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Abstract. We analyze the preservation of asymptotic properties of partially dissipative hy-
perbolic systems when switching to a fully discrete setting. We prove that one of the simplest
consistent and unconditionally stable numerical methods – the implicit central finite differ-
ence scheme – preserves both the large time asymptotic behaviour and the parabolic relaxation
limit of one-dimensional partially dissipative hyperbolic systems that satisfy the Kalman rank
condition.

The large time asymptotic-preserving property is achieved by conceiving time-weighted
perturbed energy functionals in the spirit of the hypocoercivity theory. For the relaxation-
preserving property, drawing inspiration from the observation that, in the continuous case,
solutions are shown to exhibit distinct behaviour in low and high frequencies, we introduce a
novel discrete Littlewood-Paley decomposition tailored to the central finite difference scheme.
This allows us to prove Bernstein-type estimates for discrete differential operators and leads to
new diffusive limit results such as the strong convergence of the discrete linearized compressible
Euler system with damping towards the discrete heat equation, uniformly with respect to the
spatial mesh parameter.
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1. Introduction and informal results

Extensive literature exists on the analysis of partially dissipative hyperbolic models, particu-
larly focusing on their asymptotic behaviour and singular limits using a combination of Fourier
and hypocoercivity techniques. While in the continuous setting there is growing progress in
understanding these phenomena, a persistent challenge arises when transitioning to a numerical
context and seeking to preserve such properties in a grid-uniform manner.

In this context, our research contains both theoretical and experimental evidence for the
fact that hypocoercivity and relaxation properties inherent to partially dissipative hyperbolic
systems can be effectively captured by one of the simplest and unconditionally stable numerical
schemes: the implicit central finite difference method.

1.1. Partially dissipative systems – propagation of damping through hyperbolic dy-
namics. We are concerned with the numerical analysis of partially dissipative hyperbolic sys-
tems of the form

∂tU + A∂xU = −BU, (t, x) ∈ (0, ∞) × R, (1.1)
where U = U(t, x) ∈ RN (N ≥ 2) is the vector-valued unknown and A, B are symmetric N × N

matrices. We assume that (1.1) has a partially dissipative structure: The matrix B takes the
form

B =
(

0 0
0 B̃

)
, (1.2)

where B̃ is a positive definite symmetric N2 ×N2 matrix (1 ≤ N2 < N). Under these conditions,
B̃ satisfies the strong dissipativity condition: there exists a constant λ > 0 such that, for all
X ∈ RN2 ,

⟨B̃X, X⟩ ≥ λ|X|2, (1.3)

where ⟨, ⟩ denotes the inner product on RN2 . Based on this definition, we decompose the solution
as U = (U1, U2) where U1 ∈ RN1 , for N1 := N − N2, corresponds to the conserved components
and U2 ∈ RN2 to the dissipated ones. According to this decomposition, we have the block form

A =
(

A1,1 A1,2

A2,1 A2,2

)
,

where the dimensions of the components A1,1, A1,2, A2,1 and A2,2 are N1 ×N1, N1 ×N2, N2 ×N1

and N2 × N2, respectively.
In general, the L2-stability of these systems is unclear, as the dissipative operator B̃ only

acts on the component U2. Shizuta & Kawashima (1985) observed that if the eigenvectors of A

avoid the kernel of the dissipative matrix B (this requirement is called the SK condition), then
the solutions are stable in L2. More recently, Beauchard & Zuazua (2011) established a link
between the SK condition, control theory and the theory of hypocoercivity (Villani 2010). In
particular, they constructed perturbed energy functionals permitting to recover the asymptotic
behaviour of the solutions of (1.1) under the Kalman rank condition:

Definition 1.1. A pair of matrices (A, B) verifies the Kalman rank condition if

the matrix K(A, B) := (B|AB| . . . |AN−1B) has full rank N. (K)
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In practice, the condition (K) means that the partially dissipative effects of B can be propa-
gated to the other components through the hyperbolic dynamics of the system. In Beauchard &
Zuazua (2011), the authors showed that the condition (K) is equivalent to the (SK) condition.
Under these conditions, in numerous references on the topic (e.g. Yong (2004), Bianchini et al.
(2007), Hanouzet & Natalini (2003), Crin-Barat & Danchin (2022a,b)), authors rely on Fourier
techniques to justify the global well-posedness and study the large time behaviour of solutions
of nonlinear systems. Recently, Crin-Barat et al. (2024) developed a Fourier-free method prone
to tackle situations where the Fourier transform cannot be employed such as e.g. bounded do-
mains, time and space-dependent matrices or Riemannian manifolds. Their method leads to the
following natural time-decay estimates for the solution of (1.1).

Theorem 1.2 ((Crin-Barat et al. 2024, Theorem 2.1)). Let U0 ∈ (H1(R))N , A and B be
symmetric N × N matrices, with B as in (1.2), satisfying the Kalman rank condition. Then,
for all t > 0, the solution U of (1.1) with the initial datum U0 satisfies

∥U2(t)∥L2(R) + ∥∂xU(t)∥L2(R) ≤ C(1 + t)− 1
2 ∥U0∥H1(R), (1.4)

where C > 0 is a constant independent of time and U0.

This theorem highlights the hypocoercive nature inherent to partially dissipative systems.
Although the damping term does not directly influence every component of the system, the
whole solution decays in time due to the cross-influence between the matrices A and B resulting
from the Kalman condition (K). The decay rate resembles that of the heat equation for L2

data, but, in this hyperbolic framework, we need to assume additionally that the initial datum
is in H1, due to the lack of parabolic regularising effects. Moreover, in Crin-Barat et al. (2024),
it is shown that the decay (1.4) is optimal for H1 initial data. The lack of exponential decay
essentially comes from the fact that the hyperbolic and dissipative operators in the system are
of different orders.

Remark 1.3. A classical system fitting the description (1.1)-(1.2) and verifying the Kalman rank
condition (K) is the compressible Euler equations with damping. Indeed, linearizing this system
around the constant equilibrium (ρ∗, u∗) = (ρ∗, 0), with ρ∗ > 0, one obtains∂tρ + ∂xu = 0,

∂tu + ∂xρ = −u,
(t, x) ∈ (0, ∞) × R, (1.5)

where ρ = ρ(x, t) ≥ 0 denotes the fluid density and u = u(x, t) ∈ R stands for the fluid velocity.

1.2. Large time asymptotic-preserving schemes for partially dissipative systems. The
first purpose of this paper is to prove that one of the simplest structure-preserving (i.e. consistent
and stable) numerical schemes for (1.1), namely the implicit scheme based on the central finite
difference discrete operator on a uniform h-sized spatial grid:

(DhU)n = Un+1 − Un−1
2h

, n ∈ Z, (1.6)

preserves the large-time asymptotics derived in Theorem 1.2. The choice of this particular
scheme is justified by its unconditional stability for hyperbolic systems, see the reasoning in
(Strikwerda 2004, Sections 1.6 and 7.1) and (Jovanović & Süli 2014, Section 3.2).
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Figure 1. In blue: Plot of the function ζ → sin(ζ)
ζ . Mc is the value of the function

at the high-frequency thresholds ±(π − c), where c is a constant in
(
0, π

2
)
. Below

this value, i.e below the red line, the analysis needs special treatment compared
to the continuous setting.

Next, we present an informal version of our asymptotic behaviour result:
The central finite difference scheme is large time asymptotic-preserving for the system (1.1) in

the sense that we recover the time-decay (1.4) for the fully discretized version of (1.1), uniformly
with respect to both spatial and temporal mesh-size parameters, when the Kalman rank condition
holds.

The complete version of this result can be found in Theorem 2.1.

1.3. Relaxation-preserving scheme. Up to this point, we have at hand a structure-preserving
and large time asymptotic-preserving numerical scheme. One of the natural further steps is to
analyse whether this scheme behaves well with respect to another type of asymptotics: singular
perturbations. More precisely, Yong (1999) showed that the system (1.1) can be relaxed to a
parabolic one in a diffusive scaling. We will prove that, under certain regularity conditions on
the initial data, the same relaxation behaviour is observed in the discrete setting, uniformly with
respect to the spatial grid width h.

We first introduce such approximations in a simple, yet illustrative case: the linear compress-
ible Euler system (1.5) with relaxation, which reads∂tρ

ε + ∂xuε = 0,

ε2∂tu
ε + ∂xρε = −uε,

(1.7)

where ρε, uε : (0, ∞) ×R → R and ε > 0 is the relaxation parameter. As ε → 0, the solutions of
(1.7) converge, at least formally, to the solutions of the discrete heat equation:∂tρ − ∂2

xxρ = 0,

u = −∂xρ,
(1.8)

where the second equation corresponds to the discrete Darcy law.
In Orive & Zuazua (2006) and Crin-Barat & Danchin (2023) showed that it is essential to

analyze separately the low and high frequencies of the solutions to derive strong convergence
results for such relaxation procedures. In particular, in Crin-Barat & Danchin (2023), the
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authors introduce a hybrid Littlewood-Paley decomposition to justify the strong convergence
of the nonlinear compressible Euler system with damping toward the porous media equation
in any dimension and for ill-prepared data. In the Sobolev framework, no O(ε) relaxation rate
are available in the literature, to the best of our knowledge. This seems to be due to the
necessity of splitting the frequency analysis, as the behaviour of the low and high frequencies
are fundamentally different.

Following the frequency-splitting approach, Danchin (2023) justified the following type of
relaxation limit for a generalized version of (1.7): the solutions of∂tU1 + A1,2∂xU2 = 0,

ε2∂tU2 + A2,1∂xU1 = −B̃U2
(1.9)

converge, as ε → 0, toward the solution of

∂tU1 − A1,2B̃−1A2,1∂xxU1 = 0. (1.10)

It is this limit that we analyze in a fully discrete setting in the present paper.
Note that it was proven in Danchin (2023) that the matrix A1,2B̃−1A2,1 is symmetric and

positive definite if A is symmetric, B̃ is symmetric and positive definite and (A, B) satisfy the
Kalman rank condition, see Lemma A.1.

Inspired by this, in the present paper, in order to justify relaxation-preserving properties of the
numerical scheme, we introduce a novel and numerically suited Littlewood-Paley decomposition.
In this regard, the main challenge that arises is that the Fourier symbol of the discrete operator,
which is:

(̂Dhv)(ξ) = i
sin(ξh)

h
v̂(ξ), ξ ∈

[
−π

h
,
π

h

]
, (1.11)

becomes very small at high frequencies ξ ∼ ±π
h . Therefore, we are not able to uniformly

approximate sin(ξh)
h by ξ, since, in the high-frequency regime, one has

∣∣∣ sin(ξh)
ξh

∣∣∣ ≪ 1 (see Figure
1). To tackle this issue, we develop a non-standard dyadic decomposition tailored to the central
finite difference operator Dh. More precisely, whereas in the continuous Littlewood-Paley theory,
the dyadic decomposition of the frequency domain is done in logarithmically equidistant annuli

|ξ| ∈
[3

42j ,
4
32j+1

]
, (1.12)

in our case, we work with a numerically adapted dyadic decomposition based on non-uniform
annuli of the form

Fh(j) :=
{

ξ ∈
[
−π

h
,
π

h

]
:
∣∣∣∣sin(ξh)

h

∣∣∣∣ ∈
[3

42j ,
4
32j+1

]}
. (1.13)

See Figure 2 for a comparison between the decomposition intervals in (1.12) and (1.13). On
that figure, we remark that the numerically adapted dyadic decomposition showcases a pseudo-
low-frequency regime near the boundary of the frequency domain (i.e. for ξ ∼ ±π

h ), which will
need special treatment in our analysis (for example, in the proof of Proposition 2.5). Moreover,
we observe that the discrete high-frequency regime does not align with the continuous one,
since the former is bounded for a fixed mesh width h. Nevertheless, since, as h approaches
zero, we recover the full high-frequency range, we employ a spectrum-based approach to obtain
convergence results independent of h.
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Figure 2. The decomposition of the frequency space in the continuous case
(1.12) (left) and in the discrete setting (1.13) (right), for h = 2−4.

We also note that our approach differs from the discrete Littlewood-Paley decomposition
outlined in Hong & Yang (2019), which utilizes the dyadic decomposition (1.12). One signifi-
cant improvement is that our numerically adapted decomposition (1.13) enables us to establish
Bernstein-type estimates for the operator Dh in the following sense:

c 2j∥δj
hv∥ℓ2

h
≤ ∥Dhδj

hv∥ℓ2
h

≤ C 2j∥δj
hv∥ℓ2

h
,

where δj
hv is the localization of the grid function v to the frequency band (1.13) – see Definition

4.4 – and c, C are universal positive constants. We also refer to Sections 3 and 4 for more
information about the functional framework we use.

The above Bernstein estimate leads to the following definition of homogeneous discrete Besov
norms: for a regularity index s ≥ 0 and v ∈ ℓ2

h, we define

∥v∥Ḃs
h

:=
∑
j∈Z

2js∥δj
hv∥ℓ2

h
. (1.14)

Within this framework, in order to split our analysis into low and high frequencies, we simply
need to apply the frequency-localization linear operator δj

h to the system and study the solution
separately for j ≪ 1/ε and j ≫ 1/ε respectively. Furthermore, the norm defined in (1.14) is
related to Sobolev and Lebesgue discrete functional norms, see Proposition 2.5.

Next, we present an informal version of our relaxation-preserving result:

The implicit central finite difference scheme is relaxation-preserving for the system (1.9) in
the sense that, the solutions of the full discretized version of (1.9) converge to the solutions
of the discretization of (1.10) in the supremum, Sobolev and Besov norms at the rate O(ε2),
uniformly with respect to the mesh-size parameters, under the condition τ ≲ ε2.

The rigorous form of this result can be found in Theorem 2.6 and Corollary 2.8.
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2. Main results

2.1. Large time asymptotic-preserving property of the central finite difference
scheme. In this section, we establish the counterpart of (1.4) for discrete hyperbolic systems,
demonstrating the preservation of the hypocoercivity property when transitioning to a numerical
context. We consider the following fully discrete implicit scheme, where τ ∈ (0, 1) is the time
step and h ∈ (0, 1) is the width of the spatial grid:{

Uk+1 − Uk

τ
+ ADhUk+1 = −BUk+1. (2.1)

where, for every k ∈ {0, 1, . . . , K}, the bilateral sequence Uk = (Uk
n)n∈Z belongs to the space

(ℓ2
h)N . Decomposing the solution into its conserved and dissipated quantities and using (1.2),

we have 
Uk+1

1 − Uk
1

τ
+ A1,1DhUk+1

1 + A1,2DhUk+1
2 = 0,

Uk+1
2 − Uk

2
τ

+ A2,1DhUk+1
1 + A2,2DhUk+1

2 = −B̃Uk+1
2 ,

(2.2)

where, for every k ∈ {0, 1, . . . , K}, the bilateral sequences Uk
1 = (Uk

1;n)n∈Z, Uk
2 = (Uk

2;n)n∈Z

belong to the space (ℓ2
h)N1 and (ℓ2

h)N2 respectively.
We are now in position to state our first result regarding time-decay estimates for (2.1),

uniformly with respect to the mesh width. The discrete Lebesgue and Sobolev norms ∥ · ∥ℓ2
h

and
∥ · ∥h1

h
used below are introduced in Definition 3.1.

Theorem 2.1 (Numerical hypocoercivity for hyperbolic systems). Let U0 ∈ (ℓ2
h)N , A and B be

symmetric N × N matrices with B as in (1.2)-(1.3) and such that (A, B) satisfies the Kalman
rank condition (K). Then, for all k ∈ N∗, the solution U of (2.1) with the initial datum U0

satisfies
∥Uk

2 ∥ℓ2
h

+ ∥DhUk∥ℓ2
h

≤ C(1 + tk)− 1
2 ∥U0∥h1

h
, (2.3)

where tk := kτ and C > 0 is a constant independent of the mesh-size parameter h, the time-step
τ and U0.

Remark 2.2. The decay rate obtained in (2.3) is the same as the one derived in the continuous
case by Crin-Barat et al. (2024). Applying Theorem 2.1 to the linearized compressible Euler
system (1.7), we obtain, for all k ∈ N∗,

∥uk∥ℓ2
h

+ ∥(Dhρk, Dhuk)∥ℓ2
h

≤ C(1 + tk)− 1
2 ∥(ρ0, u0)∥h1

h
, (2.4)

where C > 0 is a constant independent of h, τ and (ρ0, u0). The sharpness of the decay rate is
also validated by simulations in Section 7.1.

Remark 2.3. Passing to the limit τ → 0 in (2.3) and using the same procedure as in (Jovanović
& Süli 2014, Section 3.2), one can prove an equivalent decay result for the semi-discrete approx-
imation of the hyperbolic system (1.1), namely:

U : [0, ∞) → ℓ2
h

∂tU(t) + ADhU(t) = −BU(t), t ≥ 0,

U(0) = U0 ∈ ℓ2
h.

(2.5)
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The decay result for (2.5) reads

∥U2(t)∥ℓ2
h

+ ∥DhU(t)∥ℓ2
h

≤ C(1 + t)− 1
2 ∥U0∥h1

h
, t > 0, (2.6)

where C > 0 is a constant independent of h, the time t and U0.

Strategy of proof and comparison with the literature. To establish Theorem 2.1, we
construct time-weighted Lyapunov functionals inspired by the recent work Crin-Barat et al.
(2024). Their approach, employing various tools to analyze partially dissipative systems without
relying on the Fourier transform, broadens the scope of applicability beyond standard methods,
such as Shizuta & Kawashima (1985), Beauchard & Zuazua (2011), Bianchini et al. (2007) and
Crin-Barat & Danchin (2022a). The construction of the time-weighted Lyapunov functionals is
influenced by the works Hérau (2007) and Hérau & Nier (2004) on the asymptotic behaviour
of hypocoercive kinetic models and Beauchard & Zuazua (2011) concerning the hypocoercivity
phenomenon for hyperbolic systems. In the present paper, the Lyapunov functionals we use
closely resemble the one in Crin-Barat et al. (2024) and are tailored for the central finite difference
approximation of the partially dissipative system (1.1). Differentiating these functionals with
respect to time and employing the Kalman rank condition (K), we derive the desired time-decay
rates.

Regarding the discrete asymptotic stability of partially dissipative systems, numerous studies
are dedicated to formulating large-time asymptotic-preserving numerical schemes for hypoco-
ercive phenomena. Closely connected to our work, we highlight the contributions of Porretta
& Zuazua (2016) and Georgoulis (2021), where time-decay estimates are derived for discretized
versions of the two-dimensional Kolmogorov equation, employing finite difference and finite ele-
ment schemes, respectively. In the broader context of kinetic models, particularly emphasizing
the Fokker-Planck equation, we refer to Blaustein & Filbet (2024), Dujardin et al. (2020), Filbet
& Rodrigues (2017), Filbet et al. (2021), Foster et al. (2017), Bessemoulin-Chatard et al. (2020)
and references therein.

2.2. Strong relaxation limit in the fully discrete setting.

2.2.1. A new frequency-based discrete framework. The proof of our second main result – the
discrete relaxation limit – is inspired by Crin-Barat & Danchin (2023) pertaining to the con-
tinuous setting. In this reference, it is shown that the solutions of the nonlinear compressible
Euler system converge strongly, in suitable norms, as the relaxation parameter ε approaches
zero, to the solutions of the porous media equation. There, the authors use a frequency-splitting
method and treat the low and high frequencies in two different manners. Importantly, in their
approach, the threshold between low and high frequencies is located at 1/ε, which implies that
the high-frequency regime disappears in the limit ε → 0.

Drawing upon these insights, to obtain new results related to hyperbolic relaxation proce-
dures for discrete hyperbolic systems, we employ the novel construction of Besov norms roughly
described in Section 1.3 and rigorously introduced in Section 4.2.
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Another key concept, inspired from (Strikwerda 2004, Section 10.1), is the truncation opera-
tor: Th : L2(R) → ℓ2

h,

(Thv)n = 1√
2π

ˆ π
h

− π
h

eiξnhv̂(ξ) dξ, (2.7)

where v̂ is the continuous Fourier transform of v ∈ L2(R). It is notable that the discrete
Fourier transform T̂hv(ξ), as introduced in Definition 4.1, coincides with the continuous Fourier
transform v̂(ξ) for any ξ ∈

[
−π

h , π
h

]
. Thus, the purpose of this truncation operator is to transfer

functions defined on the real line to a grid of width h, while preserving the Fourier transform.
For a comprehensive understanding of the suitability of this operator in accurately projecting
functions onto the h-grid, interested readers can refer to (Strikwerda 2004, Theorems 10.1.3 and
10.1.4). The forthcoming result concerning the truncation operator will ultimately ensure that
the constants in our relaxation result are uniform with respect to the grid width h. Its proof
can be found in Section 6.

Theorem 2.4 (Uniform Besov estimates with respect to the grid width). For every s′ > 0 and
s ∈ (0, s′) there exists a constant Cs′,s > 0 depending only on s and s′ such that, for every h > 0
and every v ∈ Hs′(R), we have

∥Thv∥Ḃs
h

≤ Cs′,s∥v∥Hs′ (R). (2.8)

Furthermore, the discrete Besov norm that we employ can be related to discrete Sobolev norm
∥ · ∥ḣs

h
and the discrete Lebesgue norm ∥ · ∥ℓ∞

h
(refer to Sections 3 and 4 for the definitions) as

follows.

Proposition 2.5. For every s ∈ R, there exists a constant Cs > 0 depending only on s such
that, for every v ∈ ℓ2

h, the following inequality holds true:

∥v∥ḣs
h

≤ Cs∥v∥Ḃs
h
. (2.9)

Moreover, in the particular case s = 1
2 , the discrete Besov norm controls the supremum norm:

∥v∥ℓ∞
h

≤ C∥v∥
Ḃ

1
2
h

, (2.10)

where C is a universal constant.

The proof of Proposition 2.5 can be found Section 4.2.

2.2.2. Discrete strong relaxation. We consider the following relaxed system, which is of the form
(2.2), but with A1,1 = 0:

U ε,k+1
1 − U ε,k

1
τ

+ A1,2DhU ε,k+1
2 = 0,

ε2
(

U ε,k+1
2 − U ε,k

2
τ

)
+ A2,1DhU ε,k+1

1 + B̃U ε,k+1
2 = 0

(2.11)

and its associated limit problem

Uk+1
1 − Uk

1
τ

+ A1,2B̃−1A2,1D2
hUk+1

1 = 0. (2.12)
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We recall that in Crin-Barat & Danchin (2023) and Danchin (2023) it was shown that when
(A, B) satisfy the Kalman rank condition, the matrix A1,2B̃−1A2,1 is positive definite, see Lemma
A.1. This ensures the parabolicity of (2.12). We also assume that the first component U0

1 of
the initial data (U0

1 , U0
2 ) of the hyperbolic system (2.11) coincides with the initial datum of the

parabolic problem (2.12).
Before stating our result, we define, for K ∈ N∗, τ > 0 and X a normed space, the spaces

ℓ1
τ,K(X) and ℓ∞

τ,K(X) of time sequences v = (vk)K
k=1 : {1, . . . , K} → X associated, respectively,

to the norms

∥v∥ℓ1
τ,K(X) := τ

K−1∑
k=0

∥vk+1∥X and ∥v∥ℓ∞
τ,K(X) := sup

k∈{0,..,K−1}
∥vk+1∥X . (2.13)

Theorem 2.6 (Numerical relaxation limit). Assume that the matrices (A, B) satisfy the Kalman
rank condition (K). Let M > 0, s′ > 2 and the functions defined on the real line: (Ũ0

1 , Ũ0
2 ) ∈

(Hs′(R))N1 × (Hs′(R))N2. Let h > 0 and the initial data for the systems (2.11) and (2.12) be
obtained by truncation: U0

i = Th(Ũ0
i ), i = 1, 2.

Then, for every K ∈ N∗, s ∈ (2, s′), ε > 0 and every τ ∈ (0, Mε2), the solutions of (2.11)
and (2.12) satisfy the following strong convergence result:

∥U ε
1 − U1∥ℓ∞

τ,K(Ḃs−2
h

) + ∥U ε
1 − U1∥ℓ1

τ,K(Ḃs
h

) + ∥B̃−1A2,1DhU ε
1 + U ε

2 ∥ℓ1
τ,K(Ḃs−1

h
) ≲ Cε2, (2.14)

where C = C1
(
1 + ∥(Ũ0

1 , εŨ0
2 )∥Hs′ + ∥Ũ0

2 ∥Hs′−1

)
, with C1 > 0 a constant depending only on M ,

s′, s and the matrices A and B.

Remark 2.7. As an application, under the conditions of Theorem 2.6, we have that the solutions
(ρε, uε) and ρ of the discretized versions of (1.7) and (1.8), respectively, verify

∥ρε − ρ∥ℓ∞
τ,K(Ḃs−2

h
) + ∥ρε − ρ∥ℓ1

τ,K(Ḃs
h

) + ∥Dhρε + uε∥ℓ1
τ,K(Ḃs−1

h
) ≲ Cε2, (2.15)

Combining Proposition 2.5 and Theorem 2.6, we obtain the strong convergence in the ḣs
h and

ℓ∞
h norms, uniformly in h and K.

Corollary 2.8. Let all the assumptions of Theorem 2.6 be in force. The following statements
hold true:

(i) The solution sequence U ε
1 of (2.11) converges strongly, as ε → 0, to the solution U1

of (2.11) in ℓ∞
τ,K(ḣs−2

h ) and ℓ1
τ,K(ḣs

h) at the rate O(ε2). Furthermore, the quantity
B̃−1A2,1DhU ε

1 + U ε
2 converges to 0 in ℓ1

τ,K(ḣs−1
h ) at the rate O(ε2).

(ii) If we additionally assume s′ > 5/2, the solution sequence U ε
1 of (2.11) converges strongly,

as ε → 0, to the solution U1 of (2.12) in ℓ∞
τ,K(ℓ∞

h ) and ℓ1
τ,K(ℓ∞

h ) at the rate O(ε2).
Furthermore, the quantity B̃−1A2,1DhU ε

1 + U ε
2 converges to 0 in ℓ1

τ,K(ℓ∞
h ) at the rate

O(ε2).
All the convergences above are uniform with respect to h > 0 and K ∈ N∗.

Remark 2.9. The convergence rate we obtain in this linear setting is one order higher than the
one obtained in Crin-Barat & Danchin (2023) and Danchin (2023). This is at the cost of stronger
regularity requirements for the initial data. The result we obtain seems to be sharp since it is
consistent with the rate observed in the numerical simulations in Section 7.2.
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Remark 2.10. The condition s < s′ in Theorem 2.6 is imposed in order for the truncation
inequality (2.8) to take place, which in turn follows from the convergence of the series (6.6).

Remark 2.11. As in Remark 2.3, one can obtain the relaxation result for the semi-discrete system
(2.5) by passing τ → 0 in (2.14):

∥U ε
1 − U1∥L∞

T (Ḃs−2
h

) + ∥U ε
1 − U1∥L1

T (Ḃs
h

) + ∥B̃−1A2,1DhU ε
1 + U ε

2 ∥L1
T (Ḃs−1

h
) ≲ ε2C, ∀T > 0,

where the initial data for the semi-discrete system and the constant C are the same as in Theorem
2.6, and where, for any Banach space X, time T > 0 and p ∈ [1, ∞], we denoted by Lp

T (X) the
set of measurable functions g : [0, T ] → X such that t 7→ ∥g(t)∥X is in Lp(0, T ).

Comments and comparison with the literature. In our approach, a distinctive advan-
tage of our discrete Littlewood-Paley decomposition, in contrast to existing literature (such
as the work Hong & Yang (2019) on Strichartz estimates for discrete Schrödinger and Klein-
Gordon equations), lies in the adaptation of the localization annuli to the precise form of the
discrete differential operator Dh. This adaptation allows us to obtain Bernstein-type estimates
necessary for proving the relaxation property. The justification of our results differs from previ-
ous endeavors related to similar hyperbolic approximation procedures, e.g. Boscarino & Russo
(2009), Jin (2012), Hu & Shu (2024), Boscarino & Russo (2024) where implicit–explicit (IMEX)
Runge–Kutta schemes are used. Here, we establish the large time asymptotic-preserving prop-
erty of the implicit central finite difference scheme within a refined frequency-based functional
framework, strategically constructed to approach stiff relaxation procedures for hyperbolic sys-
tems. In a related context, we highlight Degond (2013), Dimarco & Pareschi (2014), Jin (2022),
Lemou & Mieussens (2008), Jin (2010), Jin et al. (2000), Bessemoulin-Chatard et al. (2020),
Goudon et al. (2013), Blaustein & Filbet (2024), Ma et al. (2023), Bessemoulin-Chatard &
Mathis (2024) where authors delved into the relaxation limit of kinetic and hyperbolic models.

In particular, in the recent work Blaustein & Filbet (2024), the authors craft a discrete frame-
work for studying the Vlasov-Poisson-Fokker-Planck system, first rewriting the equations as a
partially dissipative hyperbolic system with stiff relaxation terms, using Hermite polynomials
in terms of the velocity. Then, in line with the continuous approach by Dolbeault et al. (2015),
they justify the relaxation limit of such hyperbolic systems (which shares similarities with the
one studied in the present paper), revealing the diffusion limit at the discrete level of the ki-
netic model. A crucial difference in our current scenario is that we tackle the full-space case,
as opposed to the torus setting. In the full-space case, there is a lack of a spectral gap in low
frequencies due to the absence of a Poincaré-type inequality, thus leading to a dichotomous
behaviour in low and high frequencies which, in turn, requires the development of a functional
framework tailored to deal with this polarity.

3. Discrete hypocoercivity for hyperbolic systems

3.1. Notations and discrete framework. This section is dedicated to the proof of the large-
time asymptotic result (2.3). Across the paper, the notations E ∼ F and E ≲ F signify that
there exists a constant C > 1 depending only on the matrices A and B such that 1

C F ≤ E ≤ CF

and E ≤ CF , respectively.
First, we recall the definition of discrete Lebesgue and Sobolev norms.
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Definition 3.1 (Discrete Lebesgue and Sobolev norms). We consider p ∈ [1, ∞), (vn)n∈Z a
bilateral infinite complex-valued sequence and h > 0 the width of an equidistant spatial grid.
We say that v ∈ ℓp

h if
∥v∥p

ℓ2
h

:= h
∑
n∈Z

|vn|p < ∞, (3.1)

and v ∈ ℓ∞
h if

∥v∥ℓ∞
h

:= sup
n∈Z

|vn| < ∞. (3.2)

The discrete Sobolev h1
h norm of a bilateral sequence v ∈ ℓ2

h is given by

∥v∥2
h1

h
:= ∥v∥2

ℓ2
h

+ ∥Dhv∥2
ℓ2

h
. (3.3)

Next, we state a well-known integration by parts formula for the operator Dh defined in (1.6),
which will be useful in our computations.

Proposition 3.2. Let u, v ∈ ℓ2
h. The following integration by parts formula holds:

(u, Dhv)ℓ2
h

= −(Dhu, v)ℓ2
h
,

where the ℓ2
h scalar product associated to the norm (3.1) is given by

(u, v)ℓ2
h

= h
∑
n∈Z

unvn.

An immediate consequence of the integration by parts formula is that, for every u ∈ ℓ2
h,

(u, Dhu)ℓ2
h

= 0.

For a more in-depth exploration of finite difference schemes and their properties, interested
readers can consult Strikwerda (2004).

3.2. Proof Theorem 2.1. In order to simplify the presentation of the computations, we intro-
duce the following notation: for a sequence (vk)K

k=0 such that vk ∈ ℓ2
h, ∀k, we denote:

δτ vk := vk+1 − vk

τ
. (3.4)

Then, the system (2.2) becomesδτ Uk
1 + A1,1DhUk+1

1 + A1,2DhUk+1
2 = 0;

δτ Uk
2 + A2,1DhUk+1

1 + A2,2DhUk+1
2 = −B̃Uk+1

2 .
(3.5)

Next, the following identity plays an important role in studying the decay properties of the
system (3.5). For v ∈ ℓ2

h, we have, by direct calculation

2(δτ vk, vk+1)ℓ2
h

= δτ ∥vk∥2
ℓ2

h
+ 1

τ
∥vk+1 − vk∥2

ℓ2
h
. (3.6)

Taking the scalar product of (3.5) with Uk+1, using (3.6), the symmetry of A and the inequality
(1.3) we obtain

δτ ∥Uk∥2
ℓ2

h
+ 1

τ
∥Uk+1 − Uk∥2

ℓ2
h

= 2(−A1,1DhUk+1
1 − A1,2DhUk+1

2 , Uk+1
1 )ℓ2

h
(3.7)

+ 2(−A2,1DhUk+1
1 − A2,2DhUk+1

2 , Uk+1
2 )ℓ2

h

− 2(B̃Uk+1
2 , Uk+1

2 )ℓ2
h
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≤ −2λ∥Uk+1
2 ∥2

ℓ2
h
,

where the last equality follows by integration by parts. The same reasoning for the discrete
space-derivative of System 3.5 leads to

δτ ∥DhUk∥2
ℓ2

h
+ 1

τ
∥DhUk+1 − DhUk∥2

ℓ2
h

≤ −2λ∥DhUk+1
2 ∥2

ℓ2
h
, (3.8)

Taking the sum of (3.7) and (3.8), we arrive at

δτ ∥Uk∥2
h1

h
+ 1

τ
∥Uk+1 − Uk∥2

h1
h

≤ −2λ∥Uk+1
2 ∥2

h1
h
, (3.9)

Next, inspired by the works of Beauchard & Zuazua (2011) and Crin-Barat et al. (2024), we
define the discrete Lyapunov functional:

Lk = ∥Uk∥2
h1

h
+ η0tk∥DhUk∥2

ℓ2
h

+ Ik, (3.10)

where the correction term Ik takes the following form:

Ik :=
N−1∑
q=1

εq
(
BAq−1Uk, BAqDhUk)

ℓ2
h
, (3.11)

and the positive parameters η0 and εq will be made precise later.
Our aim is to estimate δτ Lk. Since, for the discrete time derivative of the first term in Lk,

we already have the equality (3.9), we focus on the second term, for which a direct calculation
implies

δτ

[
tk∥DhUk∥2

ℓ2
h

]
= tkδτ ∥DhUk∥2

ℓ2
h

+ ∥DhUk+1∥2
ℓ2

h
(3.12)

Next, we take the discrete-time derivative of Ik. For every 1 ≤ q ≤ N − 1, we have

δτ (BAq−1Uk, BAqDhUk)ℓ2
h

=
(BAq−1Uk+1, BAqDhUk+1)ℓ2

h

τ
−

(BAq−1Uk, BAqDhUk)ℓ2
h

τ

= (BAq−1δτ Uk, BAqDhUk+1)ℓ2
h

+ (BAq−1Uk+1, BAqδτ DhUk)ℓ2
h

− 1
τ

(BAq−1Uk+1 − BAq−1Uk, BAqDhUk+1 − BAqDhUk)ℓ2
h

Employing Cauchy-Schwarz inequality in the last term, we arrive at:

δτ Ik ≤
N−1∑
q=1

εq(BAq−1δτ Uk, BAqDhUk+1)ℓ2
h

+ (BAq−1Uk+1, BAqδτ DhUk)ℓ2
h

(3.13)

+
N−1∑
q=1

εq
1
2τ

(
∥BAq−1(Uk+1 − Uk)∥2

ℓ2
h

+ ∥BAq(DhUk+1 − DhUk)∥2
ℓ2

h

)
. (3.14)

We take now the quantities (εq)N−1
q=1 small enough such that

N−1∑
q=1

εq
1
2τ

(
∥BAq−1(Uk+1 − Uk)∥2

ℓ2
h

+ ∥BAq(DhUk+1 − DhUk)∥2
ℓ2

h

)
≤ 1

2τ
∥Uk+1 − Uk∥2

h1
h
.

(3.15)

Using (3.15) and that δτ Uk = −ADhUk+1 − BUk+1, we obtain
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δτ Ik +
N−1∑
q=1

εq∥BAqDhUk+1∥2
ℓ2

h
≤ −

N−1∑
q=1

εq
(
BAq−1BUk+1, BAqDhUk+1)

ℓ2
h

−
N−1∑
q=1

εq
(
BAq−1Uk+1, BAqBDhUk+1)

ℓ2
h

−
N−1∑
q=1

εq
(
BAq−1Uk+1, BAq+1D2

hUk+1)
ℓ2

h

+ 1
2τ

∥Uk+1 − Uk∥2
h1

h
.

(3.16)

Concerning the discrete time derivative of Ik We have the following lemma whose proof is
relegated to the Appendix A.1.

Lemma 3.3 (Discrete time derivative of I). For any positive constant ε0, there exists a sequence
{εq}N−1

q=1 of small positive constants such that

δτ Ik + 1
2

N−1∑
q=1

εq∥BAqDhUk+1∥2
ℓ2

h
≤ ε0∥Uk+1

2 ∥2
h1

h
+ 1

2τ
∥Uk+1 − Uk∥2

h1
h
. (3.17)

Next, we might further decrease the positive quantities (εq)N−1
q=1 provided by the lemma such

that, by applying the Cauchy-Schwarz inequality in (3.11), one has

Lk ∼ ∥Uk∥2
h1

h
+ η0tk∥DhUk∥2

ℓ2
h
. (3.18)

Using (3.17), we obtain:

δτ Lk + 2λ∥Uk+1
2 ∥2

ℓ2
h

+ λ(1 + 2η0tk)∥DhUk+1
2 ∥2

ℓ2
h

+ 1
2

N−1∑
q=1

εq∥BAqDhUk+1∥2
ℓ2

h

≤ η0∥DhUk+1∥2
ℓ2

h
+ ε0∥Uk+1

2 ∥2
ℓ2

h
+ ε0∥DhUk+1

2 ∥2
ℓ2

h
.

(3.19)

From (Beauchard & Zuazua 2011, Lemma 1), we have that, for y ∈ CN , the function

N (y) :=
(N−1∑

q=0
|BAqy|2

) 1
2

defines a norm on CN , (3.20)

which, by standard properties of finite-dimensional spaces, is equivalent to any other norm, in
particular to the Euclidean one. Using this norm equivalence, we obtain

λ

4 ∥DhUk+1
2 ∥2

ℓ2
h

+ 1
2

N−1∑
q=1

εq∥BAqDhUk+1∥2
ℓ2

h
≥ ε∗

C2
∥DhUk+1∥2

ℓ2
h
,

with ε∗ := min{λ/2, ε0, ε1, ..., εN−1} and C2 > 0 a constant depending only on (A, B) and N .
Therefore, to ensure the coercivity of (3.19), we adjust the coefficients appropriately as

0 < η0 <
ε∗

4C2
, 0 < ε0 <

λ

4 ,

and therefore get

δτ Lk + λ∥Uk+1
2 ∥2

ℓ2
h

+ λ

(1
2 + η0tk

)
∥DhUk+1

2 ∥2
ℓ2

h
+ ε∗

4C2
∥DhUk+1∥2

ℓ2
h

≤ 0. (3.21)
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Therefore, by (3.21), we have Lk ≤ L0, which by the equivalence in (3.18) leads to

∥Uk∥ℓ2
h

+ (1 + tk)
1
2 ∥DhUk∥ℓ2

h
≤ C∥U0∥h1

h
. (3.22)

3.3. Improved decay for the component U2. Multiplying the second equation of (3.5) with
Uk+1

2 , we obtain by (3.6) and the Cauchy-Schwarz inequality that

δτ ∥Uk
2 ∥2

ℓ2
h

+ 1
τ

∥Uk+1
2 − Uk

2 ∥2
ℓ2

h
+ 2λ∥U2∥2

ℓ2
h

≤ C∥DhUk+1∥ℓ2
h
∥Uk+1

2 ∥ℓ2
h
, (3.23)

where C > 0 is a constant depending only on the matrices A and B. Inspired by the contin-
uous version of this result (see Bianchini et al. (2007) for instance), we consider the following
expression, for a fixed λ′ > 0 which will be made precise later:

Ek = δτ

[
eλ′tk∥Uk

2 ∥ℓ2
h

]
.

By direct computation, we derive that, provided that ∥Uk+1∥ℓ2
h

and ∥Uk∥ℓ2
h

are not both zero,

Ek ≤ eλ′tk

λ′eλ′τ ∥Uk+1
2 ∥ℓ2

h
+

δτ ∥Uk
2 ∥2

ℓ2
h

∥Uk+1
2 ∥ℓ2

h
+ ∥Uk

2 ∥ℓ2
h

 ,

which, by (3.23), leads to:

Ek ≤ eλ′tk

λ′eλ′τ ∥Uk+1
2 ∥ℓ2

h
−

2λ∥Uk+1
2 ∥2

ℓ2
h

+ 1
τ ∥Uk+1

2 − Uk
2 ∥2

ℓ2
h

∥Uk+1
2 ∥ℓ2

h
+ ∥Uk

2 ∥ℓ2
h

+ C
∥DhUk+1∥ℓ2

h
∥Uk+1

2 ∥ℓ2
h

∥Uk+1
2 ∥ℓ2

h
+ ∥Uk

2 ∥ℓ2
h

 ,

(3.24)
Next, taking γ = min{2

3λ, 1
τ } and λ′ > 0 such that λ′eλ′ ≤ γ, we obtain

2λ∥Uk+1
2 ∥2

ℓ2
h

+ 1
τ

∥Uk+1
2 − Uk

2 ∥2
ℓ2

h
≥ γ

[
3∥Uk+1

2 ∥2
ℓ2

h
+ ∥Uk+1

2 − Uk
2 ∥2

ℓ2
h

]
≥ γ

[
2∥Uk+1

2 ∥2
ℓ2

h
+ 1

2∥Uk
2 ∥2

ℓ2
h

]
≥ γ

[
∥Uk+1

2 ∥2
ℓ2

h
+ ∥Uk+1

2 ∥ℓ2
h
∥Uk

2 ∥ℓ2
h

]
= γ∥Uk+1

2 ∥ℓ2
h

[
∥Uk+1

2 ∥ℓ2
h

+ ∥Uk
2 ∥ℓ2

h

]
.

Therefore, (3.24) implies:

Ek ≤ Ceλ′tk ∥DhUk+1∥ℓ2
h
∥Uk+1

2 ∥ℓ2
h

∥Uk+1
2 ∥ℓ2

h
+ ∥Uk

2 ∥ℓ2
h

≤ Ceλ′tk∥DhUk+1∥ℓ2
h
≲ eλ′tk(1 + tk)− 1

2 ∥U0∥h1
h
, (3.25)

where the last inequality follows from (3.22). We note that the conclusion of (3.25) is still valid
if ∥Uk+1

2 ∥ℓ2
h

and ∥Uk
2 ∥ℓ2

h
both vanish. Summing up (3.25) for k = 0, K − 1, we obtain

eλ′tK ∥UK
2 ∥ℓ2

h
≲ ∥U0

2 ∥ℓ2
h

+ ∥U0∥h1
h
τ

K−1∑
k=1

eλ′tk(1 + tk)− 1
2 ,

or, equivalently,

∥UK
2 ∥ℓ2

h
≲ e−λ′tK ∥U0

2 ∥ℓ2
h

+ ∥U0∥h1
h
τ

K−1∑
k=1

eλ′(tk−tK)(1 + tk)− 1
2 .

We notice that the sum above is comparable to a Darboux sum of the integral I(tK) Lemma
A.2, so it follows that

∥UK
2 ∥ℓ2

h
≲ ∥U0∥h1

h
(1 + tK)− 1

2 .

The proof of Theorem 2.1 is concluded. □
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4. Fourier-based numerical framework

4.1. Discrete Fourier Transform. Within this section, we introduce the discrete one-
dimensional Fourier transform and revisit some fundamental properties such as invertibility and
Parseval’s equality. The following definition is essentially taken from (Trefethen 1994, Section
2.2).

Definition 4.1 (Discrete Fourier transform). We consider a bilateral infinite real sequence
(vn)n∈Z and a grid width h > 0. Assume that v ∈ ℓ2

h. The discrete Fourier transform of v is
defined as v̂ :

[
−π

h , π
h

]
→ R,

v̂(ξ) := h√
2π

∑
n∈Z

e−iξnhvn.

The inverse Fourier transform F−1 : L2 ([−π
h , π

h

])
→ ℓ2

h has the following form

(
F−1(g)

)
n

= 1√
2π

ˆ π
h

− π
h

eiξnhg(ξ) dξ. (4.1)

Remark 4.2. In order to rigorously define the Discrete Fourier transform, one has to follow the
same pathway as for the continuous one (see, for example, (Rudin 1987, Chapter 9)): define the
Fourier transform of for summable sequences (i.e. in ℓ1

h) and then extending them by density to
ℓ2

h.

The next proposition, taken from (Trefethen 1994, Theorem 2.5), summarizes some basic
properties of the discrete Fourier transform.

Proposition 4.3. Let v ∈ ℓ2
h. The following properties hold:

(1) v̂ ∈ L2 ([−π
h , π

h

])
and ∥v̂∥L2([− π

h
, π

h ]) = ∥v∥ℓ2
h
. (Parseval’s equality)

(2) The sequence v ∈ ℓ2
h can be recovered from its discrete Fourier transform by the equality:

v = F−1(v̂).

(3) Let w ∈ ℓ1
h. Then, the convolution product of u and v defined as

(v ∗ w)n := h
∑
m∈Z

vmwn−m

belongs to ℓ2
h and

v̂ ∗ w =
√

2π v̂ŵ.

In order to study discrete hyperbolic systems such as (2.1), we derive the Fourier symbol of
the discrete central finite difference operator Dh:

(̂Dhv)(ξ) = i
sin(ξh)

h
v̂(ξ), (4.2)

This allows us to define homogeneous and inhomogeneous discrete fractional Sobolev norms: for
v ∈ ℓ2

h and s > 0,

∥v∥2
ḣs

h
:= ∥Ds

hv∥ℓ2
h

:=
∥∥∥∥v̂(ξ)

∣∣∣∣sin(ξh)
h

∣∣∣∣s∥∥∥∥
L2([− π

h
, π

h ])
and ∥v∥2

hs
h

:= ∥v∥2
ℓ2

h
+ ∥Ds

hv∥2
ℓ2

h
. (4.3)
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4.2. Discrete Besov norms. In this section, we establish an analogous framework for the
standard Besov norms (associated with the continuous Fourier transform) within the discrete
setting introduced in the preceding sections. The definition of these discrete Besov norms is
guided by our objective of localizing the frequencies of a bilateral sequence (vn)n∈Z in such a
manner that, for each j ∈ Z, the localization δj

hv is designed to satisfy a Bernstein-type estimate:

∥Dh(δj
hv)∥ℓ2

h
∼ 2j∥δj

hv∥ℓ2
h
, (4.4)

where Dh is the central finite difference operator. We will formulate the rigorous form of the
Bernstein estimate in Section 4.3. Also, the interested reader could refer to (Bahouri et al. 2011,
Chapter 2) for an introduction to continuous Besov spaces and their basic properties.

The form (4.2) of the central finite difference operator in Fourier variables suggests the fol-
lowing notation:

Fh(j) :=
{

ξ ∈
[
−π

h
,
π

h

]
:
∣∣∣∣sin(ξh)

h

∣∣∣∣ ∈ Cj

}
, (4.5)

where, for every j ∈ Z, we denote

Cj :=
[3

42j ,
4
32j+1

]
. (4.6)

Inspired by the dyadic decomposition used to construct the continuous Besov spaces (Bahouri
et al. 2011, Sections 2.2 and 2.3), we consider a family of functions (φj)j∈Z depending on h with
the following properties:

φj :
[
−π

h
,
π

h

]
→ [0, 1], ∀j ∈ Z, (4.7)

supp(φj) ⊆ Fh(j), ∀j ∈ Z, (4.8)∑
j∈Z

φj(ξ) = 1, ∀ξ ∈
[
−π

h
,
π

h

]
. (4.9)

We note that, since the family of sets (Cj)j∈Z is locally finite, the above sum makes sense for
every ξ ∈

[
−π

h , π
h

]
. Now, we can define the j-th frequency localization of a sequence (vn)n∈Z and

the discrete homogeneous Besov norms.

Definition 4.4 (Discrete localization operators). Let v ∈ ℓ2
h and j ∈ Z. We define the j-th

frequency localization of v as

δj
hv := F−1(v̂φj).

Definition 4.5 (Discrete Besov Norms – refer to (Bahouri et al. 2011, Definition 2.15) for the
continuous case). Let s ≥ 0 and v ∈ ℓ2

h. The discrete Besov s-norm of v is defined as

∥v∥Ḃs
h

:=
∑
j∈Z

2js∥δj
hv∥ℓ2

h
. (4.10)

We note that this norm is finite for every v ∈ ℓ2
h, by an argument similar to the proof of Theorem

2.4.
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4.3. Basic properties of discrete Besov norms. First, we revisit and rigorously formulate
the Bernstein estimate (4.4):

Proposition 4.6 (Bernstein estimate for central finite difference operator). Let Dh be the central
finite difference operator. There exist two universal positive constants C, c > 0 such that, for
every h > 0, every bilateral sequence v ∈ ℓ2

h and every integer j,

c 2j∥δj
hv∥ℓ2

h
≤ ∥Dhδj

hv∥ℓ2
h

≤ C 2j∥δj
hv∥ℓ2

h
,

where δj
h is the localization operator introduced in Definition 4.4.

Proof. Taking into account (4.2) and Definition 4.4, we obtain

̂(Dhδj
hv)(ξ) = i

sin(ξh)
h

φj(ξ)v̂(ξ).

From (4.5) and (4.8) we get that, for every ξ ∈ supp(φj),∣∣∣∣sin(ξh)
h

∣∣∣∣ ∈ Cj .

Then, the conclusion follows from Parseval’s equality. □

Definition 4.7 (Frequency-restricted discrete Besov norms). Let s ∈ R and κ a small enough
positive constant that will be precisely fixed in the proof of Theorem 2.6. For Jε := log2

κ

ε
, i.e.

2Jε = κ

ε
, we define

∥v∥L
Ḃs

h
:=

∑
j≤Jε

2js∥δj
hv∥ℓ2

h
and ∥v∥H

Ḃs
h

:=
∑

j≥Jε

2js∥δj
hv∥ℓ2

h
. (4.11)

From Proposition 4.6, using that 2Jε = κ

ε
, we immediately deduce the following low-high

frequencies Bernstein-type inequalities.

Proposition 4.8. Let v ∈ ℓ2
h, s ≥ 0 and s′ > 0. The following Bernstein-type inequalities hold:

∥v∥L
Ḃs

h
≤ C

κs′

εs′ ∥v∥L

Ḃs−s′
h

, provided that s ≥ s′; (4.12)

∥v∥H
Ḃs

h
≤ C

εs′

κs′ ∥v∥H

Ḃs+s′
h

(4.13)

where C > 0 is a universal constant.

Next we prove Proposition 2.5. One of the important implications of this norm inequality is
that the estimates obtained for discrete Besov norms (4.10) lead to results in well-known norms.
We refer to (Bahouri et al. 2011, Proposition 2.39) for a more general embedding result in the
continuous framework.

Proof of Proposition 2.5. First of all, the inequality (2.9) follows immediately by the definition
of the ḣs

h norm and by (4.8)-(4.9), using Minkowski’s inequality.
In the sequel, we focus on proving the estimate (2.10). Indeed, the property (4.9) implies

that, for every ξ ∈
[
−π

h , π
h

]
,

v̂(ξ) =
∑
j∈Z

(̂δj
hv)(ξ),
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where the sum above is finite for any particular ξ. As a result, for any n ∈ Z,

vn =
∑
j∈Z

(δj
hv)n,

which implies that
∥v∥ℓ∞

h
≤
∑
j∈Z

∥δj
hv∥ℓ∞

h
.

From the definition (4.10) of the Besov norm, it is enough to prove that:

∥δj
hv∥ℓ∞

h
≤ C 2

j
2 ∥δj

hv∥ℓ2
h
. (4.14)

Indeed, from (4.8), it follows that φj ·χFh(j) = φj , where χS stands for the characteristic function
of a set S. The discrete Fourier inverse formula (4.1) implies that:

(δj
hv)n = 1√

2π

ˆ π
h

− π
h

eiξhnv̂(ξ)φj(ξ) dξ

= 1√
2π

ˆ π
h

− π
h

eiξhnv̂(ξ)φj(ξ)χFh(j) dξ.

Since
∣∣∣eiξhn

∣∣∣ = 1, the Cauchy-Schwarz inequality and Parseval’s equality further imply that∣∣∣(δj
hv)n

∣∣∣ ≤ 1√
2π

∥v̂φj∥L2([− π
h

, π
h ])∥χFh(j)∥L2([− π

h
, π

h ])

= 1√
2π

∥δj
hv∥ℓ2

h
|Fh(j)|

1
2 ,

where |S| stands for the Lebesgue measure of the set S. Therefore, we are left to prove that:

|Fh(j)| ≤ C · 2j . (4.15)

In order to prove this claim, we observe that an element ξ ∈
[
−π

h , π
h

]
belongs to Fh(j) if and

only if
sin(ξh)

ξh
ξ ∈

[3
42j ,

4
32j+1

]
. (4.16)

Next, we fix a constant c ∈
(
0, π

2
)

and notice from the plot in Figure 1 that there exists another
constant Mc ∈ (0, 1) such that, for every x ∈ [−π + c, π + c],

Mc ≤ sin(x)
x

≤ 1. (4.17)

Therefore, if ξh ∈ [−π + c, π − c], then (4.16) implies that ξ ∈
[

3
42j , 4

3Mc
2j+1

]
. We can now

estimate the Lebesgue measure of a part of Fh(j):∣∣∣∣Fh(j) ∩
[−π + c

h
,
π − c

h

]∣∣∣∣ ≤ 2j
( 8

3Mc
− 3

4

)
. (4.18)

Then, we consider the case ξh ∈ [π − c, π], which means that π − ξh ∈ [0, c] ⊂ [−π + c, π − c].
In this case, we have

sin(π − ξh)
π − ξh

∈ [Mc, 1].

Therefore, if ξ is such that (4.16) holds, then the equality sin(x) = sin(π − x) implies that
π

h
− ξ = sin(ξh)

ξh
ξ

π − ξh

sin(π − ξh) ∈
[3

42j ,
4

3Mc
2j+1

]
.



20 T. CRIN-BARAT & D. MANEA

This leads us to an estimate of the Lebesgue measure of a second part of Fh(j):∣∣∣∣Fh(j) ∩
[

π − c

h
,
π

h

]∣∣∣∣ ≤ 2j
( 8

3Mc
− 3

4

)
. (4.19)

By matters of symmetry, we arrive also to an estimate regarding the third part of Fh(j):∣∣∣∣Fh(j) ∩
[−π

h
,
−π + c

h

]∣∣∣∣ ≤ 2j
( 8

3Mc
− 3

4

)
. (4.20)

Combining (4.18), (4.19) and (4.20) we obtain the claim (4.15), which finishes the proof. □

5. Proof Theorem 2.6: Numerical relaxation limit

We rewrite the system (2.11) using the notation in (3.4) asδτ U ε,k
1 + A1,2DhU ε,k+1

2 = 0,

ε2δτ U ε,k
2 + A2,1DhU ε,k+1

1 + B̃U ε,k+1
2 = 0,

(5.1)

Applying the localization operator δj
h to the system (5.1), we obtainδτ U ε,k

1,j + A1,2DhU ε,k+1
2,j = 0,

ε2δτ U ε,k
2,j + A2,1DhU ε,k+1

1,j + B̃U ε,k+1
2,j = 0,

(5.2)

where we used the notation fj := δj
hf for any f ∈ ℓ2

h. From here, the analysis is inspired by
the computations done in Crin-Barat & Danchin (2023) and Danchin (2023), but with certain
modifications aimed to sharpen, in this linear setting, the convergence ratio to O(ε2), instead of
O(ε).

In this section, the positive constant inherent to the “≲” notation may also depend on the
parameter M .

Low-frequency analysis: j ≤ Jε = log2
κ
ε .

Defining the damped mode W ε,k = B̃−1A2,1DhU ε,k
1 + U ε,k

2 and inserting it in (5.2), we have
δτ U ε,k

1,j − A1,2B̃−1A2,1D2
hU ε,k+1

1,j = −A1,2DhW ε,k+1
j ,

δτ W ε,k
j + B̃

ε2 W ε,k+1
j = B̃−1A2,1A1,2B̃−1A2,1D3

hU ε,k+1
1,j − B̃−1A2,1A1,2D2

hW ε,k+1
j

(5.3)

Taking the scalar product of the first equation of (5.3) with U ε,k+1
1,j , we obtain, by Lemma A.1,

the Cauchy-Schwarz inequality and (3.6), that

δτ ∥U ε,k
1,j ∥2

ℓ2
h

+ 1
τ

∥U ε,k+1
1,j − U ε,k

1,j ∥2
ℓ2

h
+ 2λ0∥DhU ε,k+1

1,j ∥2
ℓ2

h
≲ 2∥DhW ε,k+1

j ∥ℓ2
h
∥U ε,k+1

1,j ∥ℓ2
h
. (5.4)

Using the Bernstein estimate in Proposition 4.6, we have

δτ ∥U ε,k
1,j ∥2

ℓ2
h

+ 1
τ

∥U ε,k+1
1,j − U ε,k

1,j ∥2
ℓ2

h
+ 2λ022j∥U ε,k+1

1,j ∥2
ℓ2

h
≲ ∥DhW ε,k+1

j ∥ℓ2
h
∥U ε,k+1

1,j ∥ℓ2
h
. (5.5)

We can now apply Lemma A.3 which yields

∥U ε,K
1,j ∥ℓ2

h
+ 22jτ

K−1∑
k=0

∥U ε,k+1
1,j ∥ℓ2

h
≲ ∥U0

1,j∥ℓ2
h

+ τ
K−1∑
k=0

∥DhW ε,k+1
j ∥ℓ2

h
, (5.6)

since we have that τ ≤ Mε2 = Mκ22−2Jε ≤ Mκ2 · 2−2j .
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Then, for s ∈ R, multiplying (5.6) by 2js and summing on j ≤ Jε, we obtain, with the
notations in Definition 4.7, that

∥U ε,K
1 ∥L

Ḃs
h

+ ∥U ε
1 ∥L

ℓ1
τ,K(Ḃs+2

h
) ≲ ∥U0

1 ∥L
Ḃs

h
+ ∥W ε∥L

ℓ1
τ,K(Ḃs+1

h
). (5.7)

Performing similar estimates for W ε
j , we obtain

∥W ε,K∥L
Ḃs−1

h

+ 1
ε2 ∥W ε∥L

ℓ1
τ,K(Ḃs−1

h
) ≲ ∥W 0∥L

Ḃs−1
h

+ ∥U ε
1 ∥L

ℓ1
τ,K(Ḃs+2

h
) + ∥W ε∥L

ℓ1
τ,K(Ḃs+1

h
), (5.8)

since τ ≤ Mε2. Using the low-frequency Bernstein inequality (4.12), we have

∥W ε∥L
ℓ1

τ,K(Ḃs+1
h

) ≲
κ2

ε2 ∥W ε∥L
ℓ1

τ,K(Ḃs−1
h

). (5.9)

Summing (5.7) and (5.8), using (5.9) and fixing κ suitably small, we obtain

∥U ε,K
1 ∥L

Ḃs
h

+ ∥W ε,K∥L
Ḃs−1

h

+ 1
ε2 ∥W ε∥L

ℓ1
τ,K(Ḃs−1

h
) ≲ ∥U0

1 ∥L
Ḃs

h
+ ∥W 0∥L

Ḃs−1
h

≲ ∥U0
1 ∥L

Ḃs
h

+ ∥U0
2 ∥L

Ḃs−1
h

.
(5.10)

High-frequency analysis: j > Jε = log2
κ
ε .

We define the following Lyapunov functional

Lε,k
j = ∥(U ε,k

1,j , εU ε,k
2,j )∥2

ℓ2
h

+ 2−2jIε,k
j , (5.11)

where the corrector term Iε,k
j reads

Iε,k
j := η

(
U ε,k

2,j , B̃−1A2,1DhU ε,k
1,j

)
ℓ2

h
, (5.12)

where η is a constant that will be chosen small enough in the computations.

Remark 5.1. Compared to Section 3, the corrector term can be simplified in this setting as we
assume A1,1 = 0.

By Bernstein’s inequality (Proposition 4.6), Young’s inequality and using that 2−j ≤ ε

κ
, we

obtain

2−2jIε,k
j ≤ η2−2j∥U ε,k

2,j ∥ℓ2
h
∥B̃−1A2,1DhU ε,k

1,j ∥ℓ2
h

≤ η

22−2j∥U ε,k
2,j ∥2

ℓ2
h

+ η

22−2j∥B̃−1A2,1DhU ε,k
1,j ∥2

ℓ2
h

≲ η
ε2

κ2 ∥U ε,k
2,j ∥2

ℓ2
h

+ η∥B̃−1A2,1U ε,k
1,j ∥2

ℓ2
h

≲ η∥(U ε,k
1,j , εU ε,k

2,j )∥2
ℓ2

h
.

It is then clear that choosing η sufficiently small we have

Lε,k
j ∼ ∥(U ε,k

1,j , εU ε,k
2,j )∥2

ℓ2
h
. (5.13)

We now compute the discrete-time derivative of Lε,k
j . Concerning the first term, we take the

scalar product of (5.2) with (U ε,k+1
1,j , U ε,k+1

2,j ) and obtain

δτ ∥(U ε,k
1,j , εU ε,k

2,j )∥2
ℓ2

h
+ 1

τ
∥[U ε,k+1

1,j − U ε,k
1,j , ε(U ε,k+1

2,j − U ε,k
2,j )]∥2

ℓ2
h

+ 2λ∥U ε,k+1
2,j ∥2

ℓ2
h

≤ 0. (5.14)

Concerning the discrete-time derivative of Iε,k
j , we have the following lemma.
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Lemma 5.2 (Discrete time-derivative of Iε,k
j ). One has

2−2jδτ Iε,k
j + ηλ0

ε2 ∥U ε,k+1
1,j ∥2

ℓ2
h
≲ η∥U ε,k+1

2 ∥2
ℓ2

h
+ η

τ
∥[U ε,k+1

1,j − U ε,k
1,j , ε(U ε,k+1

2,j − U ε,k
2,j )]∥2

ℓ2
h
. (5.15)

Proof of the lemma. Analogously to the computations leading to (3.16), we obtain

δτ Iε,k
j + η

ε2

(
A2,1DhU ε,k+1

1,j , B̃−1A2,1DhU ε,k+1
1,j

)
ℓ2

h

≤ − η

ε2

(
B̃U ε,k+1

2,j , B̃−1A2,1DhU ε,k+1
1,j

)
ℓ2

h

+ η
(
DhU ε,k+1

2,j , B̃−1A2,1A1,2DhU ε,k+1
2,j

)
ℓ2

h

+ η

2τ
∥B−1A2,1DhU ε,k+1

1,j − B−1A2,1DhU ε,k
1,j ∥2

ℓ2
h

+ η

2τ
∥U ε,k+1

2,j − U ε,k+1
2,j ∥2

ℓ2
h
.

(5.16)
Using that AT

1,2 = A2,1 and Lemma A.1, it follows that

η
(
A2,1DhU ε,k+1

1,j , B̃−1A2,1DhU ε,k+1
1,j

)
ℓ2

h

= η
(
DhU ε,k+1

1,j , A1,2B̃−1A2,1DhU ε,k+1
1,j

)
ℓ2

h

(5.17)

≥ ηλ0∥DhU ε,k+1
1,j ∥2

ℓ2
h
.

Next, the Cauchy-Schwarz inequality implies that the first term on the right-hand side of (5.16)
verifies

− η

ε2

(
B̃U ε,k+1

2,j , B̃−1A2,1DhU ε,k+1
1,j

)
ℓ2

h

+η
(
DhU ε,k+1

2,j , B̃−1A2,1A1,2DhU ε,k+1
2,j

)
ℓ2

h

(5.18)

≲
η

ε2 ∥U ε,k+1
2,j ∥ℓ2

h
∥DhU ε,k+1

1,j ∥ℓ2
h

+ η∥DhU ε,k+1
2,j ∥2

ℓ2
h

Using (5.17),(5.18) and Young’s inequality in (5.16), we obtain

δτ Iε,k
j + ηλ0

ε2 ∥DhU ε,k+1
1,j ∥2

ℓ2
h
≲

η

ε2c2
∥U ε,k+1

2,j ∥2
ℓ2

h
+ ηc2

ε2 ∥DhU ε,k+1
1,j ∥2

ℓ2
h

+ η∥DhU ε,k+1
2,j ∥2

ℓ2
h

+ η

τ
∥DhU ε,k+1

1,j − DhU ε,k
1,j ∥2

ℓ2
h

+ η

τ
∥U ε,k+1

2,j − U ε,k+1
2,j ∥2

ℓ2
h
,

(5.19)

where the small positive constant c2 is chosen in order for the term ηc2
ε2 ∥DhU ε,k+1

1,j ∥2
ℓ2

h
to get

absorbed by ηλ0
ε2 ∥DhU ε,k+1

1,j ∥2
ℓ2

h
.

Next, multiplying (5.19) by 2−2j and using that 2−2j ≤ ε2

κ2 together with the Bernstein
estimate in Proposition 4.6, we obtain

2−2jδτ Iε,k
j + ηλ0

ε2 ∥U ε,k+1
1,j ∥2

ℓ2
h
≲

η

κ2 ∥U ε,k+1
2,j ∥2

ℓ2
h

+ η

ε2 ∥U ε,k+1
1,j ∥2

ℓ2
h

+ η∥U ε,k+1
2,j ∥2

ℓ2
h

+ η

τκ2 ∥U ε,k+1
1,j − U ε,k

1,j ∥2
ℓ2

h

+ η

τ

ε2

κ2 ∥U ε,k+1
2,j − U ε,k+1

2,j ∥2
ℓ2

h

(5.20)

which yields (5.15) and completes the proof of the lemma. □
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Combining (5.14) and (5.15) and choosing η sufficiently small, we obtain

δτ Lε,k
j ≲ − 1

ε2 ∥(U ε,k+1
1,j , εU ε,k+1

2,j )∥2
ℓ2

h
− 1

τ
∥[U ε,k+1

1,j − U ε,k
1,j , ε(U ε,k+1

2,j − U ε,k
2,j )]∥2

ℓ2
h

Then, using (5.13) and τ ≤ Mε2, we employ a similar reasoning as in the proof of Lemma A.3
to get

∥(U ε,K
1,j , εU ε,K

2,j )∥ℓ2
h

+ 1
ε2 ∥(U ε

1,j , εU ε
2,j)∥ℓ1

τ,K(ℓ2
h

) ≲ ∥(U0
1,j , εU0

2,j)∥ℓ2
h
. (5.21)

Multiplying (5.21) by 2js and summing the resulting equation for j ≥ Jε, we obtain

∥(U ε,K
1 , εU ε,K

2 )∥H
Ḃs

h
+ 1

ε2 ∥(U ε
1 , εU ε

2 )∥H
ℓ1

τ,K(Ḃs
h

) ≲ ∥(U0
1 , εU0

2 )∥H
Ḃs

h
. (5.22)

Recalling that W ε,k = B̃−1A2,1DhU ε,k
1 + U ε,k

2 , thanks to Propositions 4.6 and 4.8 it is easy to
see that

∥W ε∥H
ℓ1

τ,K(Ḃs−1
h

) ≲ ∥U ε
1 ∥H

ℓ1
τ,K(Ḃs

h
) + ∥U ε

2 ∥H
ℓ1

τ,K(Ḃs−1
h

)

≲ ∥U ε
1 ∥H

ℓ1
τ,K(Ḃs

h
) + ε

κ
∥U ε

2 ∥H
ℓ1

τ,K(Ḃs
h

)

≲ ε2∥(U0
1 , εU0

2 )∥H
Ḃs

h
.

(5.23)

5.1. Error estimates analysis. We can now justify the relaxation estimate (2.14). Recall that
U1 is the solution of the fully discrete implicit scheme for the parabolic system

δτ Uk
1 − A1,2B̃−1A2,1D2

hUk+1
1 = 0 (5.24)

with the same initial datum U0
1 . We define the error unknown Ū ε,k

1,j := U ε,k
1,j − Uk

1,j , it satisfies

δτ Ū ε,k
1,j − A1,2B̃−1A2,1D2

hŪ ε,k
1,j = −DhW ε,k

j . (5.25)

Multiplying this equation with Ū ε,k+1
1,j and using (3.6), together with the Cauchy-Schwarz

inequality, we arrive at

δτ ∥Ū ε,k
1,j ∥2

ℓ2
h

+ 1
τ

∥Ū ε,k+1
1,j − Ū ε,k

1,j ∥2
ℓ2

h
+ 2λ022j∥Ū ε,k+1

1,j ∥2
ℓ2

h
≲ ∥DhW ε,k+1

j ∥ℓ2
h
∥Ū ε,k+1

1,j ∥ℓ2
h
, ∀j ∈ Z.

(5.26)

Then, we seek to apply Lemma A.3, but, since it requires that τ ≤ M2−2j , we need to treat
again the low and high frequencies separately. If j ≤ Jε, then 2−2j ≥ ε2

κ2 , so the condition
τ ≤ Mε2 is enough to obtain, similarly to (5.7), that

∥Ū ε,K
1 ∥L

Ḃs−2
h

+ ∥Ū ε
1 ∥L

ℓ1
τ,K(Ḃs

h
) ≲ ∥W ε∥L

ℓ1
τ,K(Ḃs−1

h
), (5.27)

where the term corresponding to k = 0 vanishes since sU0 = 0. Then, using (5.10) we obtain

∥W ε∥L
ℓ1

τ,K(Ḃs−1
h

) ≲ ε2
(

∥U0
1 ∥L

Ḃs
h

+ ∥U0
2 ∥L

Ḃs−1
h

)
, (5.28)

so, by (5.27),

∥Ū ε,K
1 ∥L

Ḃs−2
h

+ ∥Ū ε,K
1 ∥L

ℓ1
τ,K(Ḃs

h
) ≲ ε2

(
∥U0

1 ∥L
Ḃs

h
+ ∥U0

2 ∥L
Ḃs−1

h

)
, (5.29)

For the high-frequency regime j > Jε, we show that both quantities U ε
1 and U1 vanish at the

rate O(ε2) in the appropriate Besov norms. First, by (5.21) we deduce

∥U ε
1,j∥ℓ1

τ,K(ℓ2
h

) ≲ ε2∥(U0
1,j , εU∗,0

2,j )∥ℓ2
h

and ∥U ε,K
1,j ∥ℓ2

h
≲ ∥(U0

1,j , εU0
2,j)∥ℓ2

h
.
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Using that 22j ≥ κ2

ε2 , we obtain from the last inequality that

∥U ε,K
1,j ∥ℓ2

h
≲ ε222j∥(U0

1,j , εU0
2,j)∥ℓ2

h
.

Therefore, we get the following estimate for U ε
1 in Besov norms

∥U ε,K
1 ∥H

Ḃs−2
h

+ ∥U ε
1 ∥H

ℓ1
τ,K(Ḃs

h
) ≲ ε2∥(U0

1 , εU0
2 )∥H

Ḃs
h
. (5.30)

Next, we derive a similar estimate for the solution U1 of the discrete parabolic system (5.24).
To that matter, using Lemma A.1, Parseval’s equality and the fact that j > Jε, we obtain

∥Uk+1
1,j ∥ℓ2

h
≤ ∥U0

1,j∥ℓ2
h
≲ ε222j∥U0

1,j∥ℓ2
h
,

which leads to
∥UK

1 ∥H
Ḃs−2

h

≲ ε2∥U0
1 ∥H

Ḃs
h
. (5.31)

Next, applying the discrete Fourier transform to (5.24) and using the definition of δτ , we have,
for every ξ ∈

[
−π

h , π
h

]
,

Ûk+1
1,j (ξ) =

(
IN1 + τ

(sin(ξh)
h

)2
A1,2B̃−1A2,1

)−1

Ûk
1,j(ξ) (5.32)

Then, thanks to Lemma A.1, A1,2B̃−1A2,1 is symmetric and positive definite and thus:∥∥∥∥∥∥
(

IN1 + τ

(sin(ξh)
h

)2
A1,2B̃−1A2,1

)−1
∥∥∥∥∥∥ ≤ 1

1 + λ0τ

(sin(ξh)
h

)2 (5.33)

Using the Definition 4.4 of the localization operator δj
h, we have

|Ûk+1
1,j (ξ)| ≤ 1

1 + α22jτ
|Ûk

1,j(ξ)|,

where we denote α := 9
16λ0. Further, by Parseval’s equality and the fact that j > Jε, we obtain

∥Uk+1
1,j ∥ℓ2

h
≤
(

1
1 + ατ κ2

ε2

)k+1

∥U0
1,j∥ℓ2

h
.

Thus, we have

∥U1,j∥ℓ1
τ,K(ℓ2

h
) ≤ ∥U0

1,j∥ℓ2
h
τ

K−1∑
k=0

(
1

1 + ατ κ2

ε2

)k+1

≤ ∥U0
1,j∥ℓ2

h

τ

1 − 1
1+ατ κ2

ε2

= ∥U0
1,j∥ℓ2

h
ε2 1 + ατ κ2

ε2

ακ2 .

Therefore, using that τ ≤ Mε2, we obtain

∥U1,j∥ℓ1
τ,K(ℓ2

h
) ≲ ε2∥U0

1,j∥ℓ2
h
.

As a result
∥U1∥H

ℓ1
τ,K(Ḃs

h
) ≲ ε2∥U0

1 ∥H
Ḃs

h
. (5.34)

Combining (5.31), (5.34) and (5.30) we obtain

∥Ū ε,K
1 ∥H

Ḃs−2
h

+ ∥Ū ε
1 ∥H

ℓ1
τ,K(Ḃs

h
) ≲ ε2∥(U0

1 , εU0
2 )∥H

Ḃs
h

(5.35)

Summing (5.29) with (5.35) and using Theorem 2.4 concludes the proof of Theorem 2.6.
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6. Proof of Theorem 2.4: Uniform Besov estimates with respect to the grid
width

In this section, we prove Theorem 2.4 concerning uniform Besov estimates with respect to the
grid width h, for regular enough functions.

Proof of Theorem 2.4. We recall that the discrete Ḃs
h-norm of Thv, by definition (4.10), reads

∥Thv∥Ḃs
h

=
∑
j∈Z

2js∥δj
hThv∥ℓ2

h
. (6.1)

Taking into account that, by definition (2.7), the function v and the bilateral sequence Thu have
essentially the same Fourier transform, we use Parseval’s equality to write

∥δj
hThv∥2

ℓ2
h

=
ˆ π

h

− π
h

(v̂(ξ))2(φj(ξ))2 dξ

=
ˆ π

h

− π
h

(v̂(ξ))2(1 + |ξ|2s′)(φj(ξ))2 1
1 + |ξ|2s′ dξ.

(6.2)

Now, since supp(φj) ⊆ Fh(j), it means by (4.5) that, if φj(ξ) ̸= 0, then∣∣∣∣sin(ξh)
ξh

∣∣∣∣ |ξ| ≥ 3
42j .

Since,
∣∣∣ sin(x)

x

∣∣∣ ≤ 1, for all x ∈ [−π, π], we obtain

φj(ξ) ̸= 0 ⇒ |ξ| ≥ 3
42j .

This fact, together with (6.2) and φj(ξ) ∈ [0, 1], for all ξ ∈ [−π/h, π, h], leads to

∥δj
hThv∥2

ℓ2
h

≤ 1

1 +
(

3
4

)2s′

22js′

ˆ π
h

− π
h

(v̂(ξ))2(1 + |ξ|2s′) dξ. (6.3)

Applying Parseval’s equality again, we deduce that

∥δj
hThv∥ℓ2

h
≤ Cs′

1 + 2js′ ∥v∥Hs′ (R). (6.4)

Inserting this inequality into (6.1), we get

∥Thv∥Ḃs
h

≤ Cs′∥v∥Hs′ (R)
∑
j∈Z

2js

1 + 2js′ . (6.5)

We now claim that the hypotheses of Theorem 2.4 imply that the series above is convergent.
Indeed, one has

∑
j∈Z

2js

1 + 2js′ =
∑
j≤0

2js

1 + 2js′ +
∑
j>0

2js

1 + 2js′ ≲
∑
j≤0

2js +
∑
j>0

2j(s−s′), (6.6)

which converges provided that s ∈ (0, s′). □
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7. Numerical simulations

In this section, we showcase a set of numerical experiments validating our theoretical findings.
The simulations in Section 7.1, carried out using the NumPy and Matplotlib Python libraries
Harris et al. (2020), Hunter (2007), confirm the sharpness of the polynomial decay verified by
the solutions of the system (2.1) (as per Theorem 2.1). Furthermore, the experiments carried
out in Section 7.2 show that the order of convergence O(ε2) obtained in Theorem 2.6 (more
specifically in Corollary 2.8) appears, in turn, to be sharp.

7.1. The numerical hypocoercivity property. The plot depicted in Figure 3 validates the
polynomial large-time decay estimate (2.3), for a particular instance of (2.1) – namely the
linearization of the compressible Euler system (1.7) – exhibiting a decay rate of exactly (1+t)− 1

2 .
The initial data that we used in the simulation is obtained by a cut-off near infinity of the
function:

ρ̃0(x) = ũ0(x) = 1
4√x2 + 10−6

. (7.1)

In Figure 4, we provide the same simulation for the 3 × 3 system:
∂tρ

ε + a∂xuε + b∂xvε = 0,

ε2∂tu
ε + a∂xρε + uε = 0,

ε2∂tv
ε + b∂xρε + vε = 0,

(7.2)

with a = 2, b = 3 and all three initial data ρ̃0, ũ0, ṽ0 given by (7.1), confirming the expected
decay rate.

Figure 3. The semi-log plot of the large time behaviour of the solution of the
Euler system (1.7) with parameters ε = 1, h = 2−4 and τ = 2−5.
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Figure 4. The semi-log plot of the large time behaviour of the solution of the
system (7.2) with parameters ε = 1, h = 2−4 and τ = 2−5.

7.2. The relaxation limit – error estimates. The objective of the overlapped plot in Figure
5 is to emphasize that the solutions of the system (1.7) effectively approximate the discrete heat
equation (1.8)1 for small ε.

The plot in Figure 6 serves as experimental evidence, indicating that for the initial data

ρ̃0(x) = e
− 1

1−(x−1)2 χ(0,2)(x) and ũ0(x) = e
− 1

1−(x−1.5)2 χ(0.5,2.5)(x), (7.3)

the convergence rate of both the first and the third left-hand side term in (1.7) is exactly O(ε2),
thus suggesting the sharpness of the rate in Theorem 2.6. Moreover, the table in Figure 8
confirms that the relaxation is uniform with respect to the grid width h. Figure 7 contains the
analoguous evidence for system (7.2), with the extra initial data given by:

ṽ0(x) = e
− 1

1−(x−0.5)2 χ(−0.5,1.5)(x).
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Figure 5. The first component ρε of the solution of (1.7) (blue) approximates
the solution ρ of the heat equation (1.8) (red) as ε → 0. The plots were generated
for h = 2−4, τ = 12ε2 and T = Kτ = 5.

Figure 6. The log-log plot of the approximation error and Darcy law in ℓ∞
h ,

obtained in Corollary 2.8 for the Euler system (1.7), as a function of ε, for fixed
h = 2−4 and T = Kτ = 5. The time discretization parameter is τ = 12ε2.
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Figure 7. The log-log plot of the approximation error and Darcy law in ℓ∞
h ,

obtained in Corollary 2.8 for the system (7.2), as a function of ε, for fixed h = 2−4

and T = Kτ = 5. The time discretization parameter is τ = 12ε2.

h ∥ρε,K − ρK∥ℓ∞
h

∥Dhρε + uε∥ℓ2
τ,K(ℓ∞

h
)

2−4 1.381531714e−05 1.176454042e−03
2−5 1.381330054e−05 1.183401971e−03
2−6 1.381294718e−05 1.185514414e−03

Figure 8. The approximation error and the Darcy law in ℓ∞
h , obtained in Corol-

lary 2.8 for the Euler system (1.7), in terms of h, for fixed ε = 2−5, τ = 12ε2 and
T = Kτ = 5.

8. Conclusion and extensions

Our theoretical and experimental evidence demonstrates that the decay estimates and relax-
ation properties inherent to partially dissipative hyperbolic systems can be effectively captured
by one of the simplest and unconditionally stable numerical techniques: the implicit central
finite difference scheme. We have thus introduced a novel approach for numerically approximat-
ing the solutions of a class of parabolic equations utilizing only first-order discrete operators.
Furthermore, the new discrete Littlewood-Paley theory we propose may serve as a foundation for
addressing other problems related to discrete equations, particularly those in which frequency
decomposition techniques play a central role.
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Dedicated to broadening the scope of Theorems 2.1 and 2.6, we discuss some additional
research directions.

1. More general finite difference operators. The reasoning in the present paper can be
applied for more general discrete first-order operators, namely to multi-point central
finite difference operators. For instance, replacing Dh with the four-point central finite
difference operator

(D̃hv)n := −vn+2 + 8vn+1 − 8vn−1 + vn−2
12h

,

in the implicit scheme (2.1), one obtains another unconditionally stable numerical scheme
for the hyperbolic system (1.1). Moreover, since the Fourier symbol of D̃h is the following:

(̂D̃hv)(ξ) = i
sin(ξh)

h

4 − cos(ξh)
3 = (̂Dhv)(ξ)4 − cos(ξh)

3 ,

0 and thus it is comparable to the Fourier symbol of the two-point finite difference op-
erator Dh, the results in this paper can be easily generalized to the multi-point scheme.
More precisely, the required Bernstein estimate in Proposition 4.6 can be obtained im-
mediately, since 4−cos(ξh)

3 ∈ [1, 5
3 ], for every ξ and h.

2. The Jin-Xin approximation. For a conservation law:

∂tρ + ∂xf(ρ) = 0, (8.1)

its diffusive Jin-Xin approximation reads:

∂tρ
ε + ∂xuε = 0,

ε2∂tu
ε = −∂xρε + uε − f(ρε).

(8.2)

This approximation was introduced in Jin & Xin (1995) and further examined through
a frequency-decomposition approach in Crin-Barat & Shou (2023). It should be possible
to justify the limit from the discrete approximation of (8.2) to the discrete counterpart
of (8.1) as ε approaches zeros using the discrete frequency framework established here.
The challenge further involves formulating product laws to handle the nonlinearity f(ρε)
which, in the simplest case, reads as (ρε)2.
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Appendix A. Various lemmata

A.1. Proof of Lemma 3.3. From (3.16), we have

δτ Ik +
N−1∑
q=1

εq∥BAqDhUk+1∥2
ℓ2

h
≤ −

N−1∑
q=1

εq
(
BAq−1BUk+1, BAqDhUk+1)

ℓ2
h

−
N−1∑
q=1

εq
(
BAq−1Uk+1, BAqBDhUk+1)

ℓ2
h

−
N−1∑
q=1

εq
(
BAq−1Uk+1, BAq+1D2

hUk+1)
ℓ2

h

+ 1
2τ

∥Uk+1 − Uk∥2
h1

h

(A.1)

To deal with the remainder terms, we proceed as in Beauchard & Zuazua (2011), Crin-Barat &
Danchin (2022a), Danchin (2016) with some adaptations regarding the discrete setting. First,
we fix a positive constant ε0 and estimate the terms in the right-hand side of (3.16) as follows.

• The terms I1
q := εq

(
BAq−1BUk+1, BAqDhUk+1)

ℓ2
h

with q ∈ {1, · · · , N − 1}: due to
BUk+1 = B̃Uk+1

2 and the fact that the matrices A, B are bounded operators, we obtain

|I1
q | ≤ Cεq∥B̃Uk+1

2 ∥ℓ2
h
∥BAqDhUk+1∥ℓ2

h
≤ ε0

4N
∥Uk+1

2 ∥2
ℓ2

h
+

Cε2
q

ε0
∥BAqDhUk+1∥2

ℓ2
h
.

• The term I2
1 := ε1

(
BUk+1, BABDhUk+1)

ℓ2
h
: one has

|I2
1 | ≤ Cε1∥B̃Uk+1

2 ∥ℓ2
h
∥B̃DhUk+1

2 ∥ℓ2
h

≤ ε0
4N

∥Uk+1
2 ∥2

ℓ2
h

+ Cε2
1

ε0
∥DhU2(t)∥2

ℓ2
h
.

• The terms I2
q := εq

(
BAq−1Uk+1, BAqBDhUk+1)

ℓ2
h

with q ∈ {2, · · · , N −1} if N ≥ 3: we
deduce, after integrating by parts, that

|I2
q | = εq|

(
BAq−1DhUk+1, BAqBUk+1)

ℓ2
h
| ≤ Cεq∥BAq−1DhUk+1∥ℓ2

h
∥BUk+1∥ℓ2

h

≤ ε0
4N

∥Uk+1
2 ∥2

ℓ2
h

+
Cε2

q

ε0
∥BAq−1DhUk+1∥2

ℓ2
h
.

• The terms I3
q := εq

(
BAq−1Uk+1, BAq+1D2

hUk+1)
ℓ2

h
with q ∈ {1, · · · , N − 2} if N ≥ 3: a

similar argument yields

|I3
q | = εq|

(
BAq−1DhUk+1, BAq+1DhUk+1)

ℓ2
h
| ≤ εq−1

8 ∥BAq−1DhUk+1∥2
ℓ2

h
+

Cε2
q

εq−1
∥BAq+1DhUk+1∥2

ℓ2
h
.

• The term I3
N−1 := εN−1

(
BAN−2Uk+1, BAN D2

hUk+1)
ℓ2

h
: owing to the Cayley-Hamilton

theorem, there exist coefficients cq
∗ (q = 0, N − 1) such that

AN =
N−1∑
q=0

cq
∗Aq. (A.2)
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Consequently, one gets

|I3
N−1| ≤ εN−1

N−1∑
q=0

cq
∗∥BAN−2DhUk+1∥ℓ2

h
∥BAqDhUk+1∥ℓ2

h

≤ εN−2
8 ∥BAN−2DhUk+1∥2

ℓ2
h

+
N−1∑
q=1

Cε2
N−1

εN−2
∥BAqDhUk+1∥2

ℓ2
h

+
Cε2

N−1
εN−2

∥DhUk+1
2 ∥2

ℓ2
h
.

In order to absorb the right-hand side terms of I1
q and I2

q by the left-hand side of (3.16), we
take the constant εq small enough so that

Cε2
1 ≤ ε2

0
8 , Cε2

q ≤ εqε0
8 , q = 1, N − 1. (A.3)

To handle the above estimates of I3
q with q = 1, N − 2, one may let

Cε2
q ≤ 1

8εq−1εq+1, q = 1, N − 2 if N ≥ 3. (A.4)

In addition, to handle the term I3
N−1, we assume

Cε2
N−1 ≤ 1

8εqεN−2, q = 0, N − 1. (A.5)

Clearly, the inequality (3.17) holds if we find ε1, · · · , εN−1 fulfilling (A.3) – (A.5). As in
Beauchard & Zuazua (2011), one can take εq = ε̃ mq with some suitably small constant ε̃ ≤ ε0

and m1, · · · , mN−1 satisfying for some δ > 0 (that can be taken arbitrarily small):

mq > 1, mq ≥ mq−1 + mq+1
2 + δ and mN−1 ≥ mq + mN−2

2 + δ, q = 1, N − 2.

This concludes the proof of Lemma 3.3. □

Next, we state the equivalence between Kalman rank condition and the strong ellipticity
condition for System (1.9) that is proven in Danchin (2023).

Lemma A.1. (Danchin 2023, Lemma A.3) Assume that A and B are symmetric N×N matrices
such that the N1 × N1 block of A satisfies A1,1 = 0 and that (1.2) and (1.3) hold.

Then, if (A, B) satisfies the Kalman rank condition (K) (which we recall that, by Beauchard
& Zuazua (2011), is equivalent to the SK condition), the matrix A1,2B̃−1A2,1 is symmetric and
positive definite.

In particular, this implies the existence of a positive constant λ0 such that, for every vector
X ∈ RN1, (

A1,2B̃−1A2,1X, X
)
RN1

≥ λ0|X|2.

A.2. Technical lemmata. The first technical lemma provides an estimate for an integral in-
volving exponential and square root functions:

Lemma A.2. Let λ be a positive constant. There exists a constant C = C(λ) > 0 such that,
for every t ∈ (0, ∞),

I(t) :=
ˆ t

0
e−λ(t−σ)(1 + σ)− 1

2 dσ ≤ C(1 + t)− 1
2 .
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Proof. An integration-by-parts argument leads to

I(t) = 1
λ

(1 + t)− 1
2 − 1

λ
e−λt + 1

2λ

ˆ t

0
e−λ(t−σ) 1

(1 + σ)
3
2

dσ.

The conclusion follows since the last term in the previous inequality can be bounded from above
by ˆ t

2

0
e−λ(t−σ) dσ +

ˆ t

t
2

1
(1 + σ)

3
2

dσ.

□

Next, we state a time-discrete version of (Crin-Barat & Danchin 2022a, Lemma A.1).

Lemma A.3. Let M > 0, K ∈ N∗ and (vk)K
k=0 a sequence such that vk ∈ ℓ2

h, ∀k. Let τ > 0 and
assume that there exist two constants constants c > 0 and β ∈ (0, Mc

τ ] and a sequence (αk)K
k=1

of non-negative numbers such that, for every k ∈ 1, K − 1,

δτ ∥vk∥2
ℓ2

h
+ c

τ
∥vk+1 − vk∥2

ℓ2
h

+ β∥vk+1∥2
ℓ2

h
≤ αk+1∥vk+1∥ℓ2

h
. (A.6)

Then,

∥vK∥ℓ2
h

+ β√
M + 4

τ
K−1∑
k=0

∥vk+1∥ℓ2
h

≤ ∥v0∥ℓ2
h

+ τ
K−1∑
k=0

αk+1. (A.7)

Proof. If ∥vk+1∥ℓ2
h

and ∥vk∥ℓ2
h

are not both null, we have the following identity:

δτ ∥vk∥ℓ2
h

=
δτ ∥vk∥2

ℓ2
h

∥vk+1∥ℓ2
h

+ ∥vk∥ℓ2
h

,

which, by (A.6), leads to the following inequality:

δτ ∥vk∥ℓ2
h

+ β√
M + 4

∥vk+1∥ℓ2
h

≤
αk+1∥vk+1∥ℓ2

h

∥vk+1∥ℓ2
h

+ ∥vk∥ℓ2
h

−
β∥vk+1∥2

ℓ2
h

+ c
τ ∥vk+1 − vk∥2

ℓ2
h

∥vk+1∥ℓ2
h

+ ∥vk∥ℓ2
h

+ β√
M + 4

∥vk+1∥ℓ2
h

≤ αk+1 −

(
β − β√

M+4

)
∥vk+1∥2

ℓ2
h

− β√
M+4∥vk+1∥ℓ2

h
∥vk∥ℓ2

h
+ c

τ ∥vk+1 − vk∥2
ℓ2

h

∥vk+1∥ℓ2
h

+ ∥vk∥ℓ2
h

(A.8)
Next, we claim that the numerator above is non-negative, namely(

β − β√
M + 4

)
∥vk+1∥2

ℓ2
h

+ c

τ
∥vk+1 − vk∥2

ℓ2
h

≥ β√
M + 4

∥vk+1∥ℓ2
h
∥vk∥ℓ2

h
. (A.9)

Indeed, since, by hypothesis c
τ ≥ β

M , it follows that
c

τ
∥vk+1 − vk∥2

ℓ2
h

≥ β

M

[
∥vk+1∥2

ℓ2
h

+ ∥vk∥2
ℓ2

h
− 2(vk+1, vk)ℓ2

h

]
≥ β

M

[
∥vk+1∥2

ℓ2
h

+ ∥vk∥2
ℓ2

h
− 2∥vk+1∥ℓ2

h
∥vk∥ℓ2

h

]
.

As a result, to prove (A.9), it is sufficient to show that(
β + β

M
− β√

M + 4

)
∥vk+1∥2

ℓ2
h

+ β

M
∥vk∥2

ℓ2
h

≥
(2β

M
+ β√

M + 4

)
∥vk+1∥ℓ2

h
∥vk∥ℓ2

h
,



34 T. CRIN-BARAT & D. MANEA

which is true by the AM-GM inequality. As a result, (A.8) implies that

δτ ∥vk∥ℓ2
h

+ β√
M + 4

∥vk+1∥ℓ2
h

≤ αk+1, (A.10)

which is still true in the case when ∥vk+1∥ℓ2
h

and ∥vk∥ℓ2
h

both vanish. Summing (A.10) for
k = 0, K − 1, we obtain the conclusion of the lemma. □
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