Hyperbolic approximation of the Navier-Stokes-Fourier system

Timothée Crin-Barat

Chair of Dynamics, Control and Numerics Department of Data Science, FAU, Erlangen, Germany

"Critical phenomena in nonlinear partial differential equations, harmonic analysis and functional inequalities"

Sendai, November 9 2023

Joint work with S. Kawashima, J. Xu and E. Zuazua.

通 と く ヨ と く ヨ と

э

Paradox of heat conduction

э

• = • • = •

• One of the most successful models in continuum physics is Fourier's law of heat conduction

$$q = -\kappa \nabla T$$

where q is the thermal flux vector, T is the temperature, and $\kappa > 0$ stands for the thermal conductivity.

э.

• One of the most successful models in continuum physics is Fourier's law of heat conduction

$$q = -\kappa \nabla T$$

where q is the thermal flux vector, T is the temperature, and $\kappa > 0$ stands for the thermal conductivity.

• With this law, the widely used full compressible Navier-Stokes system in \mathbb{R}^d reads:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla \rho = \operatorname{div}\tau, \\ \partial_t(\rho T) + \operatorname{div}(\rho u T + u \rho) - \kappa \Delta T - \operatorname{div}(\tau \cdot u) = 0. \end{cases}$$
(1)

• A shortcoming of Fourier's law is that it leads to a parabolic equation for the temperature field: any initial disturbance is felt instantly throughout the entire medium.

• One of the most successful models in continuum physics is Fourier's law of heat conduction

$$q = -\kappa \nabla T$$

where q is the thermal flux vector, T is the temperature, and $\kappa > 0$ stands for the thermal conductivity.

• With this law, the widely used full compressible Navier-Stokes system in \mathbb{R}^d reads:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla \rho = \operatorname{div}\tau, \\ \partial_t(\rho T) + \operatorname{div}(\rho u T + u \rho) - \kappa \Delta T - \operatorname{div}(\tau \cdot u) = 0. \end{cases}$$
(1)

• A shortcoming of Fourier's law is that it leads to a parabolic equation for the temperature field: any initial disturbance is felt instantly throughout the entire medium.

 \rightarrow Such behavior contradicts the principle of causality.

• To correct this unrealistic feature one can use the Maxwell-Cattaneo law:

$$\varepsilon^2 \partial_t \boldsymbol{q} + \boldsymbol{q} = -\kappa \nabla T,$$

where ε is the thermal relaxation characteristic time

• However, this leads to a non-Galilean invariant model. In '09, Christov formulated the following law

$$\varepsilon^{2} \left(\partial_{t} q + u \cdot \nabla q - q \cdot \nabla u + (\nabla \cdot u) q \right) + q = -\kappa \nabla T.$$
(2)

▶ ★ 문 ▶ ★ 문 ▶

I na∩

• To correct this unrealistic feature one can use the Maxwell-Cattaneo law:

$$\varepsilon^2 \partial_t q + q = -\kappa \nabla T,$$

where ε is the thermal relaxation characteristic time

 However, this leads to a non-Galilean invariant model. In '09, Christov formulated the following law

$$\varepsilon^{2} \left(\partial_{t} q + u \cdot \nabla q - q \cdot \nabla u + (\nabla \cdot u) q \right) + q = -\kappa \nabla T.$$
(2)

• Essentially, $-\Delta T$ is now replaced by the first-order coupling (in blue) below:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla p = \operatorname{div}\tau, \\ \partial_t(\rho T) + \operatorname{div}(\rho u T + up) + \operatorname{div}q - \operatorname{div}(\tau \cdot u) = 0, \\ \varepsilon^2 (\partial_t q + u \cdot \nabla q - q \cdot \nabla u + (\nabla \cdot u)q) + q + \kappa \nabla T = 0, \end{cases}$$
(3)

→ ★ 문 ► ★ 문 ► _ 문

• To correct this unrealistic feature one can use the Maxwell-Cattaneo law:

$$\varepsilon^2 \partial_t q + q = -\kappa \nabla T,$$

where ε is the thermal relaxation characteristic time

 However, this leads to a non-Galilean invariant model. In '09, Christov formulated the following law

$$\varepsilon^{2} \left(\partial_{t} q + u \cdot \nabla q - q \cdot \nabla u + (\nabla \cdot u) q \right) + q = -\kappa \nabla T.$$
(2)

• Essentially, $-\Delta T$ is now replaced by the first-order coupling (in blue) below:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla p = \operatorname{div}\tau, \\ \partial_t(\rho T) + \operatorname{div}(\rho u T + up) + \operatorname{div} q - \operatorname{div}(\tau \cdot u) = 0, \\ \varepsilon^2 (\partial_t q + u \cdot \nabla q - q \cdot \nabla u + (\nabla \cdot u)q) + q + \kappa \nabla T = 0, \end{cases}$$
(3)

 $\bullet\,\rightarrow\,$ Finite speed of propagation for the temperature.

레이지 비지 아이지 않는 것 같아. 이 말 ?

• To correct this unrealistic feature one can use the Maxwell-Cattaneo law:

$$\varepsilon^2 \partial_t \boldsymbol{q} + \boldsymbol{q} = -\kappa \nabla \boldsymbol{T},$$

where ε is the thermal relaxation characteristic time

• However, this leads to a non-Galilean invariant model. In '09, Christov formulated the following law

$$\varepsilon^{2} \left(\partial_{t} q + u \cdot \nabla q - q \cdot \nabla u + (\nabla \cdot u) q \right) + q = -\kappa \nabla T.$$
(2)

• Essentially, $-\Delta T$ is now replaced by the first-order coupling (in blue) below:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla p = \operatorname{div}\tau, \\ \partial_t(\rho T) + \operatorname{div}(\rho u T + up) + \operatorname{div} q - \operatorname{div}(\tau \cdot u) = 0, \\ \varepsilon^2 (\partial_t q + u \cdot \nabla q - q \cdot \nabla u + (\nabla \cdot u)q) + q + \kappa \nabla T = 0, \end{cases}$$
(3)

- $\bullet\,\rightarrow\,$ Finite speed of propagation for the temperature.
- Question: How to justify rigorously the limit $\varepsilon \rightarrow 0$?
- Element of response to the *paradox of heat conduction*.
- Useful for numerics.

э

First-order partially dissipative coupling

(E)

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \varepsilon^2(\partial_t u + u \cdot \nabla u) + \frac{\nabla P(\rho)}{\rho} + u = 0. \end{cases}$$
(E)

This system can be understood as a hyperbolic approximation, as $\varepsilon \to 0$, of the solution of the porous media equation:

$$\partial_t n - \Delta P(n) = 0.$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

э

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \varepsilon^2(\partial_t u + u \cdot \nabla u) + \frac{\nabla P(\rho)}{\rho} + u = 0. \end{cases}$$
(E)

This system can be understood as a hyperbolic approximation, as $\varepsilon \to 0$, of the solution of the porous media equation:

$$\partial_t n - \Delta P(n) = 0.$$

• Numerous results in the 1D case: Jin-Xin '95, Junca-Rascle '02.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \varepsilon^2(\partial_t u + u \cdot \nabla u) + \frac{\nabla P(\rho)}{\rho} + u = 0. \end{cases}$$
(E)

This system can be understood as a hyperbolic approximation, as $\varepsilon \to 0$, of the solution of the porous media equation:

$$\partial_t n - \Delta P(n) = 0.$$

- Numerous results in the 1D case: Jin-Xin '95, Junca-Rascle '02.
- Weak convergence result in the multi-dimensional case: Coulombel-Goudon-Lin '07 '13, Fang-Xu '09, Kawashima-Xu '14
- Strong convergence in ℝ^d with d ≥ 1 for global-in-time strong solutions being small perturbations of (p
 i, u
 i) = (p
 i, 0) with p
 i > 0: Danchin-CB '22.

(4) E (4) (4) E (4)

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \varepsilon^2(\partial_t u + u \cdot \nabla u) + \frac{\nabla P(\rho)}{\rho} + u = 0. \end{cases}$$
(E)

This system can be understood as a hyperbolic approximation, as $\varepsilon \to 0$, of the solution of the porous media equation:

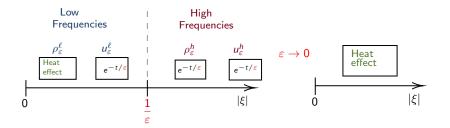
$$\partial_t n - \Delta P(n) = 0.$$

- Numerous results in the 1D case: Jin-Xin '95, Junca-Rascle '02.
- Weak convergence result in the multi-dimensional case: Coulombel-Goudon-Lin '07 '13, Fang-Xu '09, Kawashima-Xu '14
- Strong convergence in ℝ^d with d ≥ 1 for global-in-time strong solutions being small perturbations of (p
 i) = (p
 i) with p
 i > 0: Danchin-CB '22.
- **Tools**: Littlewood-Paley, Shizuta-Kawashima's theory and hypocoercivity theory.

(4) E > (4) E > (4)

Cattaneo approximation:

$$\begin{cases} \partial_t \rho_\varepsilon + \partial_x u_\varepsilon = 0\\ \varepsilon^2 \partial_t u_\varepsilon + \partial_x \rho_\varepsilon + u_\varepsilon = 0 \end{cases} \qquad \xrightarrow{\epsilon \to 0} \quad \partial_t \rho - \Delta \rho = 0$$

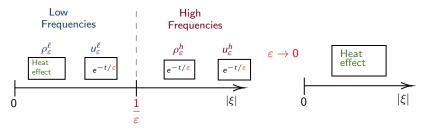


▲御▶ ▲注▶ ▲注▶ …

= 990

Cattaneo approximation:

$$\begin{cases} \partial_t \rho_\varepsilon + \partial_x u_\varepsilon = \mathbf{0} \\ \varepsilon^2 \partial_t u_\varepsilon + \partial_x \rho_\varepsilon + u_\varepsilon = \mathbf{0} \end{cases} \qquad \xrightarrow{\epsilon \to \mathbf{0}} \quad \partial_t \rho - \Delta \rho = \mathbf{0} \end{cases}$$



- We proved the strong relaxation limit in \mathbb{R}^d in various contexts
 - Compressible Euler equations with damping (Danchin-CB, Math. Ann.).
 - Jin-Xin System (Shou-CB, JDE).
 - 2D-Boussinesq system (Bianchini-Paicu-CB, ARMA).
- How to show it for the Navier-Stokes-Cattaneo system?

A (partially) hyperbolic Navier-Stokes system

• • = • • = •

We have just seen that the equation

$$\partial_t u - \Delta u = 0$$

can be approximated, for a small ε , by the following hyperbolic system

$$\begin{cases} \partial_t u + \operatorname{div} v = 0\\ \varepsilon^2 \partial_t v + \nabla u + v = 0 \end{cases}$$

• Aim: understand to what extent this approximation can be used to approximate systems modelling physical phenomena.

э

We have just seen that the equation

$$\partial_t u - \Delta u = 0$$

can be approximated, for a small ε , by the following hyperbolic system

$$\begin{cases} \partial_t u + \operatorname{div} v = 0\\ \varepsilon^2 \partial_t v + \nabla u + v = 0 \end{cases}$$

• Aim: understand to what extent this approximation can be used to approximate systems modelling physical phenomena.

Performing such approximation for the compressible Navier-Stokes system, one has

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho u) = 0, \\ \partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla p = \operatorname{div}\tau, \\ \partial_t(\rho T) + \operatorname{div}(\rho u T + up) + \operatorname{div} q - \operatorname{div}(\tau \cdot u) = 0, \\ \varepsilon^2 (\partial_t q + u \cdot \nabla q - q \cdot \nabla u + (\nabla \cdot u)q) + q + \kappa \nabla T = 0, \end{cases}$$
(4)

Let us now see how to justify that the solution of this system converges to the solution of the classical Navier-Stokes equations.

 Knowledge on the limit system: Danchin showed the existence of global-in-time solutions by highlighting different properties for |ξ| ≤ K and |ξ| ≥ K where K is a large constant.

向下 イヨト イヨト

= nar

- Knowledge on the limit system: Danchin showed the existence of global-in-time solutions by highlighting different properties for |ξ| ≤ K and |ξ| ≥ K where K is a large constant.
- Knowledge on the hyperbolic approximation: It suggests to distinguish two distinct frequency regimes with a threshold located at $\frac{1}{2}$.

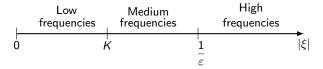
向 ト イヨ ト イヨ ト

э.

- Knowledge on the limit system: Danchin showed the existence of global-in-time solutions by highlighting different properties for |ξ| ≤ K and |ξ| ≥ K where K is a large constant.
- Knowledge on the hyperbolic approximation: It suggests to distinguish

two distinct frequency regimes with a threshold located at $\frac{1}{2}$.

Complete picture: We divide the frequency space as

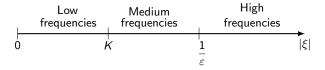


э

- Knowledge on the limit system: Danchin showed the existence of global-in-time solutions by highlighting different properties for |ξ| ≤ K and |ξ| ≥ K where K is a large constant.
- Knowledge on the hyperbolic approximation: It suggests to distinguish

two distinct frequency regimes with a threshold located at $\frac{1}{\epsilon}$.

Complete picture: We divide the frequency space as



Formally, when $\varepsilon \rightarrow 0$, it means that:

- The low frequency regime is not modified.
- The mid-frequency regime becomes larger and larger and recovers the high-frequency regime.
- The high frequency regime disappears.

 \rightarrow We retrieve the behavior of the compressible Navier-Stokes-Fourier system in the limit.

Tools & Morale

<u>Tools</u>

• We define homogeneous Besov spaces restricted in frequency as follows:

$$egin{aligned} \|f\|_{\dot{B}^{s}_{2,1}}^{\ell} &:= \sum_{j \leq J_{0}} 2^{js} \|f_{j}\|_{L^{2}}, \qquad \|f\|_{\dot{B}^{s}_{p,1}}^{m,arepsilon} &:= \sum_{J_{0} \leq j \leq J_{arepsilon}} 2^{js} \|f_{j}\|_{L^{p}}, \ \|f\|_{\dot{B}^{s}_{2,1}}^{h,arepsilon} &:= \sum_{j \geq J_{arepsilon}-1} 2^{js} \|f_{j}\|_{L^{2}} \end{aligned}$$

where $J_0 = \log_2(K)$, for K > 0 a constant, and $J_{\varepsilon} = -\kappa \log_2(\varepsilon)$.

 In each regime, the partially diffusive and partially dissipative coupling are involved. → New methods to derive a priori estimates: hypocoercivity + efficient unknowns.

<u>Tools</u>

• We define homogeneous Besov spaces restricted in frequency as follows:

$$egin{aligned} \|f\|_{\dot{B}^{s}_{2,1}}^{\ell} &:= \sum_{j \leq J_{0}} 2^{js} \|f_{j}\|_{L^{2}}, \qquad \|f\|_{\dot{B}^{s}_{p,1}}^{m,arepsilon} &:= \sum_{J_{0} \leq j \leq J_{arepsilon}} 2^{js} \|f_{j}\|_{L^{p}}, \ \|f\|_{\dot{B}^{s}_{2,1}}^{h,arepsilon} &:= \sum_{j \geq J_{arepsilon}-1} 2^{js} \|f_{j}\|_{L^{2}} \end{aligned}$$

where $J_0 = \log_2(K)$, for K > 0 a constant, and $J_{\varepsilon} = -\kappa \log_2(\varepsilon)$.

• In each regime, the partially diffusive and partially dissipative coupling are involved. \rightarrow New methods to derive a priori estimates: hypocoercivity + efficient unknowns.

Morale

- The hyperbolic approximation *creates* a temporary high-frequency regime that disappears in the limit.
- The remaining frequency regimes correspond to the behaviour of the limit system.
- Difficulty: justify that the linear and nonlinear analysis can be done in the new high-frequency setting.

Some linear analysis in high frequencies

• First: use our knowledge of the limit system. We know that in high frequencies the Navier-Stokes system can be "partially diagonalized".

• • = • • = •

Some linear analysis in high frequencies

• First: use our knowledge of the limit system. We know that in high frequencies the Navier-Stokes system can be "partially diagonalized".

• Defining the effective velocity, as introduced by Hoff and Haspot, $w = u + (-\Delta)^{-1} \nabla \rho$, in high frequencies, the linear system we are interested in reads

$$\begin{cases} \partial_t \rho + \rho = \operatorname{div} w, \\ \partial_t w - \Delta w = w - (-\Delta)^{-1} \nabla \rho + \nabla \theta, \\ \partial_t \theta + \operatorname{div} q + \operatorname{div} w = 0, \\ \varepsilon^2 \partial_t q + q + \nabla \theta = 0, \end{cases}$$
(5)

• The equations of ρ and w can be studied separately, we simply need to be careful about the linear source terms.

Some linear analysis in high frequencies

• First: use our knowledge of the limit system. We know that in high frequencies the Navier-Stokes system can be "partially diagonalized".

• Defining the effective velocity, as introduced by Hoff and Haspot, $w = u + (-\Delta)^{-1} \nabla \rho$, in high frequencies, the linear system we are interested in reads

$$\begin{cases} \partial_t \rho + \rho = \operatorname{div} w, \\ \partial_t w - \Delta w = w - (-\Delta)^{-1} \nabla \rho + \nabla \theta, \\ \partial_t \theta + \operatorname{div} q + \operatorname{div} w = 0, \\ \varepsilon^2 \partial_t q + q + \nabla \theta = 0, \end{cases}$$
(5)

 \bullet The equations of ρ and w can be studied separately, we simply need to be careful about the linear source terms.

• For the Cattaneo part, we introduce the Lyapunov (in the spirit of that of Beauchard and Zuazua and the hypocoercivity theory)

$$\mathcal{L}_{j}^{h} = \|(\theta_{j}, q_{j})\|_{L^{2}}^{2} + 2^{-2j} \int_{\mathbb{R}^{d}} q_{j} \cdot \nabla \theta_{j} \quad \text{for } j \ge J_{\varepsilon}.$$
(6)

 \rightarrow The blue term allows to recover dissipation for θ . Using that $\mathcal{L}_j^h \sim \|(\theta_j, q_j)\|_{L^2}^2$, direct computations gives

$$\frac{d}{dt}\mathcal{L}_j^h+\mathcal{L}_j^h\leq \|\mathrm{div}\,w_j\|_{L^2}\|\theta_j\|_{L^2}.$$

Some nonlinear analysis

イロト イロト イヨト イヨト

Ξ.

Some nonlinear analysis

• We are working in the $L^2 - L^p$ framework:

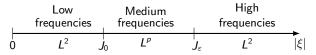


Figure: Frequency domain splitting for Navier-Stokes Cattaneo

 Due to the lack of embedding of the type B^s_{p,1} ↔ B^s_{2,1} if p > 2 → it is difficult to absorb nonlinearities in the high and low-frequency regimes.

Some nonlinear analysis

• We are working in the $L^2 - L^p$ framework:

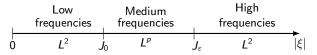


Figure: Frequency domain splitting for Navier-Stokes Cattaneo

- Due to the lack of embedding of the type B^s_{p,1} → B^s_{2,1} if p > 2 → it is difficult to absorb nonlinearities in the high and low-frequency regimes.
- Indeed, the medium frequencies are only bounded in L^p -based spaces.
- $\bullet\,\rightarrow$ Need to develop advanced product laws.

For instance: let $2 \le p \le 4$ and $p^* \triangleq 2p/(p-2)$. For all s > 0, we have

$$\begin{split} \|ab\|_{\dot{B}^{s,\varepsilon}_{2,1}}^{h,\varepsilon} \lesssim \|a\|_{\dot{B}^{\frac{d}{p}}_{p,1}} \|b\|_{\dot{B}^{s,\varepsilon}_{2,1}}^{h,\varepsilon} + \|b\|_{\dot{B}^{\frac{d}{p}}_{p,1}} \|a\|_{\dot{B}^{s,\varepsilon}_{2,1}}^{h,\varepsilon} \\ &+ \|a\|_{\dot{B}^{\frac{d}{p}}_{p,1}}^{\ell,\varepsilon} \|b\|_{\dot{B}^{s,\frac{d}{p}}_{p,1}}^{\ell,\varepsilon} + \|b\|_{\dot{B}^{\frac{d}{p}}_{p,1}}^{\ell,\varepsilon} \|a\|_{\dot{B}^{s,\frac{d}{p}}_{p,1}}^{\ell,\varepsilon} - \frac{d}{2} \cdot \|b\|_{\dot{B}^{s,\frac{d}{p}}_{p,1}}^{\ell,\varepsilon} \|b\|_{\dot{B}^{s,\frac{d}{p}}_{p,1$$

Tools: Bony paraproduct decomposition and precise frequency analysis.

э.

III-prepared relaxation result in a critical framework

Crin-Barat Timothée Hyperbolic Navier-Stokes equations

回 と く ヨ と く ヨ と

æ

Ill-prepared relaxation result in a critical framework

Theorem (Kawashima-Xu-Zuazua-CB '23)

Let $d\geq$ 3, $p\in [2,4]$ and $P(
ho, heta)=\pi(
ho) heta$, ar
ho,ar heta>0

- Let (ρ^ε − ρ̄, ν^ε, θ^ε − θ̄, q^ε) be the global solution of Navier-Stokes-Cattaneo (constructed with the previous arguments) with initial data (ρ^ε₀, ν^ε₀, θ^ε₀, q^ε₀).
- Let (ρ − ρ̄, v, θ − θ̄) be the global solution of Navier-Stokes-Fourier with initial data (ρ₀, v₀, θ₀).

We define the error unknowns $(\widetilde{
ho}, \widetilde{
m v}, \widetilde{ heta})$ as

$$(\widetilde{
ho},\widetilde{
m v},\widetilde{ heta}):=(
ho^arepsilon-
ho,{
m v}^arepsilon-{
m v}, heta^arepsilon-{
m v}).$$

If we assume that

$$\|(\widetilde{\rho}_{0},\widetilde{\nu}_{0},\widetilde{\theta}_{0})\|_{B^{\frac{d}{2}-1}_{2,1}}^{\ell}+\|\widetilde{\rho}_{0}\|_{B^{\frac{d}{p}-1}_{p,1}}^{h}+\|(\widetilde{\nu}_{0},\widetilde{\theta}_{0})\|_{B^{\frac{d}{p}-1}_{p,1}}^{h}\lesssim\varepsilon.$$
(7)

Then, we have the strong convergence result:

$$\begin{split} \|(\widetilde{\rho},\widetilde{\nu},\widetilde{\theta})\|_{L^{\infty}_{T}(B^{\frac{d}{2}-2}_{2,1})}^{\ell} + \|(\widetilde{\rho},\widetilde{\nu},\widetilde{\theta})\|_{L^{1}_{T}(B^{\frac{d}{2}}_{2,1})}^{\ell} + \|q^{\varepsilon} + \kappa \nabla \theta^{\varepsilon}\|_{L^{1}_{T}(B^{\frac{d}{p}-1}_{p,1})} \\ &+ \|\widetilde{\rho}\|_{L^{\infty}_{T} \cap L^{1}_{T}(B^{\frac{d}{p}-1}_{p,1})}^{h} + \|(\widetilde{\nu},\widetilde{\theta})\|_{L^{\infty}_{T}(B^{\frac{d}{p}-2}_{p,1})}^{h} + \|(\widetilde{\nu},\widetilde{\theta})\|_{L^{1}_{T}(B^{\frac{d}{p}}_{p,1})}^{h} \lesssim \varepsilon \end{split}$$

Extensions

Crin-Barat Timothée Hyperbolic Navier-Stokes equations

イロン イ団 と イヨン イヨン

• To what extent can this hyperbolic approximation be used? Numerical schemes, PINNs.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

- To what extent can this hyperbolic approximation be used? Numerical schemes, PINNs.
- What about other operators that the laplacian?

ト 4 三 ト 4 三 ト

э.

- To what extent can this hyperbolic approximation be used? Numerical schemes, PINNs.
- What about other operators that the laplacian?

With Roberta Bianchini and Marius Paicu (ARMA '23), we showed that the stably stratified solutions of the incompressible porous media equation:

$$\partial_t
ho - {\cal R}_1^2
ho = {\sf 0} \quad {
m with} \; {\cal R}_1 = rac{\partial_1}{\sqrt{-\Delta}}$$

can be approximated by the 0-th order stratified Boussinesq system:

$$\begin{cases} \partial_t \rho + \mathcal{R}_1 b = 0, \\ \varepsilon \partial_t b + \mathcal{R}_1 \rho + b = 0. \end{cases}$$
(2DB)

Such justification involves anisotropic Besov spaces so as to recover crucial $L_T^1(W^{1,\infty})$ bounds on the solution.

- To what extent can this hyperbolic approximation be used? Numerical schemes, PINNs.
- What about other operators that the laplacian?

With Roberta Bianchini and Marius Paicu (ARMA '23), we showed that the stably stratified solutions of the incompressible porous media equation:

$$\partial_t
ho - {\cal R}_1^2
ho = {\sf 0} \quad {
m with} \; {\cal R}_1 = rac{\partial_1}{\sqrt{-\Delta}}$$

can be approximated by the 0-th order stratified Boussinesq system:

$$\begin{cases} \partial_t \rho + \mathcal{R}_1 b = 0, \\ \varepsilon \partial_t b + \mathcal{R}_1 \rho + b = 0. \end{cases}$$
(2DB)

通 と く ヨ と く ヨ と

Such justification involves anisotropic Besov spaces so as to recover crucial $L_T^1(W^{1,\infty})$ bounds on the solution.

- Question: under what conditions can an operator be approximated in this fashion?
- Interplay of partial dissipation, anisotropy and special structure of the nonlinearities.

Thank you for your attention!

回 とくほとくほとう