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Paradox of heat conduction
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Paradox of heat conduction

e One of the most successful models in continuum physics is Fourier's law of

heat conduction
qg=—-xkVT

where q is the thermal flux vector, T is the temperature, and k > 0 stands for
the thermal conductivity.
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Paradox of heat conduction

e One of the most successful models in continuum physics is Fourier's law of
heat conduction
qg=—-xkVT

where q is the thermal flux vector, T is the temperature, and k > 0 stands for
the thermal conductivity.

e With this law, the widely used full compressible Navier-Stokes system in R?
reads:
Orp + div(pu) =0,
O(pu) + div(pu ® u) + Vp =divr, (1)
Oc(pT) +div(puT + up) — kAT — div(7 - u) = 0.

e A shortcoming of Fourier's law is that it leads to a parabolic equation for the
temperature field: any initial disturbance is felt instantly throughout the entire
medium.
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Paradox of heat conduction

e One of the most successful models in continuum physics is Fourier's law of
heat conduction
qg=—-xkVT

where q is the thermal flux vector, T is the temperature, and k > 0 stands for
the thermal conductivity.

e With this law, the widely used full compressible Navier-Stokes system in R?
reads:
Orp + div(pu) =0,
O(pu) + div(pu ® u) + Vp =divr, (1)
Oc(pT) +div(puT + up) — kAT — div(7 - u) = 0.

e A shortcoming of Fourier's law is that it leads to a parabolic equation for the
temperature field: any initial disturbance is felt instantly throughout the entire
medium.

— Such behavior contradicts the principle of causality.
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An alternative: Cattaneo’s law

@ To correct this unrealistic feature one can use the Maxwell-Cattaneo law:
20:q+q=—kVT,

where ¢ is the thermal relaxation characteristic time

@ However, this leads to a non-Galilean invariant model. In '09, Christov
formulated the following law

52(8fq+u-Vq—q~Vu—|—(V~u)q)+q:—/{VT. (2)
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An alternative: Cattaneo’s law

@ To correct this unrealistic feature one can use the Maxwell-Cattaneo law:
e20.g+q=—kVT,

where ¢ is the thermal relaxation characteristic time

@ However, this leads to a non-Galilean invariant model. In '09, Christov
formulated the following law

52(8fq+u-Vq—q~Vu—|—(V~u)q)+q:—KVT. (2)

@ Essentially, —AT is now replaced by the first-order coupling (in blue)
below:

Op + div(pu) =0,

O¢(pu) + div(pu ®@ u) + Vp = divr, 3)
Oc(pT) + div(puT + up) + divg — div(r - u) =0,
2(0eq+u-Vg—q-Vu+(V-u)q)+q+xVT =0,
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An alternative: Cattaneo’s law

@ To correct this unrealistic feature one can use the Maxwell-Cattaneo law:
e20.g+q=—kVT,

where ¢ is the thermal relaxation characteristic time

@ However, this leads to a non-Galilean invariant model. In '09, Christov
formulated the following law

52(8fq+u-Vq—q~Vu—|—(V~u)q)+q:—KVT. (2)

@ Essentially, —AT is now replaced by the first-order coupling (in blue)
below:
Op + div(pu) =0,
O¢(pu) + div(pu ®@ u) + Vp = divr, 3)
Oc(pT) + div(puT + up) + divg — div(r - u) =0,
(0 q+u-Vg—q-Vu+(V-u)g)+qg+rVT =0,

@ — Finite speed of propagation for the temperature.
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An alternative: Cattaneo’s law

@ To correct this unrealistic feature one can use the Maxwell-Cattaneo law:
e20.g+q=—kVT,

where ¢ is the thermal relaxation characteristic time

@ However, this leads to a non-Galilean invariant model. In '09, Christov
formulated the following law

52(8fq+u-Vq—q~Vu—|—(V~u)q)+q:—KVT. (2)

Essentially, —AT is now replaced by the first-order coupling (in blue)
below:
Op + div(pu) =0,
O¢(pu) + div(pu ®@ u) + Vp = divr, 3)
Oc(pT) + div(puT + up) + divg — div(r - u) =0,
(0 q+u-Vg—q-Vu+(V-u)g)+qg+rVT =0,

@ — Finite speed of propagation for the temperature.

@ Question: How to justify rigorously the limit ¢ — 07

o Element of response to the paradox of heat conduction.
o Useful for numerics.
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First-order partially dissipative coupling

Crin-Barat Timothée Hyperbolic Navier-Stokes equations



Porous media approximation

@ The compressible Euler equations with damping reads:
Oep + div(pu) =0,

2 (Ot + u- Vu) + vP (p) = ®

This system can be understood as a hyperbolic approximation, as € — 0,
of the solution of the porous media equation:

Oen — AP(n) = 0.
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Porous media approximation

@ The compressible Euler equations with damping reads:
Oep + div(pu) =0,

e(Oeu + u - Vu) + vP (p) = €

This system can be understood as a hyperbolic approximation, as € — 0,
of the solution of the porous media equation:

Oen — AP(n) = 0.

@ Numerous results in the 1D case: Jin-Xin '95, Junca-Rascle '02.
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Porous media approximation

@ The compressible Euler equations with damping reads:

Oep + div(pu) =0,
2 (Ot + u- Vu) + vP (p) = ®

This system can be understood as a hyperbolic approximation, as € — 0,
of the solution of the porous media equation:

Oen — AP(n) = 0.

@ Numerous results in the 1D case: Jin-Xin '95, Junca-Rascle '02.

@ Weak convergence result in the multi-dimensional case:
Coulombel-Goudon-Lin '07 '13, Fang-Xu '09, Kawashima-Xu '14

@ Strong convergence in RY with d > 1 for global-in-time strong solutions
being small perturbations of (p, &) = (p,0) with p > 0: Danchin-CB '22.
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Porous media approximation

@ The compressible Euler equations with damping reads:

Oep + div(pu) =0,
2 (Ot + u- Vu) + vP (p) = ®

This system can be understood as a hyperbolic approximation, as € — 0,
of the solution of the porous media equation:

Oen — AP(n) = 0.

@ Numerous results in the 1D case: Jin-Xin '95, Junca-Rascle '02.

@ Weak convergence result in the multi-dimensional case:
Coulombel-Goudon-Lin '07 '13, Fang-Xu '09, Kawashima-Xu '14

@ Strong convergence in RY with d > 1 for global-in-time strong solutions
being small perturbations of (p, &) = (p,0) with p > 0: Danchin-CB '22.

@ Tools: Littlewood-Paley, Shizuta-Kawashima's theory and hypocoercivity
theory.
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Approximation of Cattaneo type

Cattaneo approximation:

8tp5 + Oxue =0
) — Op—Ap=0
€°0ile + Oxpe + us =0 e=0
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4 4 h
Pe ue ot e e—0 Heat
Heat | n — effect
| | |
0 1 €] 0 §
3

Crin-Barat Timothée Hyperbolic Navier-Stokes equations



Approximation of Cattaneo type

Cattaneo approximation:

8tp5 + Oxue =0
— Op—Ap=0
—0

2
e°0tte + Oxpe +ue =0 €
Low High
Frequencies Frequencies
0 0
Pe ue ot uf e—0 Heat
Heat | N 3 effect
| | |
[ I [
0 1 €] 0 §
€

o We proved the strong relaxation limit in RY in various contexts
o Compressible Euler equations with damping (Danchin-CB, Math. Ann.).
e Jin-Xin System (Shou-CB, JDE).
@ 2D-Boussinesq system (Bianchini-Paicu-CB, ARMA).

e How to show it for the Navier-Stokes-Cattaneo system?
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A (partially) hyperbolic Navier-Stokes system
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Hyperbolic Navier-Stokes equations

We have just seen that the equation
otu—Au=0
can be approximated, for a small ¢, by the following hyperbolic system

Oty +divye =0
Ez&v—&—Vu—i— v =0.

@ Aim: understand to what extent this approximation can be used to
approximate systems modelling physical phenomena.
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Hyperbolic Navier-Stokes equations

We have just seen that the equation
otu—Au=0
can be approximated, for a small ¢, by the following hyperbolic system

Oty +divye =0
Ez&v—&—Vu—i— v =0.

@ Aim: understand to what extent this approximation can be used to
approximate systems modelling physical phenomena.

Performing such approximation for the compressible Navier-Stokes system, one
has

Oep + div(pu) =0,

Ot(pu) + div(pu @ u) + Vp =divr, (4)
Oc(pT) +div(puT + up) + divg — div(7 - u) =0,
2(0g+u-Vg—q-Vu+(V-u)g)+qg+sVT =0,

Let us now see how to justify that the solution of this system converges to the
solution of the classical Navier-Stokes equations.
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Frequency splitting

o Knowledge on the limit system: Danchin showed the existence of
global-in-time solutions by highlighting different properties for |£| < K and
|€] > K where K is a large constant.
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Frequency splitting

o Knowledge on the limit system: Danchin showed the existence of
global-in-time solutions by highlighting different properties for |£| < K and
|€] > K where K is a large constant.

o Knowledge on the hyperbolic approximation: It suggests to distinguish

two distinct frequency regimes with a threshold located at —.
€
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Frequency splitting

o Knowledge on the limit system: Danchin showed the existence of
global-in-time solutions by highlighting different properties for |£| < K and
|€] > K where K is a large constant.

o Knowledge on the hyperbolic approximation: It suggests to distinguish

two distinct frequency regimes with a threshold located at —.
€

Complete picture: We divide the frequency space as

Low Medium High
frequencies frequencies frequencies

\ T 1 >
0 K 1 €]
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Frequency splitting

o Knowledge on the limit system: Danchin showed the existence of
global-in-time solutions by highlighting different properties for |£| < K and
|€] > K where K is a large constant.

o Knowledge on the hyperbolic approximation: It suggests to distinguish

two distinct frequency regimes with a threshold located at —.
€

Complete picture: We divide the frequency space as

Low Medium High
frequencies | frequencies frequencies
I

0 K 1 €

Formally, when £ — 0, it means that:
@ The low frequency regime is not modified.
@ The mid-frequency regime becomes larger and larger and recovers the
high-frequency regime.
@ The high frequency regime disappears.

— We retrieve the behavior of the compressible Navier-Stokes-Fourier system
in the limit.
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Tools & Morale

Tools
o We define homogeneous Besov spaces restricted in frequency as follows:

Iflgs, =D 2"flle,  NFIE" = D 2"lfille,
2,1 1

i< P Jo<i<Je

h, . j
b= > 2fle

j2de—1

where Jy = log,(K), for K > 0 a constant, and J. = —klog,(¢).

o In each regime, the partially diffusive and partially dissipative coupling are
involved. — New methods to derive a priori estimates: hypocoercivity +
efficient unknowns.
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Tools & Morale

Tools
o We define homogeneous Besov spaces restricted in frequency as follows:

1FlEy, = Sl NI o= 0 26l

Ji<dh ' Jo<i<Je

IF3 = > 2l

j2de—1

where Jy = log,(K), for K > 0 a constant, and J. = —klog,(¢).

o In each regime, the partially diffusive and partially dissipative coupling are
involved. — New methods to derive a priori estimates: hypocoercivity +
efficient unknowns.

Morale

@ The hyperbolic approximation creates a temporary high-frequency regime
that disappears in the limit.

@ The remaining frequency regimes correspond to the behaviour of the limit
system.

o Difficulty: justify that the linear and nonlinear analysis can be done in the
new high-frequency setting.
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Some linear analysis in high frequencies

e First: use our knowledge of the limit system. We know that in high
frequencies the Navier-Stokes system can be “partially diagonalized” .
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Some linear analysis in high frequencies

e First: use our knowledge of the limit system. We know that in high
frequencies the Navier-Stokes system can be “partially diagonalized” .

e Defining the effective velocity, as introduced by Hoff and Haspot,
w = u+ (—=A)"'Vp, in high frequencies, the linear system we are interested in
reads
Op + p =divw,
dw — Aw =w — (=A)"'Vp + V0, 5
00 +divg + divw =0, (5)
e20:q+q+ V0 =0,

e The equations of p and w can be studied separately, we simply need to be
careful about the linear source terms.
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Some linear analysis in high frequencies

e First: use our knowledge of the limit system. We know that in high
frequencies the Navier-Stokes system can be “partially diagonalized” .

e Defining the effective velocity, as introduced by Hoff and Haspot,
w = u+ (—=A)"'Vp, in high frequencies, the linear system we are interested in
reads
Op + p =divw,
dw — Aw =w — (=A)"'Vp + V0, 5
00 +divg + divw =0, (5)
e20:q+q+ V0 =0,
e The equations of p and w can be studied separately, we simply need to be
careful about the linear source terms.

e For the Cattaneo part, we introduce the Lyapunov (in the spirit of that of
Beauchard and Zuazua and the hypocoercivity theory)

h 2 —2j .
£ =)l +27 [ 490 forjzd ©)
R
— The blue term allows to recover dissipation for 6. Using that
L} ~ |/(0j,)||7., direct computations gives
d
dt

L)+ £ < ||divw|l 21|61 2-



Some nonlinear analysis
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Some nonlinear analysis

o We are working in the L? — LP framework:

Low Medium High
frequencies J frequencies | frequencies
I T T >
0 L2 b Lp J L? €]

Figure: Frequency domain splitting for Navier-Stokes Cattaneo

@ Due to the lack of embedding of the type B, ; — B3 1 if p>2 — itis
difficult to absorb nonlinearities in the high and low-frequency regimes.
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Some nonlinear analysis

o We are working in the L? — LP framework:

Low Medium High
frequencies J frequencies | frequencies
I T T >
0 L2 b Lp J L? €]

Figure: Frequency domain splitting for Navier-Stokes Cattaneo

@ Due to the lack of embedding of the type B, ; — B3 1 if p>2 — itis
difficult to absorb nonlinearities in the high and low-frequency regimes.

o Indeed, the medium frequencies are only bounded in LP-based spaces.
@ — Need to develop advanced product laws.

For instance: let 2 < p < 4 and p* £ 2p/(p — 2). For all s > 0, we have

he < h.e h,e
loblgs, <ol g ol + ol g Il
P, P

+lall®5 Hbllﬁig,% + 161" Halﬁig,%-
Bp‘jl prlp B:l Bp,lp

Tools: Bony paraproduct decomposition and precise frequency analysis.
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Ill-prepared relaxation result in a critical framework

Crin-Barat Timothée Hyperbolic Navier-Stokes equations



Ill-prepared relaxation result in a critical framework

Theorem (Kawashima-Xu-Zuazua-CB '23)

Let d >3, p € [2,4] and P(p,0) = n(p)f, p,0 > 0

o Let (p° —p,ve,0° —0,q%) be the global solution of Navier-Stokes-Cattaneo
(constructed with the previous arguments) with initial data (p5, vs, 65, q5)-

o Let (p— p,v,0 — B) be the global solution of Navier-Stokes-Fourier with
initial data (po, vo, 6o).

We define the error unknowns (p, v, 6) as

(ﬁv 770) = (pE =P Ve — v, 0 — 9)
If we assume that

1o, %0, Bo)I” 4y + 170l g, + 10, Bo)]" ¢, S . ™)

2,1 B,1 b1

Then, we have the strong convergence result:

@201 g NGV, ¢ +la"+aV0Y  a,
L¥ 322,1 L17'(B22,1) L%—(B;l )
~h = B\[h = B\[h
+ 2l g HI@ONI" g, HI@OI o« Se
LNl (87, L$(B); L (82)

v

- = — —
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Extensions
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Extensions

@ To what extent can this hyperbolic approximation be used? Numerical
schemes, PINNs.
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Extensions

@ To what extent can this hyperbolic approximation be used? Numerical
schemes, PINNs.

@ What about other operators that the laplacian?
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Extensions

@ To what extent can this hyperbolic approximation be used? Numerical
schemes, PINNs.

@ What about other operators that the laplacian?
With Roberta Bianchini and Marius Paicu (ARMA '23), we showed that
the stably stratified solutions of the incompressible porous media equation:
O

vV—A

can be approximated by the O-th order stratified Boussinesq system:

8tp+R1b = 07
dib+ Rap+ b =0.

Op—TR3p=0 with Ry =

(2DB)

Such justification involves anisotropic Besov spaces so as to recover crucial
L% (W"°°) bounds on the solution.
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Extensions

@ To what extent can this hyperbolic approximation be used? Numerical
schemes, PINNs.

@ What about other operators that the laplacian?
With Roberta Bianchini and Marius Paicu (ARMA '23), we showed that
the stably stratified solutions of the incompressible porous media equation:
O

vV—A

can be approximated by the O-th order stratified Boussinesq system:

8tp+R1b = 07
dib+ Rap+ b =0.

Op—TR3p=0 with Ry =

(2DB)

Such justification involves anisotropic Besov spaces so as to recover crucial
L% (W"°°) bounds on the solution.

@ Question: under what conditions can an operator be approximated in this
fashion?

@ Interplay of partial dissipation, anisotropy and special structure of the
nonlinearities.
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Thank you for your attention!
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