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Paradox of heat conduction

• One of the most successful models in continuum physics is Fourier’s law of
heat conduction

q = −κ∇T

where q is the thermal flux vector, T is the temperature, and κ > 0 stands for
the thermal conductivity.

• With this law, the widely used full compressible Navier-Stokes system in Rd

reads: 
∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇p = divτ,
∂t(ρT ) + div(ρuT + up)− κ∆T − div(τ · u) = 0.

(1)

• A shortcoming of Fourier’s law is that it leads to a parabolic equation for the
temperature field: any initial disturbance is felt instantly throughout the entire
medium.

→ Such behavior contradicts the principle of causality.
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An alternative: Cattaneo’s law

To correct this unrealistic feature one can use the Maxwell-Cattaneo law:

ε2∂tq + q = −κ∇T ,

where ε is the thermal relaxation characteristic time

However, this leads to a non-Galilean invariant model. In ’09, Christov
formulated the following law

ε2 (∂tq + u · ∇q − q · ∇u + (∇ · u)q) + q = −κ∇T . (2)

Essentially, −∆T is now replaced by the first-order coupling (in blue)
below: 

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇p = divτ,
∂t(ρT ) + div(ρuT + up) + divq − div(τ · u) = 0,
ε2 (∂tq + u · ∇q − q · ∇u + (∇ · u)q) + q + κ∇T = 0,

(3)

→ Finite speed of propagation for the temperature.

Question: How to justify rigorously the limit ε → 0?

Element of response to the paradox of heat conduction.

Useful for numerics.
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First-order partially dissipative coupling
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Porous media approximation

The compressible Euler equations with damping reads:
∂tρ+ div(ρu) = 0,

ε2(∂tu + u · ∇u) +
∇P(ρ)

ρ
+ u = 0.

(E)

This system can be understood as a hyperbolic approximation, as ε → 0,
of the solution of the porous media equation:

∂tn −∆P(n) = 0.

Numerous results in the 1D case: Jin-Xin ’95, Junca-Rascle ’02.

Weak convergence result in the multi-dimensional case:
Coulombel-Goudon-Lin ’07 ’13, Fang-Xu ’09, Kawashima-Xu ’14

Strong convergence in Rd with d ≥ 1 for global-in-time strong solutions
being small perturbations of (ρ̄, ū) = (ρ̄, 0) with ρ̄ > 0: Danchin-CB ’22.

Tools: Littlewood-Paley, Shizuta-Kawashima’s theory and hypocoercivity
theory.

Crin-Barat Timothée Hyperbolic approximations in fluid mechanics



Hyperbolic Navier-Stokes equations
2d-Boussinesq equations and incompressible porous media equation

Porous media approximation

The compressible Euler equations with damping reads:
∂tρ+ div(ρu) = 0,

ε2(∂tu + u · ∇u) +
∇P(ρ)

ρ
+ u = 0.

(E)

This system can be understood as a hyperbolic approximation, as ε → 0,
of the solution of the porous media equation:

∂tn −∆P(n) = 0.

Numerous results in the 1D case: Jin-Xin ’95, Junca-Rascle ’02.

Weak convergence result in the multi-dimensional case:
Coulombel-Goudon-Lin ’07 ’13, Fang-Xu ’09, Kawashima-Xu ’14

Strong convergence in Rd with d ≥ 1 for global-in-time strong solutions
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Approximation of Cattaneo type

Cattaneo approximation:{
∂tρε + ∂xuε = 0

ε2∂tuε + ∂xρε + uε = 0
−→
ε→0

∂tρ−∆ρ = 0

1

ε

0

Heat
effect e−t/ε e−t/ε e−t/ε

Low
Frequencies

ρℓε uℓε

High
Frequencies

ρhε uhε ε → 0 Heat
effect

|ξ| |ξ|0

• We proved the strong relaxation limit in Rd in various contexts

Compressible Euler equations with damping (Danchin-CB, Math. Ann.).

Jin-Xin System (Shou-CB, JDE).

2D-Boussinesq system (Bianchini-Paicu-CB, ARMA).

• How to show it for the Navier-Stokes-Cattaneo system?
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A (partially) hyperbolic Navier-Stokes system
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Hyperbolic Navier-Stokes equations

We have just seen that the equation

∂tu −∆u = 0

can be approximated, for a small ε, by the following hyperbolic system{
∂tu + divv = 0

ε2∂tv +∇u + v = 0.

Aim: understand to what extent this approximation can be used to
approximate systems modelling physical phenomena.

Performing such approximation for the compressible Navier-Stokes system, one
has 

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu ⊗ u) +∇p = divτ,
∂t(ρT ) + div(ρuT + up) + divq − div(τ · u) = 0,
ε2 (∂tq + u · ∇q − q · ∇u + (∇ · u)q) + q + κ∇T = 0,

(4)

Let us now see how to justify that the solution of this system converges to the
solution of the classical Navier-Stokes equations.
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Frequency splitting

Knowledge on the limit system: Danchin showed the existence of
global-in-time solutions by highlighting different properties for |ξ| ≤ K and
|ξ| ≥ K where K is a large constant.

Knowledge on the hyperbolic approximation: It suggests to distinguish

two distinct frequency regimes with a threshold located at
1

ε
.

Complete picture: We divide the frequency space as

|ξ|1

ε

K0
|||

High

frequencies
Medium

frequencies
Low

frequencies

Formally, when ε → 0, it means that:

The low frequency regime is not modified.

The mid-frequency regime becomes larger and larger and recovers the
high-frequency regime.

The high frequency regime disappears.

→ We retrieve the behavior of the compressible Navier-Stokes-Fourier system
in the limit.
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Tools & Morale

Tools

We define homogeneous Besov spaces restricted in frequency as follows:

∥f ∥ℓḂs
2,1

:=
∑
j≤J0

2js∥fj∥L2 , ∥f ∥m,ε

Ḃs
p,1

:=
∑

J0≤j≤Jε

2js∥fj∥Lp ,

∥f ∥h,ε
Ḃs
2,1

:=
∑

j≥Jε−1

2js∥fj∥L2

where J0 = log2(K), for K > 0 a constant, and Jε = −κ log2(ε).

In each regime, the partially diffusive and partially dissipative coupling are
involved. → New methods to derive a priori estimates: hypocoercivity +
efficient unknowns.

Morale

The hyperbolic approximation creates a temporary high-frequency regime
that disappears in the limit.

The remaining frequency regimes correspond to the behaviour of the limit
system.

Difficulty: justify that the linear and nonlinear analysis can be done in the
new high-frequency setting.
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Linear a priori estimates scheme

Navier-Stokes-Cattaneo = Partially diffusive + Partially dissipative coupling.

|ξ|JεJ00
|||

High

frequencies

L2 − Lp

Medium
frequencies

Lp − Lp

Low
frequencies

Lp − L2

Figure: Frequency domain splitting for the hyperbolic approximation
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Some linear analysis in high frequencies

• First: use our knowledge of the limit system. We know that in high
frequencies the Navier-Stokes system can be “partially diagonalized”.

• Defining the effective velocity, as introduced by Hoff and Haspot,
w = u + (−∆)−1∇ρ, in high frequencies, the linear system we are interested in
reads 

∂tρ+ ρ = divw ,
∂tw −∆w = w − (−∆)−1∇ρ+∇θ,
∂tθ + divq + divw = 0,
ε2∂tq + q +∇θ = 0,

(5)

• The equations of ρ and w can be studied separately, we simply need to be
careful about the linear source terms.

• For the Cattaneo part, we introduce the Lyapunov (in the spirit of that of
Beauchard and Zuazua and the hypocoercivity theory)

Lh
j = ∥(θj , qj)∥2L2 + 2−2j

∫
Rd

qj · ∇θj for j ≥ Jε. (6)

→ The blue term allows to recover dissipation for θ. Using that
Lh

j ∼ ∥(θj , qj)∥2L2 , direct computations gives

d

dt
Lh

j + Lh
j ≤ ∥divwj∥L2∥θj∥L2 .
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• For the Cattaneo part, we introduce the Lyapunov (in the spirit of that of
Beauchard and Zuazua and the hypocoercivity theory)

Lh
j = ∥(θj , qj)∥2L2 + 2−2j

∫
Rd

qj · ∇θj for j ≥ Jε. (6)

→ The blue term allows to recover dissipation for θ. Using that
Lh

j ∼ ∥(θj , qj)∥2L2 , direct computations gives

d

dt
Lh

j + Lh
j ≤ ∥divwj∥L2∥θj∥L2 .
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Some nonlinear analysis

• We are working in the L2 − Lp framework:
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Figure: Frequency domain splitting for Navier-Stokes Cattaneo

Due to the lack of embedding of the type B s
p,1 ↪→ B s

2,1 if p > 2 → it is
difficult to absorb nonlinearities in the high and low-frequency regimes.

Indeed, the medium frequencies are only bounded in Lp-based spaces.

→ Need to develop advanced product laws.

For instance: let 2 ≤ p ≤ 4 and p∗ ≜ 2p/(p − 2). For all s > 0, we have
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Tools: Bony paraproduct decomposition and precise frequency analysis.
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Ḃ
s+ d

p
− d

2
p,1

+ ∥b∥ℓ,ε
Ḃ
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Main results for the Navier-Stokes-Cattaneo system
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We define X ε
0 := X ℓ

0 + Xm,ε
0 + X h,ε

0 , where

X ℓ
0 = ∥(ρε0 − ρ̄, vε

0 , θ
ε
0 − θ̄, εqε

0 )∥ℓ
Ḃ

d
2
−1

2,1

,

Xm,ε
0 = ∥vε

0 ∥m,ε

Ḃ

d
p
−1

p,1

+ ∥ρε0 − ρ̄∥m,ε

Ḃ

d
p
p,1

+ ∥(θε0 − θ̄, εqε
0 )∥m,ε

Ḃ

d
p
−2

p,1 ∩Ḃ

d
p
−1

p,1

,

X h,ε
0 = ε∥wε

0 ∥h,ε
Ḃ

d
2
2,1

+ ε∥vε
0 ∥h,ε

Ḃ
d
2
+1

2,1

+ ε∥ρε0 −−ρ̄∥h,ε
Ḃ

d
2
+1

2,1

+ ε∥(θε0 − θ̄, εqε
0 )∥h,ε

Ḃ
d
2
+1

2,1

.

Theorem (Global well-posedness of System NSC)

Let ε > 0, d ≥ 3, p ∈ [2, 4] and P(ρ, θ) = π(ρ)θ, ρ̄, θ̄ > 0. There exist
K , k ∈ Z such that for all ε > 0 satisfying J0 ≤ Jε, if we assume

X ε
0 ≤ η0,

then the Navier-Stokes-Cattaneo system admits a unique global-in-time
solution (ρε − ρ̄, uε, θε − θ̄, qε) in the space E ε

p associated to the norm X ε and
the solution satisfies

X ε(t) ≤ X0.
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Ill-prepared relaxation result in a critical framework

Theorem (Kawashima-Xu-Zuazua-CB ’23)

Let ε > 0, d ≥ 3, p ∈ [2, 4] and P(ρ, θ) = π(ρ)θ, ρ̄, θ̄ > 0.

Let (ρε− ρ̄, vε, θε− θ̄, qε) be the global solution of Navier-Stokes-Cattaneo
(constructed with the previous arguments) with initial data (ρε0 , v

ε
0 , θ

ε
0 , q

ε
0 ).

Let (ρ− ρ̄, v , θ − θ̄) be the global solution of Navier-Stokes-Fourier with
initial data (ρ0, v0, θ0).

We define the error unknowns (ρ̃, ṽ , θ̃) := (ρε − ρ, vε − v , θε − θ). If we assume
that

∥(ρ̃0, ṽ0, θ̃0)∥ℓ
B

d
2
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2,1

+ ∥ρ̃0∥h
B

d
p
−1

p,1
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B

d
p
−1

p,1

≲ ε. (7)

Then, we have the strong convergence result:

∥(ρ̃, ṽ , θ̃)∥ℓ
L∞
T

(B
d
2
−2

2,1 )
+ ∥(ρ̃, ṽ , θ̃)∥ℓ

L1
T
(B

d
2
2,1)

+ ∥qε + κ∇θε∥
L1
T
(B

d
p
−1

p,1 )

+ ∥ρ̃∥h
L∞
T

∩L1
T
(B

d
p
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p,1 )
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L∞
T

(B

d
p
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p,1 )

+ ∥(ṽ , θ̃)∥h
L1
T
(B

d
p
p,1)

≲ ε
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+ ∥(ρ̃, ṽ , θ̃)∥ℓ

L1
T
(B

d
2
2,1)

+ ∥qε + κ∇θε∥
L1
T
(B

d
p
−1

p,1 )

+ ∥ρ̃∥h
L∞
T

∩L1
T
(B

d
p
−1

p,1 )
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Extensions

A fully hyperbolic Navier-Stokes system.

Hyperbolic approximation in 2D.
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Part 2: 2d-Boussinesq equations and

incompressible porous media equation
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Presentation of the model

The two-dimensional Incompressible Porous Media (IPM) system is the active
scalar equation:

∂tρ+ u · ∇ρ = 0,

u = −κ∇P + gρ, g = (0,−g)T , (Darcy law)

∇ · u = 0.

(IPM)

It models the dynamics of a fluid of density ρ = ρ(t, x , y) : R+ × R2 → R
through a porous medium according to the Darcy law.
The constants κ > 0 and g > 0 are the permeability coefficient and the gravity
acceleration respectively, which hereafter are assumed to be κ = g = 1.

Application: transport of a dissolved contaminant in porous media where
the contaminant is convected with the subsurface water. For instance, one
could be interested in the time taken by the pollutant to reach the water
table below.

Mathematical motivation: Less regular than 2D Euler.
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Litterature and stratification

The incompressibility condition together with Darcy’s law implies that

u = ∇⊥(−∆)−1∂xρ = (R1R2ρ,−R2
1ρ)

where (R1,R2) is the two-dimensional homogeneous Riesz transform of order 0:

R1 = (−∆)−1/2∂x , R2 = (−∆)−1/2∂y .

• Thus, the equation reads:

∂tρ+ (R1R2ρ,−R2
1ρ) · ∇ρ = 0. (IPM)

For this system, Córdoba, Gancedo and Orive (07’) proved the local
well-posedness in Hölder space C δ with 0 < δ < 1 by the
particle-trajectory method.
What about global-in-time solutions close to equilibrium?
Due to the form of the velocity u = ∇⊥(−∆)−1∂xρ, all the steady states
of (IPM) are stratified: constant in x .
Among these steady states ρ̄eq = g(y), there are only some for which one
can hope to stabilise the system around. Here we focus on the linear and
stable ones:

ρ̄eq(y) = ρ0 − y

where ρ0 > 0 is a constant averaged density.
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Stability by stratification

Such states are expected to be stable since ρ̄′eq(y) < 0 implies that the
density of the fluid is proportional to the depth i.e. the density of the fluid
increases the deeper you go.

Linearizing (IPM) around ρ̄eq(y) = ρ0 − y , one obtains

∂t ρ̃−R2
1ρ̃ = (R2R1ρ̃,−R2

1ρ̃) · ∇ρ̃. (IPM-diss)

And, as we shall see, the linear operator −R2
1 will provide crucial

information to justify global well-posedness results.

In the opposite scenario: if the density is inversely proportional to the
depth, then one would recover the opposite sign in front of R2

1ρ for which
one may not retrieve time-decay information.

This should lead to instability as it can be related to the Rayleigh–Bénard
convection instability occurring even in the presence of diffusion.

To sum-up: here, in a sense, we will rely on the fact that the stratification
inherent in the model serves as a stabilising mechanism to derive
global-in-time results.
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This should lead to instability as it can be related to the Rayleigh–Bénard
convection instability occurring even in the presence of diffusion.

To sum-up: here, in a sense, we will rely on the fact that the stratification
inherent in the model serves as a stabilising mechanism to derive
global-in-time results.
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Literature

We refer to the work of Elgindi (17’) about the justification of asymptotic
stability of (IPM) in the whole space R2 for initial data in H20(R2).

The analogous result in the periodic finite channel in H10(T× [−π, π]) is
due to Castro, Córdoba and Lear (19’).

Small scale formation and asymptotic instability results in the Torus and
bounded strip by Kiselev and Yao (’22).

Our contributions are:

• The asymptotic stability of (IPM) in Ḣ1−(R2) ∩ Ḣs(R2) with s > 3.

• A new relaxation approximation of (IPM) by the two-dimensional
Boussinesq system with damped velocity.

• And, as a byproduct of the above two results, an existence result for the
two-dimensional Boussinesq system with damped velocity.
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due to Castro, Córdoba and Lear (19’).

Small scale formation and asymptotic instability results in the Torus and
bounded strip by Kiselev and Yao (’22).

Our contributions are:

• The asymptotic stability of (IPM) in Ḣ1−(R2) ∩ Ḣs(R2) with s > 3.
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Existence result for (IPM)

Theorem (Bianchini-CB-Paicu (ARMA ’24))

Let 0 < τ < 1 and s ≥ 3 + τ . For any initial datum ρin ∈ Ḣ1−τ (R2) ∩ Ḣs(R2),
there exists a constant value 0 < δ0 ≪ 1 such that, under the assumption

∥ρin − ρ̄eq∥Ḣ1−τ∩Ḣs ≤ δ0,

there exists a unique global-in-time smooth solution ρ̃ to system (IPM-diss)
satisfying the following inequality for all times t > 0

∥ρ̃∥L∞
T

(Ḣ1−τ∩Ḣs ) + ∥R1ρ̃∥L2
T
(Ḣ1−τ∩Ḣs ) + ∥∇R2

1ρ̃∥L1
T
(L∞) ≲ ∥ρ̃in∥Ḣ1−τ∩Ḣs ,

where ρ̃ = ρ− ρ̄eq.
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Idea of proof

Recall that the equation we are interested in reads:

∂tρ−R2
1ρ = (R2R1ρ,−R2

1ρ) · ∇ρ.

To justify the global-in-time existence of this equation, one way is to recover
the following bound ∫ t

0

∥(∇R1R2ρ,∇R2
1ρ)∥L∞ < ∞.

• But how can one retrieve such bound?

Let us investigate the toy-model:

∂tρ−R2
1ρ = 0. (8)

In a Sobolev framework, performing standard energy estimates leads to, for any
s ∈ R,

∥ρ∥L∞
T

(Hs ) + ∥R1ρ∥L2
T
(Hs ) ≤ ∥ρin∥Hs (9)

Issue: this only gives a L2-in-time bound that is not enough to control the
advection term (except if one assumes s ≥ 20).
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Anisotropic Besov spaces
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Anisotropic Besov approach

To derive additional properties from ∂tρ−R2
1ρ = 0, we will use

Littlewood-Paley decompositions adapted to R1 whose symbol is
ξ1
|ξ| .

We introduce the following anisotropic Littlewood-Paley decompositions: for
j , q ∈ Z, we denote

∆̇j the blocks associated to the direction |ξ|;
∆̇h

q the blocks associated to the direction ξ1,

and we define the following homogeneous anisotropic Besov semi-norms:

∥f ∥Ḃs1,s2 ≜
∥∥2js12qs2∥∆̇j∆̇

h
qf ∥L2(Rd )

∥∥
ℓ1(j∈Z,k∈Z).

• Recall that ∆̇j localises the support of the Fourier transform of a distribution
in an annulus and ∆̇h

q localises it in a stripe. Therefore ∆̇j∆̇
h
q localises in the

intersection of an annulus and a stripe.

• Main interest: Bernstein properties are available in both directions |ξ| and ξ1.

• Such spaces have been used in the past by Chemin, Paicu, Zhang, Xin et al.,
for instance in the context of the anisotropic Navier-Stokes system and the
MHD system.
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A new bound

• Applying both localisations, we get

∂t∆̇j∆̇
h
qρ−R2

1∆̇j∆̇
h
qρ = 0.

Standard energy estimates yield

d

dt
∥∆̇j∆̇

h
qρ∥2L2 + ∥R1∆̇j∆̇

h
qρ∥2L2 = 0

And thus, employing Bernstein’s lemma,

d

dt
∥∆̇j∆̇

h
qρ∥2L2 + 2−2j22q∥∆̇j∆̇

h
qρ∥2L2 = 0

Now, one can apply Gronwall-like inequality to ”simplify the squares”:

∥∆̇j∆̇
h
qρ(t)∥L2 + 2−2j22q

∫ t

0

∥∆̇j∆̇
h
qρ∥L2 ≤ ∥∆̇j∆̇

h
qρin∥L2

Then, for any s1, s2 ∈ R, multiplying by 2js12qs2 and summing on j , q ∈ Z:

∥ρ∥L∞
T

(Ḃs1,s2 ) + ∥ρ∥L1
T
(Ḃs1−2,s2+2) ≲ ∥ρin∥Ḃs1,s2 (10)
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Using the embedding Ḃ
3
2
, 1
2 ↪→ Ẇ 1,∞, one has:

∥∇R2
1ρ∥L∞ ≲ ∥R2

1ρ∥
Ḃ

3
2
, 1
2

2,1

≲ ∥ρ∥
Ḃ
− 1

2
, 5
2

2,1

.

One can now easily find regularity indices s1 and s2 so
∫ t

0
∥∇R2

1ρ∥L∞ is
bounded by the initial data.

Indeed, since we have ∥ρ∥L1
T
(Ḃs1−2,s2+2) ≤ ∥ρin∥Ḃs1,s2 , it suffices to choose:

s1 =
3

2
s2 =

1

2
.

• And to deal with the nonlinearities, we develop new product laws, adapted to
this anisotropic framework, and absorb them by the linear left-hand side side.
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Ḃ

3
2
, 1
2

2,1

≲ ∥ρ∥
Ḃ
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Additional difficulties

Nevertheless, we are not able to close the estimates in this anisotropic
setting. This is due to a lack of commutator estimates adapted to this
double localisation, which engenders a loss of one derivative.

Still, one can close the estimates in Sobolev space without losing
derivatives provided that we have the bound

∫ t

0
∥∇R2

1ρ∥L∞ .

Therefore, additionally to our anisotropic analysis, we need to perform
Sobolev estimates at one regularity higher than the Besov indexes so as to
absorb high-order nonlinearities in the Besov analysis.

Lemma (Embedding in Sobolev space)

Let s1, s2, τ1, τ2 ∈ R such that τ1 < s1 + s2 < τ2 and s2 > 0. If
a ∈ Ḣτ1(R2) ∩ Ḣτ2(R2) and a ∈ B s1,s2 , then

∥a∥Bs1,s2 ≲ ∥a∥Bs1+s2 ≲ ∥a∥Ḣτ1 + ∥a∥Ḣτ2 .

−→ Reason why s > 3 in our work, even though we only involve ”2
derivatives” in our Besov framework.
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Still, one can close the estimates in Sobolev space without losing
derivatives provided that we have the bound

∫ t

0
∥∇R2

1ρ∥L∞ .

Therefore, additionally to our anisotropic analysis, we need to perform
Sobolev estimates at one regularity higher than the Besov indexes so as to
absorb high-order nonlinearities in the Besov analysis.

Lemma (Embedding in Sobolev space)

Let s1, s2, τ1, τ2 ∈ R such that τ1 < s1 + s2 < τ2 and s2 > 0. If
a ∈ Ḣτ1(R2) ∩ Ḣτ2(R2) and a ∈ B s1,s2 , then

∥a∥Bs1,s2 ≲ ∥a∥Bs1+s2 ≲ ∥a∥Ḣτ1 + ∥a∥Ḣτ2 .

−→ Reason why s > 3 in our work, even though we only involve ”2
derivatives” in our Besov framework.
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Open question: Global well-posedness in the case s1 + s2 = 2 or s > 2?

• For initial data below H2, Kiselev and Yao (’22) proved the time-growth of
the norm ∥ρ− ρ̄∥Hs′ for any s ′ ≥ 1 and any stratified smooth steady state ρ̄
arbitrarily close to the solution, in the bounded strip T× [−π, π].
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Relaxation approximation of (IPM)

Crin-Barat Timothée Hyperbolic approximations in fluid mechanics



Hyperbolic Navier-Stokes equations
2d-Boussinesq equations and incompressible porous media equation

2D Boussinesq system

The two-dimensional Boussinesq system reads
∂tη + u · ∇η = 0,

∂tu+ u · ∇u+∇P = ηg, g = (0,−g),

∇ · u = 0.

(E)

Considering a damping in the equation of the vorticity and linearizing around
the same linear steady states as before, it is shown by Bianchini and Natalini
that (E) can be recast into

∂tb −R1Ω = (R2Ω,−R1Ω) · (∇b),

∂tΩ−R1b +
Ω

ε
− = Λ−1[(R2Ω,−R1Ω) · (∇ΛΩ)],

(2D-B)

with Ω = Λ−1ω where ω is the vorticity.
For this system:

Wan (19’) proved the global well-posedness in Hs with s ≥ 5.

Bianchini and Natalini (21’) derived time-decay estimates in the same
setting.

Quid of ε → 0?
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Formal link between (IPM) and (2D-B)

Let us have a closer look at the linear structure:
∂tb −R1Ω = 0,

∂tΩ−R1b +
Ω

ε
= 0.

(11)

Taking inspiration from the theory of partially dissipative systems, in the
following ”diffusive” scaling:

(b̃ε, Ω̃ε)(τ, x) ≜ (b,
Ω

ε
)(t, x) with τ = εt, (12)

the system (2D-B), in the scaled unknowns (b̃ε, Ω̃ε), reads:{
∂t b̃

ε −R1Ω̃
ε = 0,

ε2∂tΩ̃
ε −R1b̃

ε + Ω̃ε = 0.
(13)

Formally, as ε → 0, the second equation gives the Darcy’s law Ω̃ε = R1b̃
ε and

inserting it in the first one gives the linear part of the incompressible porous
media equation:

∂t b̃
ε −R2

1b̃
ε = 0.
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Relaxation Theorem

Theorem (Bianchini-CB-Paicu (’22))

Let (b̃ε, Ω̃ε) be the unique solution of (2D-B) associated to (bin,Ωin) ∈ H3+ .
Then, for any 0 < s ′ < s and 0 < τ < τ ′ < 1, as ε → 0,

b̃ε → ρ strongly in C([0,T ], Ḣ1−τ ′

loc ∩ Ḣs−s′

loc ),

where ρ is the unique solution of (IPM) associated to the initial data bin.

Moreover, we recover the Darcy law in the following sense:

∥Ω̃ε −R1b̃
ε∥

L1
T
(B

3
2
, 1
2 ∩B

1
2
, 1
2 )

≤ εM(0).

Proof: follows from uniform estimates established for the system (2D-B).
Again, we extract crucial a priori bounds for the solution thanks to the use of
anisotropic Besov spaces.
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Conclusion

• Such relaxation procedure is in analogy with the standard hyperbolic
approximation in the context of the infinite speed of propagation paradox:{

∂t ρ̃
ε + div ũε = 0,

ε2∂t ũ
ε +∇ρ̃ε + ũε = 0

−→
ε→0

{
∂tρ−∆ρ = 0,

u = −∇ρ.

where, in a sense, the Laplacian operator is approximated by a first-order
coupling.

• This is also related to our recent work with Raphaël Danchin concerning the
strong relaxation limit of the compressible Euler with damping to the porous
media equation. (For which we derive a convergence rate in all dimensions)

• Our analysis of (IPM) reveals that the operator R2
1 can be approximated in a

similar fashion:{
∂t b̃

ε −R1Ω̃
ε = 0,

ε2∂tΩ̃
ε −R1b̃

ε + Ω̃ε = 0
−→
ε→0

{
∂tb −R2

1b = 0,

Ω = −R1b.

Future researches:

Explicit convergence rate?

What about more general operators?

Which nonlinearities can we handle for general operators?
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ε2∂t ũ
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Further extensions and open problems
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Further extensions and open problems

Non-symmetric relaxation term: Euler-Maxwell, Timoshenko-Cattaneo,
etc.

Time-dependent damping and relaxation

Short-time behaviour of the solution.

Reduced controllability of hyperbolic systems.

Hyperbolic relaxation on bounded domains.

Numerical schemes preserving the asymptotics and the relaxation.
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Thank you!
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