int_0^t \|(u_j,\rho_j)\|_{L^2} \le 0.$$
 (22)

From here, we distinguish two cases.

• For high frequencies: $j \ge 0 \implies \min(1, 2^{2j}) = 1$. Multiplying (22) by 2^{js} for $s \in \mathbb{R}$ and summing on $j \ge 0$, we obtain

$$\|(u,\rho)(t)\|_{\dot{B}^{s}_{2,1}}^{h}+\|(u,\rho)\|_{L^{1}_{T}(\dot{B}^{s}_{2,1})}^{h}\leq 0.$$

• For low frequencies: $j \leq 0 \implies \min(1, 2^{2j}) = 2^{2j}$ and

$$\|(u,\rho)(t)\|_{\dot{B}^{s}_{2,1}}^{\ell}+\|(u,\rho)\|_{L^{1}_{T}(\dot{B}^{s+2}_{2,1})}^{\ell}\leq 0.$$

Using that $\sqrt{\mathcal{L}_j(t)} \sim \|(u_j, \rho_j)\|_{L^2}$, we get

$$\|(u_j,\rho_j)(t)\|_{L^2}+\min(1,2^{2j})\int_0^t\|(u_j,\rho_j)\|_{L^2}\leq 0.$$
 (22)

From here, we distinguish two cases.

• For high frequencies: $j \ge 0 \implies \min(1, 2^{2j}) = 1$. Multiplying (22) by 2^{js} for $s \in \mathbb{R}$ and summing on $j \ge 0$, we obtain

$$\|(u,\rho)(t)\|_{\dot{B}^{s}_{2,1}}^{h}+\|(u,\rho)\|_{L^{1}_{T}(\dot{B}^{s}_{2,1})}^{h}\leq 0.$$

• For low frequencies: $j \leq 0 \implies \min(1, 2^{2j}) = 2^{2j}$ and

$$\|(u,\rho)(t)\|_{\dot{B}^{s}_{2,1}}^{\ell}+\|(u,\rho)\|_{L^{1}_{T}(\dot{B}^{s+2}_{2,1})}^{\ell}\leq 0.$$

 \bullet Heat effect in low frequencies (not very good) and exponential stabilization in high frequencies.

• From here: optimal decay rates using time-weights and interpolations.

• Notice the $L^1_T(B^{s+2}_{2,1})$ norm compared to the usual $L^2_T(H^{s+1})$ norm.

Back to the general system

$$\partial_t U + A \partial_x U + B U = 0.$$

Under the Kalman rank condition (or the Shizuta-Kawashima) condition for (A, B), differentiating in time the following functional

$$\mathcal{L}_{j}(t) = \|U_{j}(t)\|_{H^{1}}^{2} + \eta \int_{\mathbb{R}} \left(\sum_{k=1}^{n-1} < BA^{k-1}U_{j}, BA^{k}U_{j} >
ight)$$

leads to

$$rac{d}{dt}\mathcal{L}_j+\min(1,2^{2j})\mathcal{L}_j\leq 0.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Back to the general system

$$\partial_t U + A \partial_x U + B U = 0.$$

Under the Kalman rank condition (or the Shizuta-Kawashima) condition for (A, B), differentiating in time the following functional

$$\mathcal{L}_j(t) = \left\| \mathit{U}_j(t)
ight\|_{H^1}^2 + \eta \int_{\mathbb{R}} \left(\sum_{k=1}^{n-1} < \mathit{B} \mathit{A}^{k-1} \mathit{U}_j, \mathit{B} \mathit{A}^k \mathit{U}_j >
ight)$$

leads to

$$rac{d}{dt}\mathcal{L}_j+\min(1,2^{2j})\mathcal{L}_j\leq 0.$$

Thus

$$\|U(t)\|_{\dot{B}^{s}_{2,1}}^{h}+\|U\|_{L^{1}_{T}(\dot{B}^{s}_{2,1})}^{h}\leq 0,$$

and

$$\|U(t)\|_{\dot{B}^{s}_{2,1}}^{\ell}+\|U\|_{L^{1}_{T}(\dot{B}^{s+2}_{2,1})}^{\ell}\leq 0.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

• What we have just seen allows us to recover the classical existence results for nonlinear systems in a slightly better framework:

$$\dot{B}_{2,1}^{rac{d}{2}} \cap \dot{B}_{2,1}^{rac{d}{2}+1} \quad \mathrm{vs} \quad H^s \quad \mathrm{for} \; s > rac{d}{2}+1.$$

Recalling that

$$\mathcal{H}^{s}(s>rac{d}{2}+1)\hookrightarrow \mathcal{B}_{2,1}^{rac{d}{2}+1}\hookrightarrow \dot{\mathcal{B}}_{2,1}^{rac{d}{2}}\cap \dot{\mathcal{B}}_{2,1}^{rac{d}{2}+1}\hookrightarrow \dot{\mathcal{B}}_{p,2}^{rac{d}{p},rac{d}{2}+1}(p>2)\hookrightarrow \mathcal{C}_{b}^{1}.$$

э.

・ 同 ト ・ ヨ ト ・ ヨ ト

• What we have just seen allows us to recover the classical existence results for nonlinear systems in a slightly better framework:

$$\dot{B}_{2,1}^{rac{d}{2}} \cap \dot{B}_{2,1}^{rac{d}{2}+1} \quad \mathrm{vs} \quad H^s \quad ext{for } s > rac{d}{2}+1.$$

Recalling that

$$\mathcal{H}^s(s>rac{d}{2}+1)\hookrightarrow B_{2,1}^{rac{d}{2}+1}\hookrightarrow \dot{B}_{2,1}^{rac{d}{2}}\cap \dot{B}_{2,1}^{rac{d}{2}+1}\hookrightarrow \dot{B}_{
ho,2}^{rac{d}{p},rac{d}{2}+1}(p>2)\hookrightarrow \mathcal{C}_b^1.$$

- However, that is not the full story for these systems. The low-frequency behaviour of the solution is more complex than what we just saw.
- A sharper understanding will allow us to establish new results.

く 目 ト く ヨ ト く ヨ ト

• What we have just seen allows us to recover the classical existence results for nonlinear systems in a slightly better framework:

$$\dot{B}_{2,1}^{rac{d}{2}} \cap \dot{B}_{2,1}^{rac{d}{2}+1} \quad \mathrm{vs} \quad H^s \quad ext{for } s > rac{d}{2}+1.$$

Recalling that

$$\mathcal{H}^s(s>rac{d}{2}+1)\hookrightarrow \mathcal{B}_{2,1}^{rac{d}{2}+1}\hookrightarrow \dot{\mathcal{B}}_{2,1}^{rac{d}{2}}\cap \dot{\mathcal{B}}_{2,1}^{rac{d}{2}+1}\hookrightarrow \dot{\mathcal{B}}_{
ho,2}^{rac{d}{p},rac{d}{2}+1}(
ho>2)\hookrightarrow \mathcal{C}_b^1.$$

- However, that is not the full story for these systems. The low-frequency behaviour of the solution is more complex than what we just saw.
- A sharper understanding will allow us to establish new results.

Essentially:

- We have to go beyond "standard hypocoercivity" in the low frequencies.
- The eigenvalues in low-frequency are purely real \rightarrow it is possible to decouple the system, up to linear high-order terms (good in LF).
- For that matter we introduce a purely damped mode, in contrast with the heat behavior, in the low-frequency regime,

A (1) > A (2) > A (2) > A

э

Low-frequency analysis.

・ロ・・(型・・モー・・モー・)

Ξ.

Hypocoercivity for hyperbolic systems Hyperbolic relaxation

Low frequencies in a simple case

Back to the localized damped p-system:

$$\begin{cases} \partial_t u_j + \partial_x v_j = \mathbf{0} \\ \partial_t v_j + \partial_x u_j + v_j = \mathbf{0}, \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

∃ 990

Hypocoercivity for hyperbolic systems Hyperbolic relaxation

Low frequencies in a simple case

Back to the localized damped p-system:

$$\begin{cases} \partial_t u_j + \partial_x v_j = 0\\ \partial_t v_j + \partial_x u_j + v_j = 0, \end{cases}$$

Defining the damped mode $w_j = v_j + \partial_x u_j$, the system can be rewritten

$$\begin{cases} \partial_t u_j - \partial_{xx}^2 u_j = -\partial_x w_j \\ \partial_t w_j + w_j = -\partial_{xx}^2 w_j - \partial_{xxx}^3 \rho_j. \end{cases}$$

く 同 と く ヨ と く ヨ と

Low frequencies in a simple case

Back to the localized damped p-system:

$$\begin{cases} \partial_t u_j + \partial_x v_j = 0\\ \partial_t v_j + \partial_x u_j + v_j = 0, \end{cases}$$

Defining the damped mode $w_j = v_j + \partial_x u_j$, the system can be rewritten

$$\begin{cases} \partial_t u_j - \partial_{xx}^2 u_j = -\partial_x w_j \\ \partial_t w_j + w_j = -\partial_{xx}^2 w_j - \partial_{xxx}^3 \rho_j. \end{cases}$$

• This diagonalisation of the system directly exhibit the low-frequency behaviour observed in the spectral analysis.

ヘロ ト ヘ 同 ト ヘ 三 ト ー

Low frequencies in a simple case

Back to the localized damped p-system:

$$\begin{cases} \partial_t u_j + \partial_x v_j = \mathbf{0} \\ \partial_t v_j + \partial_x u_j + v_j = \mathbf{0}, \end{cases}$$

Defining the damped mode $w_j = v_j + \partial_x u_j$, the system can be rewritten

$$\begin{cases} \partial_t u_j - \partial_{xx}^2 u_j = -\partial_x w_j \\ \partial_t w_j + w_j = -\partial_{xx}^2 w_j - \partial_{xxx}^3 \rho_j. \end{cases}$$

• This diagonalisation of the system directly exhibit the low-frequency behaviour observed in the spectral analysis.

• To deal with the linear source terms, we use the Bernstein inequality

$$\|\partial_x f\|_{B^s_{\rho,1}}^\ell = \|f\|_{B^{s+1}_{\rho,1}}^\ell = \sum_{j \le J_0} 2^{j(s+1)} \|f_j\|_{L^p} \le \sum_{j \le J_0} 2^{js} 2^j \|f_j\|_{L^p} \le J_0 \|f\|_{B^s_{\rho,1}}^\ell.$$

where J_0 is the threshold between low and high frequencies that has to be chosen small enough.

・ロト ・ 一下・ ・ ヨト・

Low frequencies in a simple case

Back to the localized damped p-system:

$$\begin{cases} \partial_t u_j + \partial_x v_j = 0\\ \partial_t v_j + \partial_x u_j + v_j = 0, \end{cases}$$

Defining the damped mode $w_j = v_j + \partial_x u_j$, the system can be rewritten

$$\begin{cases} \partial_t u_j - \partial_{xx}^2 u_j = -\partial_x w_j \\ \partial_t w_j + w_j = -\partial_{xx}^2 w_j - \partial_{xxx}^3 \rho_j. \end{cases}$$

• This diagonalisation of the system directly exhibit the low-frequency behaviour observed in the spectral analysis.

• To deal with the linear source terms, we use the Bernstein inequality

$$\|\partial_{x}f\|_{B^{s}_{p,1}}^{\ell} = \|f\|_{B^{s+1}_{p,1}}^{\ell} = \sum_{j \leq J_{0}} 2^{j(s+1)} \|f_{j}\|_{L^{p}} \leq \sum_{j \leq J_{0}} 2^{js} 2^{j} \|f_{j}\|_{L^{p}} \leq J_{0} \|f\|_{B^{s}_{p,1}}^{\ell}.$$

where J_0 is the threshold between low and high frequencies that has to be chosen small enough.

• A priori estimates in a L^p framework for $2 \le p \le 4$ is available in the low-frequency regime.

イロン イロン イヨン イヨン

In the general case, the system can be rewritten as follows:

$$\begin{cases} \partial_t U_1 + A_{1,1} \partial_x U_1 + A_{1,2} \partial_x U_2 = 0, \\ \partial_t U_2 + A_{2,1} \partial_x U_1 + A_{2,2} \partial_x U_2 + DU_2 = 0. \end{cases}$$

イロン イロン イヨン イヨン

In the general case, the system can be rewritten as follows:

$$\begin{cases} \partial_t U_1 + A_{1,1} \partial_x U_1 + A_{1,2} \partial_x U_2 = 0, \\ \partial_t U_2 + A_{2,1} \partial_x U_1 + A_{2,2} \partial_x U_2 - DU_2 = 0. \end{cases}$$

We define the damped mode

$$\boldsymbol{W} \triangleq \boldsymbol{U}_2 + \boldsymbol{D}^{-1}\boldsymbol{A}_{2,1}\partial_x\boldsymbol{U}_1 + \boldsymbol{D}^{-1}\boldsymbol{A}_{2,2}\partial_x\boldsymbol{U}_2 = \boldsymbol{D}^{-1}\partial_t\boldsymbol{U}_2.$$

イロン イロン イヨン イヨン

∃ 990

In the general case, the system can be rewritten as follows:

$$\begin{cases} \partial_t U_1 + A_{1,1} \partial_x U_1 + A_{1,2} \partial_x U_2 = 0, \\ \partial_t U_2 + A_{2,1} \partial_x U_1 + A_{2,2} \partial_x U_2 - DU_2 = 0. \end{cases}$$

We define the damped mode

$$\mathbf{W} \triangleq U_2 + D^{-1} A_{2,1} \partial_x U_1 + D^{-1} A_{2,2} \partial_x U_2 = D^{-1} \partial_t U_2.$$

The system can be rewritten

$$\begin{cases} \partial_t U_1 - A_{1,2} D^{-1} A_{2,1} \partial_x \partial_x U_1 = f \\ \partial_t W + DW = g \end{cases}$$
(23)

・ロト ・ 一下・ ・ ヨト・

э.

where f and g are controllable in the low-frequency regime with Bernstein-type inequalities.

What can we say about the operator $A_{1,2}D^{-1}A_{2,1}\partial_x\partial_x$ in the equation of U_1 ?

To study the equation of U_1 , we have the following property

Lemma

For D > 0, the following assertions are equivalent:

- (A,B) satisfy the Kalman rank condition,
- the operator $\mathcal{A} := A_{1,2} D^{-1} A_{2,1} \partial_{xx}^2$ is strongly elliptic.

 \rightarrow We may study the equations of W and U_1 separately, the former as a damped equation and the latter as a heat equation.

・ロト ・ 一下・ ・ ヨト・

• This approach can be applied to general systems of the form:

$$\begin{cases} \partial_t U + \sum_{j=1}^d A^j(U) \partial_{x_j} U + G(U) = 0, \\ U_0(x, t) = U_0(x), \end{cases}$$
(24)

for solutions close to a constant equilibrium \overline{U} such that $G(\overline{U}) = 0$.

Important assumptions:

- $A_{1,1}(\overline{U}) = 0$ which means that $\overline{u} = 0$ for fluid-type systems.
- On the other hand, we need $\bar{\rho} > 0$.

• This approach can be applied to general systems of the form:

$$\begin{cases} \partial_t U + \sum_{j=1}^d A^j(U) \partial_{x_j} U + G(U) = 0, \\ U_0(x, t) = U_0(x), \end{cases}$$
(24)

for solutions close to a constant equilibrium \overline{U} such that $G(\overline{U}) = 0$.

Important assumptions:

- $A_{1,1}(\overline{U}) = 0$ which means that $\overline{u} = 0$ for fluid-type systems.
- On the other hand, we need $\bar{\rho} > 0$.

Tools to deal with the nonlinear terms:

• Embeddings for the type:

$$\dot{B}^{rac{d}{p}}_{p,1}\hookrightarrow L^{\infty}, \quad \dot{B}^{rac{d}{p}+1}_{p,1}\hookrightarrow \dot{W}^{1,\infty} \quad ext{and} \quad B^{s}_{2,1}\hookrightarrow B^{s}_{p,1}$$

• Advanced product laws, commutators estimates and composition estimates to deal with the $(L^2)^h \cap (L^p)^\ell$ setting:

$$\|ab\|_{\dot{B}^{s}_{2,1}}^{h} \lesssim \|a\|_{\dot{B}^{\frac{d}{p}}_{p,1}} \|b\|_{\dot{B}^{s}_{2,1}}^{h} + \|b\|_{\dot{B}^{\frac{d}{p}}_{p,1}} \|a\|_{\dot{B}^{s}_{2,1}}^{h} + \|a\|_{\dot{B}^{\frac{d}{p}-\frac{d}{p*}}_{p,1}}^{\ell} \|b\|_{\dot{B}^{\frac{d}{p}-\frac{d}{p*}}_{p,1}}^{\ell} \|b\|_{\dot{B}^{\frac{d}{p}-\frac{d}{p*}}_{p,1}}^{\ell} \|a\|_{\dot{B}^{\sigma}_{p,1}}^{\ell}.$$

Well-posedness result for nonlinear systems.

We set $Z = U - \overline{U}$.

Theorem (Danchin, C-B '22 Math. Ann.)

Let $d\geq 1,\ p\in [2,4].$ There exists $c_0=c_0(p)>0$ and J_0 such that if

$$\|Z_0\|_{\dot{B}^{\frac{d}{p}}_{p,1}}^{\ell} + \|Z_0\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}^{h} \leq c_0,$$

then the system admits a unique solution Z satisfying

$$X_{
ho}(t) \lesssim \|Z_0\|^\ell_{\dot{B}^{\,d}_{
ho,1}} + \|Z_0\|^h_{\dot{B}^{\,d+1}_{2,1}} \quad \textit{for all } t \geq 0,$$

where

$$\begin{split} X_{p}(t) &\triangleq \|Z\|_{L_{t}^{\infty}(\dot{B}_{2,1}^{\frac{d}{2}+1})}^{h} + \|Z\|_{L_{t}^{1}(\dot{B}_{2,1}^{\frac{d}{2}+1})}^{h} + \|Z_{2}\|_{L_{t}^{2}(\dot{B}_{p,1}^{\frac{d}{p}})} \\ &+ \|Z\|_{L_{t}^{\infty}(\dot{B}_{p,1}^{\frac{d}{p}})}^{\ell} + \|Z_{1}\|_{L_{t}^{1}(\dot{B}_{p,1}^{\frac{d}{p}+2})}^{\ell} + \|Z_{2}\|_{L_{t}^{1}(\dot{B}_{p,1}^{\frac{d}{p}+1})}^{\ell} + \|W\|_{L_{t}^{1}(\dot{B}_{p,1}^{\frac{d}{p}})}. \end{split}$$

 $\label{eq:proof:Proof:Previous linear analysis + Perturbation and Bootstrap arguments.$

<ロ> <四> <四> <三</p>

• The hypocoercive-type analysis can be extended to general system of any order

$$\partial_t V + A(D)V + L(D)V = 0$$
, where

- A(D) is a skew-symmetric homogeneous Fourier multiplier of order α ,
- L(D) is a partially elliptic homogeneous Fourier multiplier of order β .

• What dictates the decay rates is difference of order between A and B.

< ロ > < 同 > < 回 > < 回 > < 回 > <

• The hypocoercive-type analysis can be extended to general system of any order

$$\partial_t V + A(D)V + L(D)V = 0$$
, where

- A(D) is a skew-symmetric homogeneous Fourier multiplier of order α ,
- L(D) is a partially elliptic homogeneous Fourier multiplier of order β .

• What dictates the decay rates is difference of order between A and B.

- Anisotropic case (cf. Bianchini-CB-Paicu) concerning stably stratified solutions of the 2D-Boussinesq system.
- **Open question:** What kind of nonlinearities can we include? Relation between partial dissipation, hyperbolicity and anisotropy.

(4)

-

• The hypocoercive-type analysis can be extended to general system of any order

$$\partial_t V + A(D)V + L(D)V = 0$$
, where

- A(D) is a skew-symmetric homogeneous Fourier multiplier of order α ,
- L(D) is a partially elliptic homogeneous Fourier multiplier of order β .

• What dictates the decay rates is difference of order between A and B.

- Anisotropic case (cf. Bianchini-CB-Paicu) concerning stably stratified solutions of the 2D-Boussinesq system.
- **Open question:** What kind of nonlinearities can we include? Relation between partial dissipation, hyperbolicity and anisotropy.
- Another interesting case

$$\partial_t U + A \partial_x U + B U = 0$$

for A symmetric and B non-symmetric e.g. Euler-Maxwell system or Timoshenko system

• One must consider Kalman rank condition for (B^s, B^a) where B^s is the symmetric part of B and B^a the skew-symmetric part.

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Second part: Relaxation procedure and hyperbolisation

< 回 > < 三 > < 三 > -

Cattaneo approximation of the heat equation

Let us consider the heat equation on \mathbb{R}^d

$$\partial_t \rho - \Delta \rho = 0.$$

Its Cattaneo hyperbolic approximation reads

$$\begin{cases} \partial_t \rho_{\varepsilon} + \partial_x u_{\varepsilon} = 0, \\ \varepsilon^2 \partial_t u_{\varepsilon} + \partial_x \rho_{\varepsilon} + u_{\varepsilon} = 0. \end{cases}$$
(25)

When $\varepsilon \to 0$, we recover a heat equation for ρ and a Darcy-type law $u = \partial_x \rho$.

Cattaneo approximation of the heat equation

Let us consider the heat equation on \mathbb{R}^d

$$\partial_t \rho - \Delta \rho = 0.$$

Its Cattaneo hyperbolic approximation reads

$$\begin{cases} \partial_t \rho_{\varepsilon} + \partial_x u_{\varepsilon} = 0, \\ \varepsilon^2 \partial_t u_{\varepsilon} + \partial_x \rho_{\varepsilon} + u_{\varepsilon} = 0. \end{cases}$$
(25)

When $\varepsilon \to 0$, we recover a heat equation for ρ and a Darcy-type law $u = \partial_x \rho$.

- System (25) has a partially dissipative and hyperbolic structure.
- $\bullet \rightarrow \textit{Dissipative hyperbolisation}.$
- How to justify the limit $\varepsilon \to 0$ rigorously?
- Tools from the previous part!

Hypocoercivity for hyperbolic systems Hyperbolic relaxation

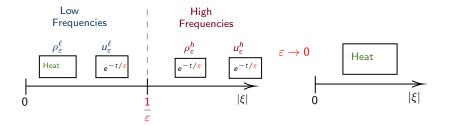
Solution First! Spectral analysis

Cattaneo approximation:

$$\begin{cases} \partial_t \rho_{\varepsilon} + \partial_x u_{\varepsilon} = \mathbf{0} \\ \varepsilon^2 \partial_t u_{\varepsilon} + \partial_x \rho_{\varepsilon} + u_{\varepsilon} = \mathbf{0} \end{cases}$$

$$\xrightarrow{} \partial_t \rho - \Delta \rho = 0$$

ε

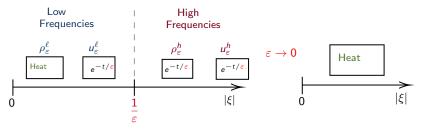


Hypocoercivity for hyperbolic systems Hyperbolic relaxation

Solution First! Spectral analysis

Cattaneo approximation:

$$\begin{cases} \partial_t \rho_\varepsilon + \partial_x u_\varepsilon = 0\\ \varepsilon^2 \partial_t u_\varepsilon + \partial_x \rho_\varepsilon + u_\varepsilon = 0 \end{cases} \qquad \xrightarrow{\epsilon \to 0} \quad \partial_t \rho - \Delta \rho = 0$$



- The Cattaneo approximation creates a high-frequency regime where the solution is exponentially damped.
- Goal: Justify this process for nonlinear systems.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

• We work with the following hybrid homogeneous Besov norms:

$$\|f\|_{\dot{B}^s_{2,1}}^h \triangleq \sum_{j \ge \frac{\eta}{\varepsilon}} 2^{js} \|\dot{\Delta}_j f\|_{L^2} \quad \text{and} \quad \|f\|_{\dot{B}^{s'}_{\rho,1}}^\ell \triangleq \sum_{j \le \frac{\eta}{\varepsilon}} 2^{js'} \|\dot{\Delta}_j f\|_{L^p}.$$

イロン イ団 と イヨン イヨン

Spaces

• We work with the following hybrid homogeneous Besov norms:

$$\|f\|^{h}_{\dot{B}^{s}_{2,1}} \triangleq \sum_{j \geq \frac{\eta}{\varepsilon}} 2^{js} \|\dot{\Delta}_{j}f\|_{L^{2}} \quad \text{and} \quad \|f\|^{\ell}_{\dot{B}^{s'}_{p,1}} \triangleq \sum_{j \leq \frac{\eta}{\varepsilon}} 2^{js'} \|\dot{\Delta}_{j}f\|_{L^{p}}.$$

• For low-frequencies: $j \leq \frac{\eta}{\varepsilon}$,

$$\begin{cases} \partial_t \rho_j + \partial_x u_j = 0\\ \varepsilon^2 \partial_t u_j + \partial_x \rho_j + u_j = 0, \end{cases}$$

defining the damped mode $w = v + \partial_x u$, the system can be rewritten as

$$\begin{cases} \partial_t \rho_j - \partial_{xx}^2 \rho_j = -\partial_x w, \\ \varepsilon \partial_t w_j + \frac{w_j}{\varepsilon} = -\varepsilon \partial_{xxx}^3 \rho_j - \varepsilon \partial_{xx}^2 w. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Spaces

• We work with the following hybrid homogeneous Besov norms:

$$\|f\|_{\dot{B}^s_{2,1}}^h \triangleq \sum_{j \geq \frac{\eta}{\varepsilon}} 2^{js} \|\dot{\Delta}_j f\|_{L^2} \quad \text{and} \quad \|f\|_{\dot{B}^{s'}_{p,1}}^\ell \triangleq \sum_{j \leq \frac{\eta}{\varepsilon}} 2^{js'} \|\dot{\Delta}_j f\|_{L^p}.$$

• For low-frequencies: $j \leq \frac{\eta}{\varepsilon}$,

$$\begin{cases} \partial_t \rho_j + \partial_x u_j = 0\\ \varepsilon^2 \partial_t u_j + \partial_x \rho_j + u_j = 0, \end{cases}$$

defining the damped mode $w = v + \partial_x u$, the system can be rewritten as

$$\begin{cases} \partial_t \rho_j - \partial_{xx}^2 \rho_j = -\partial_x w, \\ \varepsilon \partial_t w_j + \frac{w_j}{\varepsilon} = -\varepsilon \partial_{xxx}^3 \rho_j - \varepsilon \partial_{xx}^2 w. \end{cases}$$

Careful, the Bernstein inequality is different:

$$\|\partial_{\mathsf{x}}f\|_{B^{\mathsf{s}}_{\rho,1}}^{\ell} \leq \frac{\eta}{\varepsilon}\|f\|_{B^{\mathsf{s}}_{\rho,1}}^{\ell}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

For $s \in \mathbb{R}$, we have

$$\begin{aligned} \|(u,\varepsilon w)(t)\|_{B^{s}_{\rho,1}}^{\ell} + \|\rho\|_{L^{1}_{T}(B^{s+2}_{\rho,1})}^{\ell} + \frac{1}{\varepsilon}\|w\|_{L^{1}_{T}(B^{s}_{\rho,1})}^{\ell} \leq \|(u_{0},w_{0})\|_{B^{s}_{\rho,1}}^{\ell} + \varepsilon\|w\|_{L^{1}_{T}(B^{s+2}_{\rho,1})}^{\ell} \\ + \varepsilon\|\rho\|_{L^{1}_{T}(B^{s+3}_{\rho,1})}^{\ell} \end{aligned}$$

イロン イ団 と イヨン イヨン

For $s \in \mathbb{R}$, we have

$$\begin{aligned} \|(u,\varepsilon w)(t)\|_{B^{s}_{p,1}}^{\ell} + \|\rho\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} + \frac{1}{\varepsilon}\|w\|_{L^{1}_{T}(B^{s}_{p,1})}^{\ell} \leq \|(u_{0},w_{0})\|_{B^{s}_{p,1}}^{\ell} + \varepsilon \|w\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \\ + \varepsilon \|\rho\|_{L^{1}_{T}(B^{s+3}_{p,1})}^{\ell} \end{aligned}$$

With the Berstein inequality, we have

$$\varepsilon \|\rho\|_{L^{1}_{T}(B^{s+3}_{p,1})}^{\ell} \leq \eta \|\rho\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \quad \text{and} \quad \varepsilon \|w\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \leq \frac{\eta^{2}}{\varepsilon} \|w\|_{L^{1}_{T}(B^{s}_{p,1})}^{\ell}.$$

Thus, choosing η small enough, these terms can be absorbed by the l.h.s.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

For $s \in \mathbb{R}$, we have

$$\begin{aligned} \|(u,\varepsilon w)(t)\|_{B^{s}_{p,1}}^{\ell} + \|\rho\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} + \frac{1}{\varepsilon}\|w\|_{L^{1}_{T}(B^{s}_{p,1})}^{\ell} \leq \|(u_{0},w_{0})\|_{B^{s}_{p,1}}^{\ell} + \varepsilon\|w\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \\ + \varepsilon\|\rho\|_{L^{1}_{T}(B^{s+3}_{p,1})}^{\ell} \end{aligned}$$

With the Berstein inequality, we have

$$\varepsilon \|\rho\|_{L^{1}_{T}(B^{s+3}_{p,1})}^{\ell} \leq \eta \|\rho\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \quad \text{and} \quad \varepsilon \|w\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \leq \frac{\eta^{2}}{\varepsilon} \|w\|_{L^{1}_{T}(B^{s}_{p,1})}^{\ell}.$$

Thus, choosing η small enough, these terms can be absorbed by the l.h.s.

• This estimate provides $\mathcal{O}(\varepsilon)$ bounds on $w = u + \partial_x \rho$ which is crucial to justify the relaxation.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

For $s \in \mathbb{R}$, we have

$$\begin{aligned} \|(u,\varepsilon w)(t)\|_{B^{s}_{p,1}}^{\ell} + \|\rho\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} + \frac{1}{\varepsilon}\|w\|_{L^{1}_{T}(B^{s}_{p,1})}^{\ell} \leq \|(u_{0},w_{0})\|_{B^{s}_{p,1}}^{\ell} + \varepsilon\|w\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \\ + \varepsilon\|\rho\|_{L^{1}_{T}(B^{s+3}_{p,1})}^{\ell} \end{aligned}$$

With the Berstein inequality, we have

$$\varepsilon \|\rho\|_{L^{1}_{T}(B^{s+3}_{p,1})}^{\ell} \leq \eta \|\rho\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \quad \text{and} \quad \varepsilon \|w\|_{L^{1}_{T}(B^{s+2}_{p,1})}^{\ell} \leq \frac{\eta^{2}}{\varepsilon} \|w\|_{L^{1}_{T}(B^{s}_{p,1})}^{\ell}.$$

Thus, choosing η small enough, these terms can be absorbed by the l.h.s.

• This estimate provides $\mathcal{O}(\varepsilon)$ bounds on $w = u + \partial_x \rho$ which is crucial to justify the relaxation.

• High frequencies $j \ge \frac{\eta}{\varepsilon}$: Hypocoercivity-type approach but there is no damped mode!

High frequencies trick

To be able to recover $\mathcal{O}(\varepsilon)$ bounds on w in high frequencies, we use the Bernstein inequality

$$\|f\|_{B^s_{2,1}}^h \leq \frac{\varepsilon}{\eta} \|\partial_x f\|_{B^s_{2,1}}^h.$$

2

イロト イヨト イヨト イヨト

High frequencies trick

To be able to recover $\mathcal{O}(\varepsilon)$ bounds on w in high frequencies, we use the Bernstein inequality

$$\|f\|_{B^s_{2,1}}^h \leq \frac{\varepsilon}{\eta} \|\partial_x f\|_{B^s_{2,1}}^h.$$

Say you want to obtain uniform bounds for w in $B_{2,1}^{\frac{d}{2}}$, then you should assume that the initial data are in $B_{2,1}^{\frac{d}{2}+1}$ and use that

$$\|w\|_{B^{\frac{d}{2}}_{2,1}}^{h} \leq \frac{\varepsilon}{\eta} \|w\|_{B^{\frac{d}{2}+1}_{2,1}}^{h}.$$

 \implies We must study the low and high frequencies are at different regularities.

Hypocoercivity for hyperbolic systems Hyperbolic relaxation

Back to the compressible Euler equations

・ロト ・回ト ・ヨト ・ヨト

Back to the compressible Euler equations

The system reads:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \varepsilon^2 (\partial_t u + u \cdot \nabla u) + \frac{\nabla P(\rho)}{\rho} + u = 0. \end{cases}$$
(E)

The damped mode associated to the relaxation is $w = u + \frac{\nabla P(\rho)}{\rho}$.

・ロト ・ 一下・ ・ ヨト・

∃ 990

Back to the compressible Euler equations

The system reads:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \varepsilon^2 (\partial_t u + u \cdot \nabla u) + \frac{\nabla P(\rho)}{\rho} + u = 0. \end{cases}$$
(E)

The damped mode associated to the relaxation is $w = u + \frac{\nabla P(\rho)}{\rho}$.

Inserting it in the above equation, we recover

$$\partial_t \rho - \Delta P(\rho) = \operatorname{div} w.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Back to the compressible Euler equations

The system reads:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \varepsilon^2 (\partial_t u + u \cdot \nabla u) + \frac{\nabla P(\rho)}{\rho} + u = 0. \end{cases}$$
(E)

The damped mode associated to the relaxation is $w = u + \frac{\nabla P(\rho)}{\rho}$.

Inserting it in the above equation, we recover

$$\partial_t \rho - \Delta P(\rho) = \operatorname{div} w.$$

 \bullet Let ${\cal N}$ be the solution of the porous media equation:

$$\partial_t \mathcal{N} - \Delta P(\mathcal{N}) = 0.$$

Then, using that $\|w\|_{L^1_T(B^s_{\rho,1})} = \mathcal{O}(\varepsilon)$, in the error estimates for $\tilde{\rho} = \rho - \mathcal{N}$, we can justify that ρ converges strongly toward \mathcal{N} in $B^{s-1}_{p,1}$.

Relaxation result

Theorem (Danchin, C-B, Math. Ann. 2022)

Let $d \ge 1$, $p \in [2, 4]$ and $\varepsilon > 0$.

- Let ρ̄ be a strictly positive constant and (ρ^ε − ρ̄, u^ε) be the solution of the compressible Euler system with damping (constructed with the previous arguments)
- Let N ∈ C_b(ℝ⁺; B^{d/p}_{p,1}) ∩ L¹(ℝ⁺; B^{d/p+2}_{p,1}) be the unique solution associated to the Cauchy problem:

$$\left\{egin{array}{l} \partial_t \mathcal{N} - \Delta P(\mathcal{N}) = 0 \ \mathcal{N}(0,x) = \mathcal{N}_0 \in \dot{B}_{p,1}^{rac{d}{p}} \end{array}
ight.$$

If we assume that

$$\|\rho_0^{\varepsilon} - \mathcal{N}_0\|_{B^{\frac{d}{p}-1}_{\rho,1}} \leq C\varepsilon,$$

then

$$\|\rho^{\varepsilon}-\mathcal{N}\|_{L^{\infty}(\mathbb{R}_{+};\dot{B}^{\frac{d}{p}-1}_{\rho,1})}+\|\rho^{\varepsilon}-\mathcal{N}\|_{L^{1}(\mathbb{R}_{+};\dot{B}^{\frac{d}{p}+1}_{\rho,1})}+\left\|\frac{\nabla P(\rho^{\varepsilon})}{\rho^{\varepsilon}}+u^{\varepsilon}\right\|_{L^{1}(\mathbb{R}^{+};\dot{B}^{\frac{d}{p}}_{\rho,1})}\leq C\varepsilon.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

Remarks

Remarks

- Performing a similar analysis with Sobolev spaces does not allow (to the best of my knowledge) to exhibit an explicit convergence rate.
- It only leads to $\|w\|_{L^2_T(H^s)} = \mathcal{O}(1)$ vs $\|w\|_{L^1_T(B^s_{2,1})} = \mathcal{O}(\varepsilon)$

▲ロ ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● ● ● ● ● ●

Remarks

Remarks

- Performing a similar analysis with Sobolev spaces does not allow (to the best of my knowledge) to exhibit an explicit convergence rate.
- It only leads to $\|w\|_{L^2_T(H^s)} = \mathcal{O}(1)$ vs $\|w\|_{L^1_T(B^s_{2,1})} = \mathcal{O}(\varepsilon)$
- First result to establish the strong relaxation limit in the multi-dimensional setting.
- It can be employed in many other contexts.

Application to a (partially) hyperbolic Navier-Stokes system

< 回 > < 三 > < 三 >

Hyperbolic Navier-Stokes equations

We have just seen that the equation

$$\partial_t u - \Delta u = 0$$

can be approximated, for a small ε , by the following hyperbolic system

$$\begin{cases} \partial_t u + \operatorname{div} v = 0\\ \varepsilon^2 \partial_t v + \nabla u + v = 0 \end{cases}$$

• Our aim is now to understand to what extent this approximation can be used to approximate systems modelling physical phenomena.

・ロト ・ 一下・ ・ ヨト・

Hyperbolic Navier-Stokes equations

We have just seen that the equation

$$\partial_t u - \Delta u = 0$$

can be approximated, for a small $\varepsilon,$ by the following hyperbolic system

$$\begin{cases} \partial_t u + \operatorname{div} v = 0\\ \varepsilon^2 \partial_t v + \nabla u + v = 0. \end{cases}$$

• Our aim is now to understand to what extent this approximation can be used to approximate systems modelling physical phenomena.

Performing such approximation for the compressible Navier-Stokes system, one has

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla \rho = \operatorname{div}\tau, \\ \partial_t(\rho T) + \operatorname{div}(\rho u T + u \rho) + \operatorname{div}q - \operatorname{div}(\tau \cdot u) = 0, \\ \varepsilon^2 \partial_t q + q + \kappa \nabla T = 0, \end{cases}$$
(NSCC)

Let us now see how to justify that the solution of this system converge to the solution of the classical Navier-Stokes equations.

 For the limit system: Danchin showed the existence of solutions satisfying different properties for |ξ| ≤ K and |ξ| ≥ K where K is a large constant.

= nar

イロト イポト イヨト イヨト

- For the limit system: Danchin showed the existence of solutions satisfying different properties for |ξ| ≤ K and |ξ| ≥ K where K is a large constant.
- The hyperbolic approximation suggests to cut at $\frac{1}{2}$.

イロト イポト イヨト イヨト

э.

- For the limit system: Danchin showed the existence of solutions satisfying different properties for |ξ| ≤ K and |ξ| ≥ K where K is a large constant.
- The hyperbolic approximation suggests to cut at $\frac{1}{c}$.

In order to obtain the complete picture, we divide the frequency space as:

I	Low frequencies	Medium frequencies	High frequencies	
0	ŀ	<	$\frac{1}{\varepsilon}$	$ \xi $

ヘロト 人間ト ヘヨト ヘヨト

- For the limit system: Danchin showed the existence of solutions satisfying different properties for |ξ| ≤ K and |ξ| ≥ K where K is a large constant.
- The hyperbolic approximation suggests to cut at $\frac{1}{2}$.

In order to obtain the complete picture, we divide the frequency space as:

Formally, when $\varepsilon \rightarrow 0$, it means that:

- The low frequency regime is not modified.
- The mid-frequency regime becomes larger and larger and recovers the high-frequency regime.
- The high frequency regime disappears in we recover the limit system.

・ロット (雪) (日) (日)

Tools

Tools

• We define homogeneous Besov spaces restricted in frequency as follows:

$$\begin{split} \|f\|_{\dot{B}^{s}_{p,1}}^{\ell} &:= \sum_{j \leq J_{0}} 2^{js} \|f_{j}\|_{L^{2}}, \qquad \|f\|_{\dot{B}^{s}_{p,1}}^{m,\varepsilon} := \sum_{J_{0} \leq j \leq J_{\varepsilon}} 2^{js} \|f_{j}\|_{L^{2}} \\ \text{and} \quad \|f\|_{\dot{B}^{s}_{p,1}}^{h,\varepsilon} &:= \sum_{j \geq J_{\varepsilon}-1} 2^{js} \|f_{j}\|_{L^{2}} \end{split}$$

where $J_0 = K$, for K > 0 a constant, and $J_{\varepsilon} = -\frac{1}{\varepsilon}$.

- In each regime, different methods have to be developed and patched together to derive a priori estimates.
- Hypocoercivity, efficient unknowns and limit system's analysis.
- Difficulty: handling the nonlinearities.

The Jin-Xin Approximation.

・ロト ・回ト ・ヨト ・ヨト

Ξ.

Jin-Xin Approximation

In collaboration with Ling-yun Shou (JDE), we justified the strong convergence of the diffusive Jin-Xin approximation

$$\begin{cases} \frac{\partial}{\partial t}u + \sum_{i=1}^{d}\frac{\partial}{\partial x_{i}}v_{i} = 0, \\ \varepsilon^{2}\frac{\partial}{\partial t}v_{i} + A_{i}\frac{\partial}{\partial x_{i}}u = -(v_{i} - f_{i}(u)), \quad i = 1, 2, ..., d, \end{cases}$$
(26)

toward viscous conservation laws:

$$\frac{\partial}{\partial t}u^* + \sum_{i=1}^d \frac{\partial}{\partial x_i} f_i(u^*) = \sum_{i=1}^d \frac{\partial}{\partial x_i} (A_i \frac{\partial}{\partial x_i} u^*), \tag{27}$$

< ロ > < 同 > < 回 > < 回 > .

э.

Other applications:

- 2D-Boussinesq System (Bianchini-CB-Paicu)
- Baer-Nunziato System (Burtea-CB-Tan), M3AS.
- Chemotaxis/Keller-Segel, (CB-He-Shou) SIAM.

< 同 > < 三 > < 三 >

Conclusion

- Hypocoercivity tells you that when the dissipation is not strong enough, its interactions with the hyperbolic part can compensate the lack of coercivity.
- When the skew-symmetric operator A and the dissipative B are of different order then the decay rates may not be exponential and the rats depend on the difference of their order.
- $\bullet\,$ In the full space $\mathbb{R},$ the classical hypocoercivity techniques need to be extended to treat the low frequencies.
- The hyperbolic relaxation creates a temporary exponentially stable regime and the low frequencies correspond to the behavior of the limit system.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusion

- Hypocoercivity tells you that when the dissipation is not strong enough, its interactions with the hyperbolic part can compensate the lack of coercivity.
- When the skew-symmetric operator A and the dissipative B are of different order then the decay rates may not be exponential and the rats depend on the difference of their order.
- $\bullet\,$ In the full space $\mathbb{R},$ the classical hypocoercivity techniques need to be extended to treat the low frequencies.
- The hyperbolic relaxation creates a temporary exponentially stable regime and the low frequencies correspond to the behavior of the limit system.

Overall, splitting the frequency space is nice!

(4回) (4回) (4回)

Thank you for your attention.

< 同 > < 三 > < 三 >

Hypocoercivity for hyperbolic systems Hyperbolic relaxation

Formal link between (IPM) and (2D-B)

The 2-dimensional Boussinesq system read

$$\begin{cases} \partial_t \eta + \mathbf{u} \cdot \nabla \eta = 0, \\ \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla P = \eta \mathbf{g}, \qquad \mathbf{g} = (0, -g), \\ \nabla \cdot \mathbf{u} = 0. \end{cases}$$
(E)

The linearized system around $\overline{\rho}_{\mathsf{eq}}(y) = \rho_0 - y$, reads

$$\begin{cases} \partial_t b - \mathcal{R}_1 \Omega = 0, \\ \varepsilon^2 \partial_t \Omega - \mathcal{R}_1 b + \Omega = 0. \end{cases}$$
(28)

where

$$\mathcal{R}_1 = rac{\partial_x}{(-\Delta)^{-rac{1}{2}}}$$

Formally, as $\varepsilon \to 0$, the second equation gives the Darcy's law $\tilde{\Omega}^{\varepsilon} = \mathcal{R}_1 \tilde{b}^{\varepsilon}$ and inserting it in the first one gives the linear part of the incompressible porous media equation:

$$\partial_t \widetilde{b}^{\varepsilon} - \mathcal{R}_1^2 \widetilde{b}^{\varepsilon} = 0.$$

In joint work with Q. He and L-Y. Shou, we studied the following hyperbolic-parabolic system:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla P(\rho) + \frac{1}{\varepsilon}\rho u - \mu\rho\nabla\phi = 0, \\ \partial_t \phi - \Delta\phi - a\rho + b\phi = 0, \qquad x \in \mathbb{R}^d, \quad t > 0, \end{cases}$$
(HPC)

In this case, when $\varepsilon \to 0$, we show that the diffusive-rescaled solution of (HPC) converges strongly to the solution of the Keller-Segel system:

$$\begin{cases} \partial_t \rho - \operatorname{div} \left(\nabla P(\rho) - \mu \rho \nabla \phi \right) = 0, \\ \rho u = -\nabla P(\rho) + \mu \rho \nabla \phi, \\ -\Delta \phi - a\rho + b\phi = 0, \end{cases}$$
(KS)

イロト イポト イヨト イヨト

In a joint work with C. Burtea, J. Tan and L.-Y. Shou, we studied the following damped Baer-Nunziato system:

$$\begin{cases} \partial_t \alpha_{\pm} + u \cdot \nabla \alpha_{\pm} = \pm \frac{\alpha_+ \alpha_-}{2\mu + \lambda} (P_+ (\rho_+) - P_- (\rho_-)), \\ \partial_t (\alpha_{\pm} \rho_{\pm}) + \operatorname{div} (\alpha_{\pm} \rho_{\pm} u) = 0, \\ \partial_t (\rho u) + \operatorname{div} (\rho u \otimes u) + \nabla P + \eta \rho u = 0, \\ \rho = \alpha_+ \rho_+ + \alpha_- \rho_-, \\ P = \alpha_+ P_+ (\rho_+) + \alpha_- P_- (\rho_-) \end{cases}$$
(BN)

Limit $\lambda, \mu, \nu \to 0$.

- Difficulties: the entropy that is naturally associated with this system is only positive semi-definite.
- The system (BN) is not a system of conservation laws
- We find an ad-hoc change of variables that enables us to symmetrize the system with a good structure to treat the nonlinear terms.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Overdamping

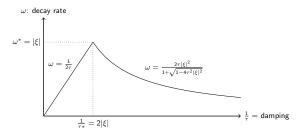


Figure: A graph of overdamping phenomenon for System (??).

・ロ・・(型・・モー・・モー・

Decay estimates

Theorem (Danchin, C-B '22)

Assuming additionally that $Z_0 \in \dot{B}_{2,\infty}^{-\sigma_1}$ for $\sigma_1 \in \left] - \frac{d}{2}, \frac{d}{2} \right]$ then there exists C > 0 such that

$$\|Z(t)\|_{\dot{B}^{-\sigma_1}_{2,\infty}} \leq C \|Z_0\|_{\dot{B}^{-\sigma_1}_{2,\infty}}, \quad \forall t \geq 0.$$

Moreover, if $\sigma_1 > 1 - d/2$,

$$\langle t \rangle \triangleq \sqrt{1+t^2}, \quad \alpha_1 \triangleq \frac{\sigma_1 + \frac{d}{2} - 1}{2} \quad \text{and} \quad C_0 \triangleq \|Z_0\|_{\dot{B}_{2,\infty}^{-\sigma_1}}^\ell + \|Z_0\|_{\dot{B}_{2,1}^{\frac{d}{2}+1}}^h,$$

then Z satisfies the following decay estimates:

$$\begin{split} \sup_{t\geq 0} \left\| \langle t \rangle^{\frac{\sigma+\sigma_1}{2}} Z(t) \right\|_{\dot{B}^{\sigma}_{2,1}}^{\ell} &\leq CC_0 \quad \text{if} \quad -\sigma_1 < \sigma \leq d/2 - 1, \\ \sup_{t\geq 0} \left\| \langle t \rangle^{\frac{\sigma+\sigma_1}{2} + \frac{1}{2}} Z_2(t) \right\|_{\dot{B}^{\sigma}_{2,1}}^{\ell} &\leq CC_0 \quad \text{if} \quad -\sigma_1 < \sigma \leq d/2 - 2, \\ \text{and} \quad \sup_{t\geq 0} \left\| \langle t \rangle^{2\alpha_1} Z(t) \right\|_{\dot{B}^{\frac{d}{2}+1}_{2,1}}^{h} &\leq CC_0. \end{split}$$